1.1.1集合的含义与表示
1.1.1集合的含义与表示

小题狂做
1、若以集合A={-1,1},B={0,2},则集合 {z︱z=x+y,x A,y B} 中的元素个数为( ) 。 A. 5 B. 4 C. 3 D. 2
2 、若以集合S={a,b,c}( a,b,c R)中三个元素为边可 构成三角形,那么此三角形不可能是( ) 。 A.锐角三角形 C. 钝角三角形 B. 等腰三角形 D.直角三角形
【分析】集合相等当且仅当集合中元素全部相同。且同一集合中的元素互异。
【解析】由A=B,即A与B的元素一样,则
a+d=aq (Ⅰ)a+2d=aq2
Hale Waihona Puke (Ⅱ)2a+d= aq2 a+2d= aq
由(Ⅰ)消去d,得aq
-2aq+a=0.
根据已知条件,显然a 0, d 0,解得q=1. 但当q=1时,a=aq=aq2 ,这与集合中元素的互异性矛 盾,故q=1舍去.
05 集合的分类
集合通常可分为有限集、无限集、空集.
(1)有限集 含有有限个元素的集合叫做有限集. (2) 无限集 含有无限个元素的集合叫做无限集. 如{所有的等腰三角形} (3)空集 不含任何元素的集合叫做空集.
你学到了什么?
1、元素与集合的概念 2、常用数集的符号 3、集合中元素的三个特征 :确定性,互异性, 无序性 4、集合的表示方法:列举法,描述法,图示法 5、集合的分类:有限集,无限集,空集
例题
(2)用描述法表示所有奇数的集合。
解: 任何一个奇数都可以表示为x=2k+1(k z)的形式, 所以我们可以把所有奇数的集合表示为 E={ x Z︱x=2k+1,k z}.
例题
(3)分别用列举法和描述法表示 x2-2=0的所有实数根组成的集合。 方程
数学1:1.1.1_集合的含义与表示

1、1集合一、教材分析:新课标把集合作为现代数学一种基本语言来学习,课标中明确提出了:给一个数学对象怎么去描述?可以用自然语言,可以用venn图,也可以用集合的语言表述数学对象。
把集合作为一种语言来学习,要注意三件事:1)要把集合的有关概念、表示方法、集合之间关系的符号、集合的运算搞清楚,这是教学中首先要把握好的一个重点;2)语意的转换、方法的选择、了解用集合语言和别的语言,优点是什么,提高学生学习的自觉性;3)用集合语言来表述数学对象、数学关系的任务不能在这一章中全部完成,我们仅仅是为了给学生打一个基础,在今后的学习中,只要有适当的机会就主动地引导学生应用、比较,不断提高学生的表达能力,用集合语言来交流的能力。
二、学情分析:在初中阶段已经学习了自然数集合、有理数集合,对集合有了初步的认识,对用集合语言还不熟悉,难在将集合语言和自然语言进行转换。
§1、1、1 集合的含义与表示教学目标:了解集合的含义,体会元素与集合的从属关系;知道常用数集及其专用记号;了解集合中元素的三大特征;会用集合语言表示有关数学对象,能选择自然语言、集合语言表述不同的具体问题;培养学生抽象概括能力。
教学重点:集合的含义与表示方法教学难点:表示法的适当选择教学情境设计:教师:军训时,我们听到教官口令“高一(9)班同学集合”这里的“集合”作为动词,听到口令后高一(9)班的同学就会从四面八方聚集到一起,不是高一(9)班的同学会走开,这一声“集合”就能把某些指定的对象集在一起,如果把这个集在一起的整体作为研究对象,这个整体即我们数学中所说的集合。
教师:你能举一些集合的例子吗?学生:举例、交流。
教师:引导学生阅读教科书上的8个例子,并思考概括它们的共同特征。
1、集合的含义:一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合,简称集。
完成P2思考题教师:集合中元素可以是数,可以是点,也可以是事物或其它东西,是不是任何事物一定能构成集合?集合中的元素有什么特征?学生:阅读教科书、举例,发表自己看法。
【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.
1.1.1集合的含义与表示

3≠x 3 ≠ x ²- 2x x ≠ x ²- 2x 解得x ≠ -1, x ≠ 0,且x ≠ 3
讨论题2: 集合A={1,3,5}与集合 B={3,1,5}是同一集合吗?
解:根据集合的三要素,可以知道两个 集合是同一集合.
讨论题3: 若{1,2}={a-2,2h},则求 a, h?
知识要 点
集合的表示方法之二: 像这样把集合的元素一一列举出来,并用花括号 “{ }”括起来表示集合的方法叫做列举法.
课堂检测: 用列举法表示下列集合: (1)小于10的所有自然数; (2)方程 x2 + 3x + 2 = 0 的解; (3) 小于10的所有奇数.
解:(1)A={0,1,2,3,4,5,6,7,8,9}
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}.
2.12的所有约数可表示为{1,2,3, 4,6,12}.
3.方程x-1=0的解集可以表示为{1}.
⑵ 方程 x2 5x 6 0的解集.
用列举法表示集合时,不必考虑
分析 这两. 个元集素合的都排是列有顺序限,集但是.列举的元素 (1)题的元素不可能以出现直重接复列.举出来; (2)题的元素需要解方程 x2 5x 6 0 得到.{-1,6}.
高教社
课堂练习:P5,上,练习。3
个元素,求a的值和这个元素.
解:A中只有一个元素, (1)当a=0时,4x+4=0,x=4
A={-1};
(2)当a 0时, 16-16a=0,a=1 即x2+4x+4=0 ,x=-2 A={-2}.
1.1.1集 合的含义与表示

1.1.1集合的含义与表示在我们日常生活和数学学习中,经常会遇到“集合”这个概念。
那什么是集合呢?集合就像是一个“大口袋”,把一些具有特定性质的对象装在一起。
比如说,咱们班所有同学就可以组成一个集合;一个书架上的所有书籍也能构成一个集合;一年中所有的月份也能形成一个集合。
从这些例子可以看出,集合是由一些确定的、互不相同的对象所组成的整体。
集合中的每个对象都被称为这个集合的元素。
元素是构成集合的基本单位。
比如在班级同学这个集合中,每一位同学就是其中的一个元素。
那怎么来表示一个集合呢?常见的方法有列举法、描述法和图示法。
列举法就是把集合中的元素一个一个地列出来。
就像咱们刚刚说的一年中所有的月份这个集合,就可以用列举法表示为{1 月,2 月,3 月,4 月,5 月,6 月,7 月,8 月,9 月,10 月,11 月,12 月}。
再比如小于 5 的自然数组成的集合,用列举法就是{0,1,2,3,4}。
描述法呢,是通过描述元素所具有的共同特征来表示集合。
比如{x | x 是小于 10 的正整数},这个集合就表示了小于 10 的所有正整数。
又比如{x | x 是方程 x² 4 = 0 的解},通过这样的描述,我们就能清楚地知道这个集合里的元素是哪些。
图示法中,我们常用的是韦恩图。
通过画一个封闭的曲线,把集合中的元素放在这个曲线内部。
比如有两个集合 A 和 B,A 是{1,2,3},B 是{2,3,4},我们就可以用韦恩图来直观地表示它们之间的关系。
集合还有一些重要的特性。
确定性是说,对于一个给定的集合,任何一个对象是不是这个集合的元素是确定的。
不能模棱两可,比如说“个子高的同学”就不能构成一个集合,因为“个子高”这个标准不明确。
互异性指的是集合中的元素不能重复。
比如{1,2,2,3}这样的表示就是错误的,应该写成{1,2,3}。
无序性则表示集合中的元素排列顺序是无所谓的。
{1,2,3}和{3,2,1}表示的是同一个集合。
1.1.1集合的含义与表示

设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().
1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征
1.1.1 集合的含义与表示

有理数于3小于11的偶数; { 4,6,8,10 } A=
②1∼10以内的奇数;
1、列举法 B= { 1,3,5,7,9 }
就是将集合中的元素一一列举出来并放在 大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内; 3、别忘了大括号。
例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合 (2)方程
{ x | p(x) }
x为该集合的 代表元素 p(x)表示该集 合中的元素x 所具有的性 质
例如:x―7<3的解集可以表示为:
{x∈R|x<10}
例2.用描述法表示下列集合:
1. 小于10的所有有理数组成的集合; 2. 所有偶数组成的集合; 2 3. 二次函数 y x 2 的函数值组成 的集合; 2 4. 抛物线 y x 2 上的点组成的 集合;
4、集合与元素的关系:
若a是A中元素,记为
a A,
若a不是A中元素,记为
a A
5、有限集:元素个数有限的集合. 无限集:元素个数无限的集合.
集合的三种表示方法:
1、列举法:
2、描述法:
3、图示法:
集合中元素具有 确定性 互异性 无序性
一般 地:我们用小写拉丁字母a,b,c…表示元 素,用大写拉丁字母A,B,C,…表示集合.
若a是A中元素,记为 a A 若a不是A中元素,记为 a A
1、常见数集的表示
N:自然数集(含0)即非负整数集 N+或N*:正整数集(不含0) Z: 整数集
Q:
R:
练习,用适当的方法表示下列集合
1. 小于100的自然数组成的集合; 2. 不等式 2 x 3 3x 的解集 2 3. 方程 x x 6 0 的解集
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶ 图示法(Venn图)
我们常常画一条封闭的曲线,用 它的内部表示一个集合. 图1-2表示集合{1,2,3,4,5} .
例如,图1-1表示任意一个集合A;
A 图1-1
1,2,3, 5, 4.
图1-2
集合的表示方法
(1)列举法:把集合的元素一一 列举出来写在大括号的方法. (2)描述法:用确定条件表示某 些对象是否属于这个集合的方法.
集合的含义与表示
观察下列对象:
(1) 2,4,6,8,10,12;
(2)我校的篮球队员; (3)满足x-3>2 的实数;
(4)我国古代四大发明; (5)抛物线y=x2上的点.
1. 定 义
一般地, 指定的某些对象的
全体称为集合. 集合中每个对象叫做这个
集合的元素.
2.
集合的表示法 集合常用大写字母表示,
(3)图示法.
集合的分类
⑴有限集:含有有限个元素的集合.
⑵无限集:含有无限个元素的集合.
⑶空 集:不含任何元素的集合. 记作.
5.例题讲解
例1 下面的各组对象能否 构成集合?
(1)高个子的人;
(2)小于2004的数;
(3)和2004非常接近的数.
练
习
判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2}√
课堂练习 1.若M={1,3},则下列表示方ห้องสมุดไป่ตู้ 正确的是( C ) A. 3 M C. 1 M B.1 M
D. 1 M且 3 M
2.用符号表示下列集合,并写 出其元素: (1) 12的质因数集合A; (2) 大于 11且小于 29 的整数 集B.
课堂小结 1.集合的定义; 2.集合元素的性质:确定性,互 异性,无序性; 3.数集及有关符号; 4. 集合的表示方法; 5. 集合的分类.。
R
2.写出集合的元素,并用符号表 示下列集合: ①方程x2- 9=0的解的集合;
②大于0且小于10的奇数的集合;
列举法:把集合的元素一一列出来
写在大括号的方法.
③不等式x-3>2的解集;
④抛物线y=x2上的点集;
⑤方程x2+x +1=0的解集合.
描述法:用确定条件表示某些对 象是否属于这个集合的方法.
4.重要数集:
(1) N: 自然数集(含0) 即非负整数集 (2) N+: 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集
(5) R:实数集
练
习
1. 用符号“∈”或“
空 (1) 3.14
”填 Q
Q (2)
(4) (6)
(3) 0 + N 2 3 (5) Q
0 (-2) N+ 2 3
(2) 若4x=3,则 xN
(3) 若x Q,则 x R (4)若X∈N,则x∈N+
√ × ×
例2 若方程x2-5x+6=0和方程x2-x -2=0的解为元素的集合为M,则M 中元素的个数为( C ) A.1 B.2 C.3 D.4
例3.已知集合 A={x ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值和这个元 素..
元素则常用小写字母表示.
3.集合元素的性质: (1)确定性:集合中的元素必须 是确定的. 如果a是集合A的元素,就说a 属于集合A,记作a ∈ A;
如果a不是集合A的元素,就 说a不属于集合A,记作a A.
(2)互异性:集合中的元素必须
是互不相同的. (3)无序性:集合中的元素是无
先后顺序的. 集合中的任何两个 元素都可以交换位置.