数学建模:投资问题

合集下载

数学建模在投资风险管理中的应用

数学建模在投资风险管理中的应用

数学建模在投资风险管理中的应用一、引言在现代金融市场中,投资风险是不可避免的。

因此,如何有效地管理风险,达到更好的投资效果,一直是金融工作者们需要解决的核心问题。

数学建模作为一种工具,可以通过对金融数据进行分析、预测和优化,从而帮助投资者更好地管理风险。

二、基础数学知识在投资分析中的应用在投资分析中,基础数学知识如统计学、概率论、线性方程组、微积分等都有着重要的应用。

例如,在股票价格的分析中,投资者可以利用概率分布函数和统计方法来预测股票价格的走势。

同时,利用线性代数和微积分等数学方法,可以对多个股票进行组合投资的裸跑分析。

此外,在金融衍生品的定价分析中,利用微积分和概率论可以推导出定价公式,帮助投资者更好地进行衍生品的买卖和对冲。

三、数据分析在投资管理中的应用随着现代技术的不断发展,大量的投资数据也得到了收集和分析。

在投资管理中,数据分析可以帮助投资者更好地理解市场的趋势和动向,从而做出更为准确的投资决策。

例如,通过对历史股票价格的分析,可以发现股市的波动是有一定规律的,因此投资者可以利用这一规律制定相应的投资策略。

同时,在量化投资中,数据分析技术也被广泛应用,例如通过构建多因子模型来挖掘市场的潜在机会,从而达到更好的投资效果。

四、金融风险管理中的数学模型金融风险是投资过程中需要面对的一个重要挑战,而数学建模可以帮助我们更好地管理这些风险。

例如,在对冲基金风险管理中,利用随机过程和蒙特卡罗模拟等数学方法,可以帮助投资者更好地估计风险值。

同时,利用协方差矩阵和极值理论等数学工具,可以对股票组合进行风险分析和优化配置。

此外,金融市场中还存在着利率风险和信用风险等多种风险,针对不同类型的风险,数学模型也可以提供相应的解决方案。

五、结论综上所述,数学建模在投资风险管理中有着广泛的应用,基础数学知识可以帮助投资者更深入地理解市场的运作机制,数据分析技术可以帮助投资者更好地把握市场的趋势和动向,而金融风险管理中的数学模型则可以帮助投资者更好地管理和控制风险,从而达到更好的投资效果。

数学建模13道题

数学建模13道题

数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。

该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。

2.用长8米的角钢切割钢窗用料。

每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。

公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。

制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。

数学建模—投资的收益和风险问题

数学建模—投资的收益和风险问题

学建模二号:名:级:投资的收益和风险问题摘要:某投资公司现有一大笔资金(8000 万),可用作今后一段时间的市场投资,假设可供选择的四种资产在这一段时间的平均收益率分别为 r i ,风险损失率分别为 q i 。

考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的资产中最大的一个风险来度量。

另外,假定同期银行存款利率是 r0 =5%。

具体数据如下表:对于第一问,我建立了一个优化的线性规划模型,得到了不错的结果。

假设 5 年的投资时间,我认为五年末所得利润最大可为:37.94 亿。

具体如何安排未来一段时间内的投资,请看下面的详细解答。

如果可供选择的资产有如下15 种,可任意选定投资组合方式,就一般情况对以上问题进行讨论,结果又如何?对于第二问,考虑独立投资各个项目的到期利润率,通过分析,发现数据中存在着相互的联系。

由此,我建立了一个统计回归模型x5=a0+a1*x4+a2*x3+a3*x2+a4*x1+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2通过这个模型,我预测了今后5年各个项目的到期利润率。

如第一个项目今后五年的到期利润率为:第一年:0.1431 第二年:0.1601 第三年:0.0605 第四年:0.1816 第五年:0.1572 。

(其他几个项目的预测祥见下面的解答)考虑风险损失率时,定义计算式为:f=d*p;d 为该项目 5 年内的到期利润率的标准差,p 为到期利润率;考虑相互影响各个项目的到期利润率时,我们在第一个模型的基础上建立一新的模型:x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5 y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*x5 (两个项目互相影响的模型) x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5+a16*z5y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*z5+a26*x5z5=a30+a31*z4+a32*z3+a33*z2+a34*z1+a35*x5+a37*y5(三个项目互相影响的模型)通过解方程组,我们可以预测出今后五年的到期利润率。

2023年数学建模c题目

2023年数学建模c题目

2023年数学建模c题目
2023年数学建模竞赛C题是“多阶段投资组合优化问题”。

问题描述:
假设你是一位投资者,在多阶段投资环境中,需要确定在每个阶段应该如何分配你的投资金额。

为了简化问题,我们假设你只有一个投资目标,即在每个阶段最大化预期收益,并且你的投资金额为100万元。

具体来说,你需要确定在每个阶段应该投资多少金额,以及应该选择哪些资产进行投资。

投资环境包括股票、债券和现金等三种资产,每种资产的预期收益率和风险水平不同。

在每个阶段,你都需要考虑过去的历史数据和当前的市场情况来制定投资策略。

例如,在第一阶段,你需要基于过去10年的数据来确定股票、债券和现金的权重。

在第二阶段,你需要根据第一阶段的结果和市场情况来调整你的投资策略。

目标是最大化预期收益,同时考虑风险水平。

你需要确定一个多阶段投资组合优化模型,并使用历史数据和数学方法来解决这个问题。

问题要求:
1. 建立多阶段投资组合优化模型,并使用历史数据来求解该模型。

2. 确定投资策略,包括在每个阶段的投资金额和资产选择。

3. 分析投资结果,包括预期收益和风险水平。

4. 讨论如何根据市场变化调整投资策略。

5. 编写一个Python程序来实现你的模型和算法,并输出结果。

这是一个非常具有挑战性的问题,需要你掌握多阶段投资组合优化、统计分析和Python编程等方面的知识。

希望你能通过解决这个问题,提高自己的数学建模能力和实际应用能力。

1998年数学建模a题

1998年数学建模a题

1998年数学建模a题
1998年A题数学建模题目为:研究与投资有关的经济发展问题。

该题要求研究者对影响投资环境的各种因素进行分析,并进行投
资经济学的建模。

研究的内容包括:投资回报、投资项目的净现值、
投资风险、投资成本、投资价值、投资结构、投资综合评价等。

首先,研究者应该对影响投资环境的各种因素进行全面分析,包
括民族国家的政治环境、经济环境、金融环境、法律环境以及社会文
化环境等,以确定背景和方向。

其次,研究者应采用投资回报模型,分析投资市场的现状,如投
资回报率、投资成本、投资风险等,进而判断投资环境的优劣。

此外,研究还可以运用净现值模型,根据投资价值的不同,以及
价格水平的变化,来判断投资项目的合理性。

最后,研究者还可以使用投资结构分析技术来进行投资综合评价,以了解投资环境中的优势和劣势,并给出相应的经济发展建议。

综上所述,1998年A题数学建模题目主要是要求研究者对影响投
资环境的各种因素进行全面分析,并运用投资回报模型、净现值模型
以及投资结构分析技术等,对投资市场进行分析,以便给出相应的经
济发展建议。

数学建模投资风险与收益

数学建模投资风险与收益

数学建模投资风险与收益
投资风险和收益是投资领域中的两个最重要的概念。

投资者在做出最终的决策之前,
必须仔细衡量这两者之间的关系。

投资风险是指可能发生的一系列不确定的事件,这些事件可能会导致投资者在投资过
程中遭受损失。

投资风险包括市场风险、信用风险、流动性风险和操作风险等。

投资收益是指投资者在投资中获得的收益,包括股息、利息、资本利得和其他收益等。

投资者的收益与投资风险密切相关,通常来说,风险越高,收益也就越高,反之亦然。

在数学建模中,我们可以使用各种数学工具和技巧来分析投资风险和收益之间的关系。

例如,我们可以使用统计方法来评估一个投资组合的风险和收益。

通过分析投资组合中每
个资产的历史数据,我们可以得出该组合的风险和收益情况,并通过优化投资组合的资产
配置,实现最大化收益和最小化风险的目标。

另外,我们还可以使用金融工程学中的定价模型来评估投资的风险和收益。

例如,利
用风险价格和风险杠杆来评估投资组合的风险和收益,并通过调整投资组合的配置,使风
险和收益达到最优化。

除了数学建模,我们还可以使用许多其他工具和技巧来帮助我们评估投资风险和收益
之间的关系。

例如,我们可以使用基本面分析来评估股票的价值,使用技术分析来预测股
票价格的变化,使用公司财务分析来评估企业的财务状况等。

总之,投资风险和收益是投资领域中的两个最重要的概念。

通过使用数学建模和其他
工具和技巧,我们可以更加准确地分析投资组合的风险和收益,并实现最优化的投资决
策。

投资的收益和风险问题—数学建模论文

投资的收益和风险问题—数学建模论文

投资的收益和风险问题摘要本论文主要讨论解决了在组合投资问题中的投资收益与风险的相关问题。

分别在不考虑风险和考虑风险的情况下建立相应的数学模型,来使得投资所获得的总利润达到最大。

问题一是一个典型的线性规划问题,我们首先建立单目标的优化模型,也即模型1,用Lingo软件求解,得到在不考虑投资风险的情况下,20亿的可用投资金额所获得的最大利润为153254.4万元。

然后分别分析预计到期利润率、可用投资总资金和各投资项目的投资上限对总利润的影响。

发现利润与利润率成正比的关系;可用投资总额有一个上限,当投资额小于这个上限时,总利润与可用投资额成正比的关系,当大于这个上限时,可用投资额与总的利润没有关系,总利润率保持不变;各项目的投资上限均与目标值呈正相关,项目预计到期利润率越大,该项目投资上限的变动对目标值的影响越大。

问题二是一个时间序列预测问题。

分别在独立投资与考虑项目间的相互影响投资的情况下来对到期利润率和风险损失率的预测。

两种情况下的预测思路与方法大致相同。

首先根据数据计算出到期利润率,将每一个项目的利润率看成一个时间序列,对该序列的数据进行处理,可以得到一个具有平稳性、正态性和零均值的新时间序列。

再计算该序列的自相关函数和偏相关函数,发现该时间序列具有自相关函数截尾,偏自相关函数拖尾的特点,所以可认为该序列为一次滑动平均模型(简称MA(1))。

接着,用DPS数据处理系统软件中的一次滑动平均模型依次预测出各项目未来五年的投资利润率。

对于风险损失率,我们用每组数据的标准差来衡量风险损失的大小,将预测出来的投资利润率加入到样本数据序列中,算出该组数据的标准差,用该值来衡量未来五年的风险损失率。

具体答案见4.2.2.1问题的分析与求解。

同样在考虑相互影响的情况下,我们运用ARMA(3,1)模型进行预测,结果见4.2.2.2 问题三与问题一类似,也是优化的问题,其目标仍是第五年末的利润最大,而且也没有考虑风险问题,只是约束条件改变了。

数学建模论文组合投资问题1

数学建模论文组合投资问题1

科院7组:蔡光达、王奇、鲁成组合投资问题摘要本文讨论了投资的风险和收益问题,建立了投资的单目标和多目标决策模型,并将多目标决策问题转化为单目标的决策模型,采用线性规划问题求解以解决公司的投资组合问题。

利用线性规划和灰色预测模型对公司五年投资过程中的投资的收益和风险分别进行了评估预测,求出了在不同的投资环境下第五年末的最大利润数值。

针对问题一:本文以第五年所得总金额为目标函数,应用线性规划理论建立了单目标优化模型,并运用Lingo软件求得第五年所得总金额的最大值:374140.5万,则第五年的最大利润:174140.5万。

针对问题二:本文分别对独立投资和同时投资这两种情况进行分析,对题中表2和表3进行了处理,算出来各项目每一年的到期利润率,分别以到期利润率的时间响应函数和标准差为目标函数建立了模型,运用灰色系统理论对上述两种投资方式近五年的各项目到期利润率进行预测,通过Matlab软件求得了两种不同投资方式的近五年各项目到期利润率预测结果(具体数据见表7.2和表7.3)和各项目标准差(具体数据见表7.5和7.6),并对预测结果进行了级比偏差检验,检验结果显示此时预测结果精度较高。

针对问题三:本文综合考虑了独立投资和同时投资这两种情况,同样以第五年的所得总金额为目标函数,并建立了单目标优化模型,通过Lingo软件求得第五年所得总金额的最优值:558422.0万,则第五年的最大利润358422.0万。

针对问题四:以题三中标准差最大值表示投资最大风险损失率,为此分别以第五年最大总金额和最小风险损失费为目标函数建立了多目标线性优化目标函数,比运用Lingo软件求得:当8.0s时,可得第五年总金额最大值:569975万,=则第五年的最大利润369975万。

针对问题五:假设一部分资金存入银行获取利息,并向银行贷款进行其他项目投资,然后根据题四方法和思想,运用Lingo软件求得:当3.0s时,可得第=五年总金额最大值:79582.4万,则第五年的最大利润59582.4万。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。

本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略” ,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。

然后分别使用Matlab 的内部函数linprog ,fminmax ,fmincon 对不同的风险水平,收益水平,以及偏好系数求解三个模型。

关键词:组合投资,两目标优化模型,风险偏好2•问题重述与分析3.市场上有”种资产(如股票、债券、,).:0 丨.小供投资者选择,某公司有数额为匸的一笔相当大的资金可用作一个时期的投资。

公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买•「的平均收益率为c,并预测出购买T的风险损失率为%。

考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的:中最大的一个风险来度量。

购买」要付交易费,费率为;■.,并且当购买额不超过给定值•;..时,交易费按购买■;.计算(不买当然无须付费)。

另外,假定同期银行存款利率是:,且既无交易费又无风险。

(•1、已知" ;时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。

本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。

并给出对应的盈亏数据,以及一般情况的讨论。

这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。

设购买S i (i=0,1…….n;S o表示存入银行,)的金额为X i;所支付的交易费为C i(X i),则:0 x = oC j(X j)二〒P i U i 0 .. X i ::: Ui i -1, 2,…,n, c°(x°) =0IP i X i X - a对S i投资的净收益为:R匕)=* X i- q (xj (i = 0, 1, , , n)对S i投资的风险为:QdXjnq j X i (i = 0, 1, , , n), q°=0对S投资所需资金(即购买金额X i与所需的手续费C i(X i)之和)是f i(X i) =X i C i(X i) (i = 0, 1, , , n)投资方案用x = ( X0, X1, , , X n)表示,那么,净收益总额为:nR(x)八R(X)i =0总风险为:Q(X)=rmiin Q i (xJ所需资金为:nF(x)八f i(x i)i =0所以,总收益最大,总风险最小的双目标优化模型表示为:Y Q(X))min」F(x) = M , x 兰0 >x R(x)丿J但是像这样的双目标模型用一般的方法很难求解出来的,所以经过分析把次模型转化为三种较简单的单目标模型。

3.假设与模型假设该公司在这一时期内是一次性投资;除交易费和投资费用外再无其他的费用开支;在这一时期市场发展基本上是稳定的;外界因素对投资的资产无较大影响;无其他的人为干预;社会政策无较大变化;公司的经济发展对投资无较大影响资产投资是在市场中进行的,市场是复杂多变的,是无法用数量或函数进行准确描述的,因此以上的假设是必要的,一般说来物价变化具有一定的周期性,社会政策也并非天天改变,公司自身的发展在稳定的情况下才会用额外的资金进行较大的风险的投资,市场与社会的系统发展在一个时期内是良性的、稳定的,以上假设也是合理的。

3.1模型a假设投资的风险水平是k,即要求总风险Q (x)限制在k内,Q (x)乞k,则模型可转化为:max R xs.t Q x 乞k, F (x)二M ,x _ 03.2模型b假设投资的收益水平是h,即净收益总额R(x)不少于h:R(x)>h,则模型可转化为:min Q(x)s.t R(x) _ h, F (x) = M , x _ 03.3模型c假设投资者对风险和收益的相对偏好参数为p(> 0),则模型可转化为:min g(x) -(1 - ?)R(x)s.t. F (x) = M , x _ 03.4模型求解及分析由于交易费C i(x i)是分段函数,使得上述模型中的目标函数或约束条件相对比较复杂,是一个非线性规划问题,难于求解.但注意到总投资额M相当大,一旦投资资产S i,其投资额X i —般都会超过U i, 于是交易费Cig)可简化为线性函数C i(X i)二P i X i从而,资金约束简化为n nF(x)=迟f i(x)=迟(1 + pJX j =Mi=0 i =0净收益总额简化为n n nR( x) = »R (X i) = »[ n x - G (X i)] = = (n - P i) xi=0 i =0 i =0在实际进行计算时,可设M=1,此时y i = ( 1 P i) X i (i = 0, 1, , , n)可视作投资S i的比例•以下的模型求解都是在上述两个简化条件下进行讨论的1) 模型a的求解模型a的约束条件Q(x)< k即Q(x) = maxQ i(X j) = max(q i x i) < k,0丈翅0弍疋所以此约束条件可转化为q iK 乞k (i = 0, 1, , , n).这时模型a可化简为如下的线性规划问题:nmax'(斤 _ P i)X ii国s.t. qX j 乞k, i=1,2,…,nn'、(1 P i)A ", X 一0i =Q具体到n=4的情形,按投资的收益和风险问题中题中给定的数据,模型为:max0.05x00.27X! 0.19x20.185x30.185x4s.t 0.025x^ k,0.015x2込k,0.055x3三k,0.026x4込kX。

1.01x1 1.02x2 1.045x3 1.065x4 = 1,X i _ 0 (i = 0, 1, , , 4)利用matlab7.1求解模型a输出结果是{0.177638, {x0 -> 0.158192, x1 -> 0.2, x2 -> 0.333333, x3 -> 0.0909091,x4 -> 0.192308}}这说明投资方案为(0.158192, 0.2 , 0.333333, 0.0909091 , 0.192308)时,可以获得总体风险不超过0.005的最大收益是0.177638M.当k取不同的值(0~0.025),风险与收益的关系见图 1.输出结果列表如下:风险a图1模型1中风险k与收益的关系结合图1,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.006 , 0.2019 ), 这时对:的投资比例见表1的黑体所示。

从表1中的计算结果可以看出,对低风险水平,除了存入银行外,投资首选风险率最低的然后是S1和S4,总收益较低;对高风险水平,总收益较高,投资方向是选择净收益率(r i - pj较大的S1和& •这些与人们的经验是一致的,这里给出了定量的结果.2)模型b的求解模型b本来是极小极大规划:min maX(q i X i)n ns.t. ' (r —pJX j》h ' ( 1 p i x) = 1 x》0i =0 i =0但是,可以引进变量X n+1=max(q i x i),将它改写为如下的线性规划:mi门(人1)n ns.t q i X i 乞X n 1 ,i=0,1,2,, ,n, \ (A-pJx》h,(1 pjx—l, x>0i-0 i」具体到n=4的情形,按投资的收益和风险问题中题中给定的数据,模型为:min X5s.t 0.025x i _ X5,0.015x2 - X s ,0.055x3 _ X5Q.O26X4 _ X50.05x00.27x10.19X20.185X30.185X4 _ h,x01.01x11.02x21.045x31.065x4=1必-0, (i = 0, 1, , , 5)利用matlab7.1求解模型b,当h取不同的值(0.1~0.25),我们计算最小风险和最优决策,收益水平h取-U.2-;,结果如表2所示,风险和收益的关系见图 2.从表2看出,对低收益水平,除了存入银行外,投资首选风险率最低的资产然后是二和二,总收益当然较低。

对高收益水平,总风险自然也高,应首选净收益率( - )最大的:■[和二。

这些与人们的经验是一致的。

结合图2,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.059 ,这时对,的投资比例见表2的黑体所示。

3)模型c的求解nmin p x+i -(1 -P)Z (斤一pJX ii=0ns.t q i X i/n i,i=0, 1, 2, , , n x ( 1 P i x) = 1 x>0i=0具体到n=4的情形,按投资的收益和风险问题题中给定的数据,模型为:min 'x5 -(1 - ;?)(0.05x0 0.27x1 0.19x2 0.185x3 0.185x4)s.t 0.025为兰x5,0.015x2兰x5,0.055x3兰x5,0.026x4兰x5x01.01x11.02x21.045x31.065x4= 1, x^ 0 (i = 0, 1, , , 5)利用matlab7.1求解模型c,当p取不同的值(0.75~0.95),我们计算最小风险和最优决策输出结果列表如下:风险水平最大收益率$&屍&0.760.02480.267300.99010000.770.02480.267300.99010000.780.00920.216500.36930.6147000.790.00920.216500.36920.6148000.2 ),类似模型b的求解,我们同样引进变量将它改写为如下的线性规划:图2模型2中风险与收益h的关系从图5可以看出,模型3的风险与收益关系与模型1和模型2的结果几乎完全一致。

相关文档
最新文档