半导体激光器的研究

合集下载

半导体激光器的研究进展

半导体激光器的研究进展

半导体激光器的研究进展摘要:本文主要述写了半导体激光器的发展历史和发展现状。

以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。

一、引言。

激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。

半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。

半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。

半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。

本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。

二、大功率半导体激光器的发展历程。

1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。

由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。

从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。

1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。

随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。

半导体激光器实验报告

半导体激光器实验报告

半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。

通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。

在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。

1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。

由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。

本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。

2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。

活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。

波导结构用于限制光的传播方向,并提供反射面以形成光腔。

光学耦合结构用于引导激光光束从激光器中输出。

2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。

通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。

当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。

随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。

3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。

3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。

然后,使用光功率计测量激光器的输出功率,并记录相关数据。

接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。

最后,调节激光器的注入电流,并测量波长调制特性。

完成实验后,对实验数据进行分析和讨论。

4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。

实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。

半导体激光器实验报告

半导体激光器实验报告

半导体激光器实验报告半导体激光器实验报告引言:半导体激光器是一种重要的光电子器件,具有广泛的应用领域,如通信、医疗、工业等。

本实验旨在通过搭建实验装置,研究半导体激光器的工作原理和性能特点,并探索其在光通信领域的应用。

实验一:激光器的工作原理激光器的工作原理是基于光放大和光反馈的原理。

在实验中,我们使用一台半导体激光器,通过电流注入激发半导体材料,产生光子。

这些光子在激光腔中来回反射,不断受到增益介质的放大,最终形成激光束。

实验装置中的关键组件包括半导体激光器、激光腔、准直器和光探测器。

半导体激光器通过电流注入,激发载流子跃迁,产生光子。

光子在激光腔中来回反射,经过准直器调整光束的方向,最后被光探测器接收。

实验二:激光器的性能特点在实验中,我们测试了激光器的输出功率、波长和光谱宽度等性能指标。

通过改变注入电流和温度等参数,我们研究了激光器的输出特性。

首先,我们测试了激光器的输出功率。

通过改变注入电流,我们观察到激光器输出功率随电流增加而增加的趋势。

然而,当电流达到一定值后,激光器的输出功率不再增加,甚至出现下降。

这是由于激光器的光子数饱和效应和损耗机制导致的。

其次,我们测量了激光器的波长。

通过调节激光腔的长度,我们观察到激光器的波长随腔长的变化而变化。

这是由于激光腔的谐振条件决定了激光器的输出波长。

最后,我们研究了激光器的光谱宽度。

通过光谱仪测量激光器的光谱分布,我们发现激光器的光谱宽度与注入电流和温度有关。

随着注入电流的增加和温度的降低,激光器的光谱宽度变窄,光纤通信系统中要求的窄光谱宽度可以通过适当的调节实现。

实验三:半导体激光器在光通信中的应用半导体激光器在光通信领域有着重要的应用。

我们通过实验研究了激光器在光纤通信中的应用。

首先,我们将激光器的输出光束通过光纤传输。

通过调节激光器的输出功率和波长,我们实现了光纤通信中的光信号传输。

通过光探测器接收光信号,并通过示波器观察到了传输过程中的光信号波形。

《高功率980nm半导体激光器外延结构设计及其性能研究》范文

《高功率980nm半导体激光器外延结构设计及其性能研究》范文

《高功率980 nm半导体激光器外延结构设计及其性能研究》篇一一、引言随着科技的进步,高功率半导体激光器在科研、工业、医疗等领域的应用越来越广泛。

其中,980 nm波段的半导体激光器因其独特的光学特性和应用价值,受到了广泛的关注。

本文将重点研究高功率980 nm半导体激光器的外延结构设计及其性能,以期为相关领域的研究和应用提供理论支持。

二、外延结构设计1. 材料选择外延结构的设计首先需要选择合适的外延材料。

考虑到高功率、高效率及稳定性等要求,我们选择了一种高电子迁移率和高热导率的材料作为基底,以保证激光器的稳定运行。

此外,还通过选择适当的掺杂元素来提高内量子效率和减少电流散溢。

2. 结构分层设计针对高功率输出和良好光束质量的需求,我们将外延结构分为多层结构。

主要包括以下部分:基底层、反射镜层、多量子阱(MQW)结构层、欧姆接触层等。

其中,多量子阱结构层是关键部分,其设计直接影响到激光器的性能。

3. 特殊结构设计为了进一步提高激光器的性能,我们设计了一些特殊结构。

例如,采用渐变折射率层以减少光在传输过程中的损耗;在多量子阱结构中引入应力层以提高内量子效率;以及在欧姆接触层中优化电极设计以提高电流注入效率等。

三、性能研究1. 实验方法我们通过分子束外延技术(MBE)和金属有机气相沉积(MOCVD)等工艺进行外延生长,并利用光刻、干湿法刻蚀等工艺制备出激光器芯片。

然后通过测试其阈值电流、斜率效率、光束质量等参数来评估其性能。

2. 实验结果及分析实验结果显示,高功率980 nm半导体激光器具有良好的光束质量和低阈值电流等特点。

与传统的半导体激光器相比,其在光功率、效率和寿命等方面都有显著的优势。

同时,我们也观察到通过引入特殊结构的设计,激光器的性能得到了进一步的提升。

例如,渐变折射率层的设计显著降低了光在传输过程中的损耗;而优化电极设计则提高了电流注入效率,从而提高了激光器的输出功率。

四、结论本文研究了高功率980 nm半导体激光器的外延结构设计及其性能。

半导体激光器特性测量实验报告

半导体激光器特性测量实验报告

半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。

2.测量半导体激光器的几个主要特性。

3.掌握半导体激光器性能的测试方法。

二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。

三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。

该设备集光学、精密机械、电子学、计算机技术于一体。

光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。

入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。

四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。

从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。

实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。

半导体激光器应用于光纤通信领域的研究与分析

半导体激光器应用于光纤通信领域的研究与分析

半导体激光器应用于光纤通信领域的研究与分析随着信息时代的发展,高速、大容量的数据传输需求越来越高。

在这样的背景下,光纤通信技术日益被人们所重视。

光纤通信是利用光的物理性质实现的高速数据传输技术,其传输速度远远高于传统有线通信技术,而且信号损耗小、抗干扰性强、安全可靠等特点,使得它具有广泛的应用前景。

半导体激光器是光纤通信技术中的关键组成部分,它可以作为光发射器或光放大器,在光纤通信系统中发挥着极其重要的作用。

本文将重点探讨半导体激光器在光纤通信领域中的研究和应用。

一、半导体激光器的基本原理半导体激光器是一种利用电子与空穴在半导体材料中复合释放能量的器件。

激光产生的基本原理是:当外加电场作用于半导体材料时,电子被可控地激发至导带、空穴被激发至价带,当电子和空穴在一定能量下复合时,会释放处于激发状态的能量,从而激发原子中电子的跃迁,产生与激发单元之间的相位同步、波长一致、光束聚束的激光光束。

半导体激光器因其结构简单、体积小、功耗低等特点,在通信,医学,工业等领域都得到了广泛的应用。

光纤通信系统需要一套完整的发射与接收系统来传输和检测信息。

半导体激光器广泛应用于光纤通信系统的光发射器和光放大器中。

1.光发射器光发射器是光纤通信系统中的关键组成部分,其主要作用是把通过电子方式表示的数字信号转换成光脉冲信号,并将它们输送到光纤中,使得信息能够在光纤中进行高速传输。

半导体激光器作为一种高功率、长寿命的光源,其在光传输中具有广泛的应用前景。

半导体激光器作为光发射器,在光纤通信系统中广泛应用,因其大小小、功率大、结构简单、易得性好而得到了广泛的应用。

2.光放大器光放大器是光纤通信系统的重要装置之一,它的主要作用是增加信号的强度。

由于光信号在光纤传输过程中会受到衰减,一旦强度低于特定阈值,信号就会在光纤中被衰减,影响信息的传输。

半导体激光器在光放大器中也得到的广泛应用。

主要分为两种放大器,即半导体光纤放大器和半导体光放大器。

半导体激光器_实验报告

半导体激光器_实验报告

半导体激光器_实验报告【标题】半导体激光器实验报告【摘要】本实验主要通过实际操作和测量,研究半导体激光器的工作原理和性能特点。

通过改变电流和温度等参数,观察激光器的输出功率和波长、发散角度等特性的变化,并分析其与激光器内部结构和材料特性之间的关系。

【引言】半导体激光器具有体积小、功耗低、效率高等优点,在光通信、激光加工、医疗等领域有广泛应用。

了解半导体激光器的工作原理和特性对于深入理解其应用具有重要意义。

【实验内容】1. 实验器材与仪器准备:准备半导体激光器、电源、温度控制器、功率测量仪等实验设备。

2. 实验步骤:a. 连接电源和温度控制器,调节温度至设定值。

b. 调节电流,记录相应的激光器输出功率。

c. 测量激光器的输出波长和发散角度。

d. 分析激光器输出功率、波长和发散角度等特性随电流和温度变化的规律。

【实验结果】1. 实验数据记录:记录不同电流和温度下的激光器输出功率、波长和发散角度数据。

2. 实验结果分析:a. 输出功率与电流和温度的关系。

b. 输出波长与电流和温度的关系。

c. 发散角度与电流和温度的关系。

【讨论】根据实验结果,结合半导体激光器的内部结构和材料特性,讨论激光器输出功率、波长和发散角度等特性与电流和温度的关系。

分析激光器的工作原理和性能特点,并讨论其在实际应用中的优缺点。

【结论】通过实验,我们深入了解了半导体激光器的工作原理和性能特点。

通过调节电流和温度等参数,可以控制激光器的输出功率、波长和发散角度等特性。

半导体激光器具有体积小、功耗低、效率高等优点,但也存在一些限制,如温度敏感性较强。

最后,我们对半导体激光器的应用前景进行了展望。

半导体激光器_实验报告

半导体激光器_实验报告
图 1
P(uW)
800 700 600 500 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 20
从拟合图中找出阈值以上的直线部分,单独拟合如下图 2,利用拟合公式求得阈 值电流为 11.73mA;斜率效率为 0.10084W/A.
2/7
半导体激光器
图 2
阈值以上的直线部分
10
误差产生的原因可能是读数时示数不稳定所带来的偏差,也有可能是测量光 功率时存在一些额外的损耗而没有很好的避免。 通过对表格 4、表格 5 的直观分析,可以看出:当电流一定时,随着温度的增 加,DFB 光谱的中心波长增加,功率谱密度减小;当温度一定时,随着电流 的增加,DFB 的中心波长增加,功率谱密度也增加。
功率谱密度/dBm -2.642 -0.963 0.381 1.168 1.925 2.621
中心波长 1546.139nm
功率谱密度 -0.154dBm
纵模间隔 1.374nm
-20dB 单模带宽 0.174nm
6/7
半导体激光器
二、 实验结果分析
当温度为 20.1℃时,通过对 DFB 的 P-I 曲线拟合(图 1 图 2) ,得到的阈值 电流为 11.73mA, 当温度为 24.9℃时 (图 3 图 4) , 得到的阈值电流为 12.15mA. 通过对 F-P 的 P-I 曲线拟合(图 5 图 6),得到的阈值电流为 9.19mA,与理论 值的相对误差为 ε=| 9.19 10 | 100 % 8.1%
功率谱密度/dBm -2.642 -2.834 -2.936 -3.129 -3.283 -3.334
固定温度改变电流(t=20℃)
表格 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体激光器的研究半导体激光器是近年来应用非常广泛的一种激光器。

在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。

【实验内容】1.激光二极管(LD)的伏安特性测量。

2.LD的发光强度与电流的关系曲线测量。

3*.LD发光光谱分布测量。

4*.LD发光偏振特性分析。

【实验仪器】激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等阅读材料半导体激光器件按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。

这里主要讨论前者。

半导体激光光源是半导体激光器发射的激光。

它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。

与其相对应的非相干发光二极管,英文缩写为LED。

它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。

可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。

由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。

半导体激光器自1962年问世以来,发展极为迅速。

特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。

以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。

1 概述1)半导体激光器的分类从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。

2)半导体激光器的工作原理半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。

图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。

它的核心部分是PN结。

半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。

激光可以从某一侧解理面输出,也可由两侧输出。

半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分立能级,而变成能带,如图所示。

在低温下,晶体中的电子都被原子紧紧束缚着,不能参与导电,价带以上的能带基本上空的。

当价带中的电子受到热或光的激发,获得足够的能量,即可跃迁到上面的导带。

导带与价带中的禁带宽度E g 又取决于导带底的能量E C 和价带顶的能量E V ,且有V C g E E E -=半导体材料很多,但目前常用的有两大类:一类是以砷化镓(GaAs)和镓铝砷(Ga l-x Al x As),其中下标x 表示GaAs 中被Al 原子取代的Ga 原子的百分比数。

x 值决定了波长,通常为850nm 左右。

这种器件主要用于短距离光通信和固体激光器的泵浦源。

另一类材料是以镓铟磷砷(Ga l-x In x As l-y P y ,)和磷化铟(InP),其激活波长为920nm ~1.65μm 。

特别是1.3μm 和1.55μm 广泛用于光纤通信中。

产生激光的机理与其它激光工作物质相似,半导体材料中也有受激吸收、受激辐射和自发辐射过程。

在电流或光的激励下,半导体价带上的电子获得能量,跃迁到导带上,在价带中形成了一个空穴,这相当于受激吸收过程。

导带中的电子跃迁到价带上,与价带中的空穴复合,同时把大约等于的能量以光子形式辐射出来,这相应于自发辐射或受激辐射。

显然,当半导体材料中实现粒子数反转,使得受激辐射为主,就可以实现光放大。

如果构成谐振腔,使光增益大于光损耗,就可以产生激光。

问题是,怎样才能在半导体中实现粒子数反转?应当指出,半导体激光器的核心是PN 结,见图(a ),它与一般的半导体PN 结的主要差别是:半导体激光器是高掺杂的,即P 型半导体中的空穴极多,N 型半导体中的电子极多,因此,半导体激光器PN 结中的自建场很强,结两边产生的电位差V D (势垒)很大。

当无外加电场时,PN 结的能级结构如图(b )所示,P 区的能级比N 区高eV D ,并且导带底能级(E C )N 比价带顶级(E V )P 还要低。

由于能级越低,电子占据的可能性越大。

所以N 区导带中(E C )N 与费米能级E F 间的电子数,比P 区价带中(E V )P 与费米能级E F 间的电子数多。

当外加正向电压时,PN 结势垒降低。

在电压较高、电流足够大时,P 区空穴和N 区电子大量扩散并向结区注入,并如图(c )所示,在PN 结的空间电荷层附近,导带与价带之间形成电子数反转分布区域,称为激活区(也称为介质区、有源区)。

因为电子的扩散长度比空穴大,所以激活区偏向P 区一边。

在激活区内,由于电子数反转,起始于自发辐射的受激辐射大于受激吸收,产生了光放大。

进一步,由于两解理面可以构成谐振腔,所以光不断增强。

形成了激光。

上述分析可知,只有外加足够强的正电压,注入足够大的电流,才能产生激光;否则,只能产生荧光。

在半导体激光器的输出功率P 与注入电流I 的关系曲线中,曲线的转折点对应于阈值电流。

该阈值是自发辐射和激光产生的分界点,也是从发光二极管状态到激光二极管工作的过渡点。

一旦激光开始,曲线斜率就变陡。

一般来说,发光二极管产生的光功率峰值最多是数百毫瓦量级,而激光二极管产生的光功率峰值国内可达数百瓦,国外可达千瓦以上。

2 半导体激光器的特性1)伏安特性GaAs激光器的伏安特性与一般二极管相同,也具有单向导电性,如图所示。

激光器系正向运用,其电阻主要取决于晶体电阻和接触电阻,虽然阻值不大,但因工作电流大,不能忽视它的影响。

2)阈值电流使半导体激光器的增益等于损耗,开始产生激光的注入电流密度叫阈值电流密度。

影响阈值的因素有:(1)晶体的掺杂浓度越大,阈值越小。

(2)谐振腔的损耗越小,阈值越小。

若在谐振腔的一端镀上银膜,增大对红外光的反射率,可使阈值进一步降低。

(3)在一定范围内,腔长越长,阈值越低,下图是实验测得的同质结GaAs 激光器的阈值电流密度J th 与腔长L 和反射率R 的关系曲线。

(4)温度对阈值电流的影响很大,由温度变化时测得的阈值电流密度变化曲线可见,在100K 以下,阈值与温度的关系较小,l00k 以上,阈值随T 的三次方增加。

因此,半导体激光器宜在低温或室温下工作。

下图为半导体激光束的空间分布。

图中选坐标y 轴与结平面平行,z 轴与结平面垂直。

设激光在结平面方向的半功率宽度为//θ,垂直于结平面方向的束宽为⊥θ,则基模束宽ωλθ///=式中,ω为结区水平方向尺寸,λ为激光波长。

而垂直于结平面方向的束宽为d /2λθ=⊥式中,d 为有源区的厚度,通常大于l μm ,近似地可按照窄的单缝衍射角的宽度来计算。

实际上⊥θ符合实际情况,而//θ则与实际相差很远,则不能用源场发散角的计算方法来计算。

3)方向性由于半导体激光器的谐振腔短小,激光方向性较差,特别是在结的垂直平面内,发散角很大,可达20°~30°。

在结的水平面内,发散角约为几度。

4)光谱特性下图是GaAs 激光器的发射光谱,其中图(a )是低于阈值时的荧光光谱,谱宽一般为几十纳米,图(b )是注入电流达到或大于阈值时的激光光谱,谱宽约零点几纳米。

半导体激光的谱宽尽管比荧光窄得多,但因其特殊的电子结构,受激复合辐射发生在导带和价带之间,所以比气体和固体激光器要宽得多,而且在室温下更宽,达几纳米。

可见半导体激光器的单色性较差。

随着新器件的出现,已有所改善,如分布反馈式半导体激光器的线宽,只有0.1nm 左右。

半导体激光器的工作波长随结构不同而不同。

例如,对于双异质结激光器,可以通过改变A1GaAs 材料中的A1含量,产生0.751μm ~0.92μm 波长范围的激光,而目前最广泛采用的波长是0.85μm 。

近几年来,由于光纤制造技术的发展,在1.0μm ~1.8μm 内,尤其是在1.3μm ~1.55μm 范围内的光纤传输损耗极低,因此,由于光纤通信的推动,人们正致力于研究长波长激光器。

例如,砷镓铟 (In x Ga l-x As)激光器(0.87μm ~1.7μm),锑砷镓(GaAs l-x Sb x )激光器(0.4μm 一1.4μm),磷砷镓铟(In x Ga l-x As l-y P y )激光器(0.92μm ~1.7μm)。

其中,四元化合物InGaAsP 用的比较多,所选用的x ,y 关系,一般为y =2.16(1-x )。

5)转换效率注入式半导体激光器是一种把电功率直接转换为光功率的器件,转换效率极高。

转换效率通常用量子效率和功率效率量度。

(1)量子效率量子效率定义为ei i h P P th th D /)(/)(--=νη 式中,P 是输出功率,P th 是阈值发射光功率,hv 为发射光子能量,i 是正向电流,i th 是正向阈值电流,e 为电子电荷。

由于P >> P th ,所以上式可改写为Vi i P e i i h P th th D )(/)(/-=-=νη 式中,V 是正向偏压。

由该式可见,D η实际上对应于输出功率与正向电流的关系曲线中阈值以上线性范围内的斜率。

(2)功率效率功率效率P η定义为激光器的输出功率与输入电功率之比,即SP R i iV P 2+=η 式中,V 是PN 结上的电压降,R S 是激光器串联电阻(包括材料电阻和接触电阻)。

由于激光器的工作电流较大,电阻功耗很大,所以在室温下的功率效率只有百分之几。

3 典型的半导体激光器常见的半导体激光器有:边缘发射与表面发射半导体激光器,同质结半导体激光器,异质结半导体激光器,可见光半导体激光器,分布反馈式半导体激光器和量子阱激光器。

1)半导体结型二极管注入式激光器早期半导体激光器的结构如图所示,它是在半导体的正偏PN 结上注入载流子而产生光辐射,所以称之为半导体结型二极管注入式激光器。

通常采用砷化镓作为半导体物质,波长为840nm ,处于近红外线区。

半导体激光器是把PN 切成方块,焊上电极,长方形的侧面磨毛,其两断面是平行平面,形成F-P 腔,这两个断面可以是磨制而成的,也可以直接利用晶体的解理面。

当施加于激光器的电流超过阈值时,便产生激光辐射。

相关文档
最新文档