等差数列的定义微课教学设计
等差数列的课程设计

等差数列的课程设计一、课程目标知识目标:1. 学生能够理解等差数列的定义,掌握等差数列的通项公式和求和公式。
2. 学生能够运用等差数列的性质解决相关问题,如求某项的值、求项数等。
3. 学生了解等差数列在实际生活中的应用,如计算银行利息、物品的等差价格等。
技能目标:1. 学生能够通过观察和分析,发现数列的规律,培养逻辑思维和观察能力。
2. 学生能够运用等差数列的相关知识解决实际问题,提高解决问题的能力。
3. 学生能够运用数学语言表达等差数列的概念和性质,提高数学表达和交流能力。
情感态度价值观目标:1. 学生在学习等差数列的过程中,体验数学的简洁美和逻辑美,培养对数学的兴趣和热爱。
2. 学生通过解决实际问题,认识到数学知识的实用性和价值,增强学习数学的自信心。
3. 学生在合作交流中,培养团队协作精神,学会尊重他人,提高人际沟通能力。
课程性质:本课程为数学学科的基础课程,以等差数列为主题,结合实际生活中的问题,培养学生运用数学知识解决问题的能力。
学生特点:学生处于初中阶段,具有一定的数学基础,逻辑思维和观察能力正在逐步发展。
教学要求:教师应注重启发式教学,引导学生主动探究等差数列的性质和应用,关注学生的个体差异,提高学生的数学素养。
同时,注重培养学生的合作精神和沟通能力,使学生在学习过程中获得积极的情感体验。
通过分解课程目标为具体的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 等差数列的定义及性质- 引入等差数列的概念,解释数列的有序性和规律性。
- 探讨等差数列的公差及其对数列的影响。
- 分析等差数列的通项公式及其推导过程。
2. 等差数列的通项公式与求和公式- 介绍等差数列的通项公式,并通过实例加以运用。
- 掌握等差数列的前n项和公式,解释其数学意义和应用场景。
3. 等差数列的应用- 通过实际案例,如银行存款利息、物品价格等,展示等差数列的应用。
- 练习解决与等差数列相关的生活实际问题。
4. 等差数列的练习与拓展- 设计不同难度的习题,巩固学生对等差数列的理解和应用能力。
《等差数列的定义》教案

《等差数列的定义》教案
一、教学目标
1.理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件
2.通过探究等差数列的过程,培养学生发现问题,分析问题,解决问题的能力。
3.通过富有挑战性的知识,激发自主探索数学问题的热情,在活动中增强探索数学规
律的兴趣,积累积极的数学学习体验。
二、教学重难点
教学重点:掌握等差数列的定义和公差的定义
教学难点:掌握等差数列的定义和公差的定义
三、教学方法
讲授法、提问法、讨论法
四、教学过程
(一)活动导入
通过玩游戏的方法,引入几个数列,让同学通过观察这几个数列得到数列的规律,然后列举相同关系的数列。
层次一:合作探究一
引导学生观察多媒体展示的数列的特点,开启四人小组模式,讨论后带学生总结出首项和公差的概念。
层次二:合作探究二
给出首项为a1,公差为d,引导学生探究出等差数列的通项公式。
(三)巩固练习
运用等差数列的定义判断PPT上的数列,是否为等差数列。
(四)课堂小结
教师引导学生对本节课所学知识进行小结,学生畅谈本节课的收获,教师给予点评和补充。
(五)布置作业
1.完成导学案上的练习题
2.整理数学笔记。
五、板书设计
等差数列的定义等差数列的定义例题
等差数列的公式。
《等差数列》教案优秀3篇

《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
等差数列的概念、性质(优质课)教案

等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
等差数列的概念教学设计与反思(共5则)

等差数列的概念教学设计与反思(共5则)第一篇:等差数列的概念教学设计与反思等差数列的概念教学设计与反思【教学目标】理解等差数列的定义,掌握等差数列的通项公式,会应用通项公式解决简单的计算;培养学生的观察、归纳、分析探索能力。
【教学重点】理解等差数列的定义,探索并掌握等差数列的通项公式,会用公式解决简单的计算。
【教学难点】探索推导等差数列的通项公式。
【教学方法】尝试探究【教学过程】一、尝试预习,以旧引新出示题目:观察下列数列,按规律填空1)1,3,(),7,9,…… 2)2,5,8,(),14,…… 3)-2,3,8,(),18,…… 4)12,8,4,(),-4,……师:这些数列共同的特点是什么?生:后一项减前一项的差相等。
师:我们给这样的数列取个名字吧?生:等差数列。
师:很好,这节课我们就研究等差数列。
板书课题:等差数列二、师生互动,讲授新课1.尝试举例,强化概念师:等差数列强调每相邻的两项,后一项减前一项的差相等,作为差的这个数对每个差式都是公共的,我们可以叫它什么?生:公差。
师:很好,前面四个数列的公差分别是多少?生:2,3,5,-4。
师:你能举出等差数列的例子吗?(学生举出3至5个例子,并说出它们的公差)师:你在举例子时,最先确定哪些量,然后给出整个数列?生:首项和公差。
2.尝试推导,应用概念师:如果给出等差数列的首项是a1,公差是d,你能写出它的第2项、第3项、第4项、第5项……吗?生:a2=a1+d a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d a5=a4+d=(a1+3d)+d=a1+4d ……师:按照这个规律,你能得出第n项吗?生:an=a1+(n-1)d 师:非常好,这就是等差数列的通项公式。
板书通项公式:an=a1+(n-1)d 师:要确定通项公式,必须知道哪些量?生:首项a1和公差d。
师:好,请同学们分组写出前面四个数列的通项公式。
等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。
教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。
2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。
二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。
2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。
三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。
-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。
3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。
四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。
2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。
学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。
五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。
4.2.1等差数列的概念教学设计2023-2024学年高二下学期数学人教A版(019选择性必修第二册

课题等差数列课型新授课课时1课时教学内容等差数列的定义及通项公式教学目标知识目标:1.掌握等差数列的定义2.掌握等差数列的通项公式的基本应用能力目标:1.明确等差数列的定义2.能够利用等差数列的通项公式,求出等差数列的任何一项素质目标:1培养学生的观察能力2.进一步提高学生推理、归纳能力3.培养学生将数学学习与生活相结合的思想教学重、难点教学重点:1.等差数列的定义的理解与掌握2.等差数列的通项公式的推导及应用教学难点:等差数列“等差”特点的理解、把握和应用教学方法游戏教学法、小组教学法、讲练结合法教学媒体及资源交互式电子白板、PPT教学过程教学环节及内容教师活动学生活动环节一(8min):*创设情景兴趣导入教师引入与运动有关的生活实例播放观看实例一姚明刚进NBA 时一周训练罚球个数:6000,6500,7000,7500… 实例二匡威运动鞋(女)的尺码数:35,36,37,38 … 教师引导学生观察:上面例子中的数列的具有怎样的特点?第一个数列,从第2项起,每一项与前一项的差都等于500 ; 第二个数列,从第2项起,每一项与前一项的差都等于1 ;师生共同总结出这两个数列的共同特点,进而引出等差数列的定义,导入新课课件 质疑引导 分析课件 思考 自我 建构环节二(15min ):动脑思考 探索新知一、等差数列的定义如果一个数列从它的第2项开始,每一项与它的前一项的差都等于同一个常数,那么,这个数列叫等差数列,这个常数叫做等差数列的公差,一般用字母d 表示。
教师强调学生在理解等差数列的定义时应注意:(1)从第2项开始(这是为了保证“每一项”都有“前一项”);(2)每一项与它的前一项的差(公差=后项-前项) (3)差都等于同一个常数(差都相等);教师引导学生对式子“公差=后项-前项”进行变形得到“后项=前项+公差”,进而分析得:若数列{}n a 为等差数列,d 为公差,则d a a n n =-+1,即d a a n n +=+1 (n ≥1)注:n=1时 2a =1a +d n=2时3a =2a +d n=3时4a =3a +d … 教师引入与运动有关的盛会:第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次。
等差数列的定义与通项公式教案

等差数列的定义与通项公式教案一、教学目标:1. 了解等差数列的定义,掌握等差数列的性质。
2. 掌握等差数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的求和公式5. 应用举例三、教学重点与难点:1. 教学重点:等差数列的定义、性质、通项公式及应用。
2. 教学难点:等差数列通项公式的理解和运用。
四、教学方法:1. 采用讲授法,讲解等差数列的定义、性质、通项公式及应用。
2. 利用实例进行分析,帮助学生理解和掌握等差数列的性质和通项公式。
3. 运用练习题,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 引入:通过列举一些实际问题,引导学生思考等差数列的定义和性质。
2. 等差数列的定义:讲解等差数列的定义,引导学生理解等差数列的特点。
3. 等差数列的性质:讲解等差数列的性质,如相邻两项的差是常数等。
4. 等差数列的通项公式:推导等差数列的通项公式,并解释其含义。
5. 等差数列的求和公式:讲解等差数列的求和公式,并给出应用实例。
6. 练习题:布置一些有关等差数列的练习题,让学生巩固所学知识。
7. 总结:对本节课的主要内容进行总结,强调等差数列的定义、性质和通项公式的重点。
8. 作业:布置一些有关等差数列的应用题,让学生进一步理解和掌握所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了等差数列的定义、性质和通项公式。
针对存在的问题,调整教学方法,为下一节课做好准备。
七、教学评价:通过课堂讲解、练习题和课后作业,评价学生对等差数列的定义、性质和通项公式的掌握程度。
对学生的学习情况进行全面评价,鼓励优秀学生,帮助后进生。
八、课时安排:2课时九、教学资源:教材、教案、PPT、练习题等。
十、教学拓展:1. 等差数列在实际应用中的例子:如人口增长、工资增长等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计思路
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
50秒
第三部分内容:
哪些数列是等差数列?并且求出首项与公差。
根据这个练习总结出几个常用的结论
152秒
三、结尾
(30秒以内)
授课完毕,谢谢聆听!
30秒以内
自我教学反思
本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。
微课教学设计
授课教师姓名
李慧
学科
数学
教龄
9分钟2秒
微课名称
等差数列的定义
视频长度
9分钟2秒
录制时间
2016年3月
知识点来源
学科:数学年级:高三教材版本:必修5
知识点描述
理解等差数列的定义,会判断一个数列是否为等差数列
预备知识
听本微课之前需了解的知识:课前预习(看教材)
教学类型
讲授型问答型练习型
适用对象
教学过程
内容
时间
一、片头
(30秒以内)
前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内
பைடு நூலகம்二、正文讲解
(8分钟左右)
第一部分内容:
由三个问题,通过判断分析总结出等差数列的定义
60秒
第二部分内容:
给出等差数列的定义及其数学表达式,