公司的投资问题数学建模

合集下载

投资问题数学建模

投资问题数学建模

投资问题数学建模投资问题的数学建模是将投资问题转化为数学模型,并通过求解模型来得到最优的投资策略。

首先,我们需要定义一些变量:- t:投资期限,表示投资的时间长度。

- I(t):在t时刻的投资金额。

- R(t):在t时刻的投资收益率。

- C(t):在t时刻的现金流。

- X(t):在t时刻的投资组合,包括不同的投资品种和金额。

然后,我们可以根据投资问题的具体情况,建立数学模型。

以下是一些常见的投资问题数学建模方法:1. 简单的投资决策问题:假设只有一个投资品种,且投资金额恒定,我们可以使用期望收益率来衡量投资的性能。

数学模型如下:```max E[R(t)] - I(t)```该模型表示在投资期限为t的情况下,最大化期望收益率与投资金额的差值。

2. 多个投资品种的优化投资问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率和风险。

我们可以使用资本资产定价模型(Capital Asset Pricing Model, CAPM)或马科维茨组合理论(Markowitz Portfolio Theory)等模型来进行优化投资决策。

3. 动态投资决策问题:假设投资策略随时间变化,我们可以使用动态规划方法来建立模型。

这通常涉及到投资组合的再平衡和资产配置调整等决策。

4. 投资组合优化问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率、风险和相关性。

我们可以使用马科维茨组合理论等模型来建立投资组合的最优权重分配模型。

以上只是一些常见的投资问题数学建模方法,具体的建模方法需要根据具体的投资问题来确定。

需要注意的是,在建立数学模型时,还需要考虑到实际的投资限制和约束条件,如最小投资金额、投资品种的限制和杠杆效应等。

数学建模13道题

数学建模13道题

数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。

该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。

2.用长8米的角钢切割钢窗用料。

每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。

公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。

制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。

数学建模:投资问题

数学建模:投资问题

投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。

本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略” ,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。

然后分别使用Matlab 的内部函数linprog ,fminmax ,fmincon 对不同的风险水平,收益水平,以及偏好系数求解三个模型。

关键词:组合投资,两目标优化模型,风险偏好2•问题重述与分析3.市场上有”种资产(如股票、债券、,).:0 丨.小供投资者选择,某公司有数额为匸的一笔相当大的资金可用作一个时期的投资。

公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买•「的平均收益率为c,并预测出购买T的风险损失率为%。

考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的:中最大的一个风险来度量。

购买」要付交易费,费率为;■.,并且当购买额不超过给定值•;..时,交易费按购买■;.计算(不买当然无须付费)。

另外,假定同期银行存款利率是:,且既无交易费又无风险。

(•1、已知" ;时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。

本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。

并给出对应的盈亏数据,以及一般情况的讨论。

这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。

投资中心解方程

投资中心解方程

投资中心解方程一、投资中心概述投资中心是企业中负责投资决策和管理的部门,其主要任务是根据企业发展战略,分析各类投资项目的经济效益和风险,为企业提供投资建议和决策支持。

在投资决策过程中,解方程是一项重要的技能,可以帮助企业更好地分析和评估投资项目。

二、投资中心的解方程方法1.单一投资中心在单一投资中心的情况下,我们需要解决的核心问题是确定投资项目的最佳投资额度。

为此,我们可以建立如下的数学模型:设投资项目的收益为R,成本为C,投资额度为I,则有:R = I × e -θIC = I × f其中,θ和f分别为投资项目的收益率和成本率。

通过求解该方程,可以得到最佳投资额度I*。

2.多个投资中心在多个投资中心的情况下,我们需要考虑多个投资项目的组合优化问题。

可以将这个问题转化为一个线性规划问题,如下:最大化收益:max ∑R_i约束条件:∑I_i ≤ 资本预算总额I_i ≥ 0,i = 1,2,...,n通过求解该线性规划问题,可以得到最优的投资组合。

三、投资中心解方程的实用性投资中心解方程的方法具有很强的实用性,可以帮助企业更好地分析和评估投资项目。

通过解方程,企业可以找到最优的投资额度和投资组合,从而实现收益最大化。

此外,解方程还可以帮助企业规避投资风险,因为在解方程过程中,企业可以对投资项目的收益和成本进行全面分析,从而发现潜在的风险因素。

四、案例分析假设一家企业有两个投资项目A和B,它们的收益和成本分别如下:项目A:收益R_A = 100 - 20I_A,成本C_A = 30I_A项目B:收益R_B = 120 - 30I_B,成本C_B = 40I_B企业本年度资本预算总额为200万元。

通过投资中心解方程,可以得到以下结果:项目A最佳投资额度为I_A* = 40万元,收益R_A* = 60万元项目B最佳投资额度为I_B* = 53.33万元,收益R_B* = 67.5万元五、总结与建议投资中心解方程是一种有效的投资决策方法,可以帮助企业找到最优的投资额度和投资组合。

数学建模—投资的收益和风险问题

数学建模—投资的收益和风险问题

数学建模—投资的收益和风险问题投资一直是人们追逐财富增值的方式之一。

然而,投资市场的不确定性和风险给人们带来了很大的挑战。

数学建模作为一种解决问题的工具,可以帮助我们分析和评估投资的收益和风险。

本文将从数学建模的角度探讨投资的收益和风险问题。

一、投资收益的数学建模投资收益是投资者最关心的问题之一,通过数学建模我们可以对投资收益进行评估和预测。

常用的数学模型之一是股票价格的随机过程模型,其中最经典的是布朗运动模型。

布朗运动模型假设股票价格的波动符合随机游走过程,即无论是股票的上涨还是下跌都服从正态分布。

在这个模型中,我们可以通过计算出股票价格的期望回报和标准差,来评估投资的收益和风险。

除了布朗运动模型,我们还可以利用时间序列分析来预测股票价格的变动趋势。

时间序列分析是一种利用历史数据来分析未来走势的方法,通过建立股票价格与时间的数学模型,可以得到股票价格的预测值。

然而,需要注意的是,时间序列分析并不能完全预测未来的变动,因为股票价格受到很多因素的影响,例如市场供求关系、公司业绩等。

二、投资风险的数学建模除了投资收益,投资风险也是投资者非常关注的问题。

投资风险是指投资在市场变动中可能遭受的损失和波动程度,通过数学建模我们可以对投资风险进行量化评估。

常用的风险评估方法之一是价值-at-风险(Value at Risk,VaR)模型。

VaR模型以一定的概率来评估投资可能遭受的最大损失。

该模型通过构建投资组合的收益分布函数,计算出投资组合在给定概率下可能遭受的最大损失。

VaR模型可以帮助投资者合理地控制风险,制定适当的投资策略。

除了VaR模型,我们还可以利用随机模拟方法来评估投资风险。

随机模拟方法通过生成一系列符合规定分布的随机数,来模拟投资组合的收益分布。

通过模拟大量的随机数,我们可以得到投资组合可能的收益和风险情况,进而评估投资的风险。

三、数学建模在投资决策中的应用数学建模在投资决策中有着广泛的应用。

2023年全国数学建模题目

2023年全国数学建模题目

2023年全国数学建模题目
一、优化模型
题目:全球能源分配优化问题
问题描述:全球各国对能源的需求不断增长,而能源资源有限。

为了实现可持续发展,需要优化全球能源分配,确保各国都能获得适量的能源供应。

请运用优化模型和方法,设计一个全球能源分配方案,以满足各国能源需求,并尽量减少能源浪费和环境污染。

二、统计分析
题目:社交媒体用户行为分析
问题描述:社交媒体平台上积累了大量用户数据,包括用户发布的内容、关注对象、互动情况等。

请运用统计分析方法,分析社交媒体用户的偏好、行为模式和社交网络结构,为相关企业提供营销策略建议。

三、机器学习
题目:基于机器学习的文本分类问题
问题描述:文本数据包括各种主题,如政治、经济、文化等。

请运用机器学习算法,对给定的文本数据进行分类,并评估分类效果。

同时,请探讨如何提高分类准确率和泛化能力。

四、预测模型
题目:商品价格预测问题
问题描述:商品价格受到多种因素的影响,如市场需求、生产成本、政策因素等。

请运用预测模型和方法,预测未来一段时间内某种商品的价格走势,为投资者和企业提供决策依据。

五、决策分析
题目:企业投资决策问题
问题描述:企业需要在多个项目中做出投资决策,以实现利润最大化。

请运用决策分析方法,评估各项目的风险和收益,为企业制定最优投资策略。

六、系统动力学
题目:城市交通拥堵问题研究
问题描述:城市交通拥堵是一个复杂的问题,涉及多个因素之间的相互作用。

请运用系统动力学方法,建立城市交通拥堵问题的动力学模型,分析各因素之间的因果关系和动态变化规律,提出缓解交通拥堵的策略建议。

数学建模—投资的收益和风险问题

数学建模—投资的收益和风险问题

学建模二号:名:级:投资的收益和风险问题摘要:某投资公司现有一大笔资金(8000 万),可用作今后一段时间的市场投资,假设可供选择的四种资产在这一段时间的平均收益率分别为 r i ,风险损失率分别为 q i 。

考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的资产中最大的一个风险来度量。

另外,假定同期银行存款利率是 r0 =5%。

具体数据如下表:对于第一问,我建立了一个优化的线性规划模型,得到了不错的结果。

假设 5 年的投资时间,我认为五年末所得利润最大可为:37.94 亿。

具体如何安排未来一段时间内的投资,请看下面的详细解答。

如果可供选择的资产有如下15 种,可任意选定投资组合方式,就一般情况对以上问题进行讨论,结果又如何?对于第二问,考虑独立投资各个项目的到期利润率,通过分析,发现数据中存在着相互的联系。

由此,我建立了一个统计回归模型x5=a0+a1*x4+a2*x3+a3*x2+a4*x1+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2通过这个模型,我预测了今后5年各个项目的到期利润率。

如第一个项目今后五年的到期利润率为:第一年:0.1431 第二年:0.1601 第三年:0.0605 第四年:0.1816 第五年:0.1572 。

(其他几个项目的预测祥见下面的解答)考虑风险损失率时,定义计算式为:f=d*p;d 为该项目 5 年内的到期利润率的标准差,p 为到期利润率;考虑相互影响各个项目的到期利润率时,我们在第一个模型的基础上建立一新的模型:x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5 y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*x5 (两个项目互相影响的模型) x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5+a16*z5y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*z5+a26*x5z5=a30+a31*z4+a32*z3+a33*z2+a34*z1+a35*x5+a37*y5(三个项目互相影响的模型)通过解方程组,我们可以预测出今后五年的到期利润率。

2023年数学建模c题目

2023年数学建模c题目

2023年数学建模c题目
2023年数学建模竞赛C题是“多阶段投资组合优化问题”。

问题描述:
假设你是一位投资者,在多阶段投资环境中,需要确定在每个阶段应该如何分配你的投资金额。

为了简化问题,我们假设你只有一个投资目标,即在每个阶段最大化预期收益,并且你的投资金额为100万元。

具体来说,你需要确定在每个阶段应该投资多少金额,以及应该选择哪些资产进行投资。

投资环境包括股票、债券和现金等三种资产,每种资产的预期收益率和风险水平不同。

在每个阶段,你都需要考虑过去的历史数据和当前的市场情况来制定投资策略。

例如,在第一阶段,你需要基于过去10年的数据来确定股票、债券和现金的权重。

在第二阶段,你需要根据第一阶段的结果和市场情况来调整你的投资策略。

目标是最大化预期收益,同时考虑风险水平。

你需要确定一个多阶段投资组合优化模型,并使用历史数据和数学方法来解决这个问题。

问题要求:
1. 建立多阶段投资组合优化模型,并使用历史数据来求解该模型。

2. 确定投资策略,包括在每个阶段的投资金额和资产选择。

3. 分析投资结果,包括预期收益和风险水平。

4. 讨论如何根据市场变化调整投资策略。

5. 编写一个Python程序来实现你的模型和算法,并输出结果。

这是一个非常具有挑战性的问题,需要你掌握多阶段投资组合优化、统计分析和Python编程等方面的知识。

希望你能通过解决这个问题,提高自己的数学建模能力和实际应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公司的投资问题模型摘要本问题是在资金总额固定的情况下对一批项目进行投资,以获得最大经济效益,是一类投资组合的决策问题,属于优化问题。

对问题一:我们采用线性规划的方法求解。

设X项目第i年初的投资额为,每年末收回所有可收回的本利,第二年初再对所有能够投资的项目进行考察,Xi约束条件为资金总额和各项目的投资限制。

目标是五年末的总利润最大。

以此建对问题二:我们用EXCLE对8个项目近20年的单独和同时两种情况投资额与到期利润数据进行处理,得到8个项目在不同情况下利润率的时间序列。

用DPS软件对每个项目不同情况的利润率时间序列进行时间序列分析,对单独投资的情况建立MA(1)模型进行预测,结果见附录。

对同时投资的情况建立ARMA(3,1)模型预测,结果见模型求解。

并对两种情况的预测进行了预测优度分析。

对问题三:我们用线性规划的模型求解。

对问题中出现的是否有捐赠,是否为同时投资的情况建立4个(0,1)规划模型考虑所有的可能情形。

设第i年初,年末收回所有可收回的本利,年初对所有可投资的项目考对项目X的投资为Xi察,以投资额和投资上限为限制建立约束条件,目标为五年末的总利润最大。

建风险和最大利润两个优化目标,由于两个目标相矛盾,于是转化为单目标优化模型,在不同的风险下求最大利润,及对应的5年投资方案,绘制出风险与最大利润的曲线图,以供不同风险偏好的投资者决策。

结果见模型求解。

对问题五:我们将投资额在10亿和30亿之间进行变动,计算在不同投资总额情况下的最大利润及对应的风险大小。

发现将资金存银行风险小利润也很小,而从银行贷款利润增幅很大但风险并没有明显增加,我们鼓励公司从银行贷款,并计算出最佳贷款额,在此最佳贷款额下我们又计算出不同风险下的最大利润及5年投资方案,绘制出风险与最大利润曲线图以供不同风险偏好者选择。

关键词:线性规划、时间序列、预测优度、01规划、多目标优化、风险偏好。

1问题重述1.1问题的背景某公司现有数额为20亿的一笔资金可作为未来5年内的投资资金,市场上有8个投资项目(如股票、债券、房地产、…)可供公司作投资选择。

其中项目1、项目2每年初投资,当年年末回收本利(本金和利润);项目3、项目4每年初投资,要到第二年末才可回收本利;项目5、项目6每年初投资,要到第三年末才可回收本利;项目7只能在第二年年初投资,到第五年末回收本利;项目8只能在第三年年初投资,到第五年末回收本利。

1.2本文需要解决的问题一、公司财务分析人员给出一组实验数据,见表1。

表1. 投资项目预计到期利润率及投资上限注:到期利润率是指对某项目的一次投资中,到期回收利润与本金的比值。

试根据实验数据确定5年内如何安排投资?使得第五年末所得利润最大?二、公司财务分析人员收集了8个项目近20年的投资额与到期利润数据,发现:在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。

8个项目独立投资的往年数据见表2。

同时对项目3和项目4投资的往年数据;同时对项目5和项目6投资的往年数据;同时对项目5、项目6和项目8投资的往年数据见表3。

(注:同时投资项目是指某年年初投资时同时投资的项目) 试根据往年数据,预测今后五年各项目独立投资及项目之间相互影响下的投资的到期利润率、风险损失率。

三、未来5年的投资计划中,还包含一些其他情况。

对投资项目1,公司管理层争取到一笔资金捐赠,若在项目1中投资超过20000万,则同时可获得该笔投资金额的1%的捐赠,用于当年对各项目的投资。

项目5的投资额固定,为500万,可重复投资。

各投资项目的投资上限见表4。

在此情况下,根据问题二预测结果,确定5年内如何安排20亿的投资?使得第五年末所得利润最大?四、考虑到投资越分散,总的风险越小,公司确定,当用这笔资金投资若干种项目时,总体风险可用所投资的项目中最大的一个风险来度量。

如果考虑投资风险,问题三的投资问题又应该如何决策?五、为了降低投资风险,公司可拿一部分资金存银行,为了获得更高的收益,公司可在银行贷款进行投资,在此情况下,公司又应该如何对5年的投资进行决策?表二、表三数据见附录。

2模型的假设一、某项目投资上限是对该项目的累积投资上限(收回资金不在累积范围内)。

二、到期利润率的时间序列发展具有时间上的“惯性”。

即可采用时间序列预测。

三、题中风险损失率指投资到期后,如果风险发生,损失额占投资额的百分比。

四、当投资若干项目时,总体风险可用所投资的项目中最大的一个风险来度量。

五、项目五投资额固定为500万理解为项目五投资额只能为500万整数倍。

六、从银行贷款的风险相对投资风险来说可以忽略。

七、问题五中的情况以问题一中的数据为基础。

3问题一的分析、建模、求解及评价3.1针对问题一的分析:问题一给出了各项目的利润率和投资上限如下表:各项目的投资情况如下表:项目一:年初投资,年末回收本利。

项目二:年初投资,年末回收本利。

项目三:年初投资,第二年末才可回收本利。

项目四:年初投资,第二年末才可回收本利。

项目五:年初投资,第三年末才可回收本利。

项目六:年初投资,第三年末才可回收本利。

项目七:第二年年初投资,第五年末回收本利。

项目八:第三年年初投资,第五年末回收本利。

设第i 年初项目X 的投资额为X i ,由投资额上限的约束和总资金的约束及每年初投资总额不大于前一年末的收益加剩余资金,以此列出约束条件,目标是使第五年末的总利润最大。

建立线性规划模型,用LINGO 可求解出最优投资方案。

3.2问题一模型的符号说明:M :资金总额X i :项目X 第i 年初的投资额,i=1,2,3,4,5 R x :项目X 的到期利率S i :第i 年末收回所有可收回的本利,i=1,2,3,4,5 N x :项目X 的投资额上限 Q :第五年末的所有利润∂X :项目X 的累积投资额 3.3问题一模型的建立及求解:目标函数:MAX (Q )=S 5-M约束条件:∑≤M X 1∑∑-+≤112X M S X∑∑∑--++≤21123X X M S S X∑≤4X ∑∑∑---+++321123X X X M S S S∑∑∑∑∑----++++≤432112345X X X X M S S S S X()x i i R X S +⨯=∑1, i=1,2,3,4,5 X N X≤∂针对以上线性规划模型,用LINGO软件编程求解(程序见附录)得到第五年末利3.4灵敏度分析:根据程序运行的结果我们可以知道各指标的灵敏度情况,当各项目投资额上限改变,及各投资项目到期利润率改变,对最佳投资方案的影响。

让该模型更加贴近实际情况。

灵敏度分析见下表:Variable Value Reduced CostA1 60000.00 0.000000B1 30000.00 0.000000C1 40000.00 0.000000D1 30000.00 0.000000E1 29749.66 0.000000F1 0.000000 0.000000A2 49300.00 0.000000B2 0.000000 0.000000C2 0.000000 0.1250000D2 0.000000 0.1270000E2 250.3448 0.000000F2 20000.00 0.000000G2 40000.00 0.000000A3 12330.00 0.000000B3 30000.00 0.000000C3 40000.00 0.000000D3 30000.00 0.000000E3 0.000000 1.340000F3 0.000000 1.390000H3 30000.00 0.000000A4 60000.00 0.000000B4 30000.00 0.000000C4 0.000000 1.150000D4 0.000000 1.170000A5 60000.00 0.000000B5 30000.00 0.000000Row Slack or Surplus Dual Price1 345563.0 1.0000002 10250.34 0.0000003 0.000000 0.11000004 0.000000 0.10000005 0.000000 0.0000006 127763.0 0.0000007 0.000000 0.12100008 10700.00 0.0000009 47670.00 0.00000010 0.000000 0.100000011 0.000000 0.100000012 0.000000 0.133100013 30000.00 0.00000014 0.000000 0.1000000E-0115 0.000000 0.110000016 0.000000 0.110000017 0.000000 0.165000018 0.000000 0.00000019 0.000000 0.150000020 0.000000 0.187000021 0.000000 0.00000022 0.000000 0.170000023 0.000000 0.240000024 0.000000 0.290000025 0.000000 0.590000026 0.000000 0.45000003.5问题一模型的评价:问题一采用线性规划模型考虑在所有约束条件下的最优解,可以得到准确的最佳投资方案,并且程序还可以运行出灵敏度情况,使该模型的适用性大大增强。

4问题二的分析、建模、求解及评价4.1针对问题二的分析:公司财务分析人员收集了8个项目近20年的投资额与到期利润数据,发现:在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。

8个项目独立投资的往年数据见表2。

同时对项目3和项目4投资的往年数据;同时对项目5和项目6投资的往年数据;同时对项目5、项目6和项目8投资的往年数据见表3。

用EXCEL软件对表二、表三进行处理,得到单独投资时8个项目近20年的到期利润率时间序列,见附表一。

同时投资时近20年的到期利润率时间序列,见附表二。

附表一对于单独投资的数据分析:将附表一的数据输入DPS 软件进行分析,并进行标准化处理,可以得到一个具有平稳性、正态性和零均值的新时间序列。

再计算该序列的自相关函数和偏相关函数,发现该时间序列具有自相关函数截尾,偏自相关函数拖尾的特点,所以可认为该序列为一次滑动平均模型即MA(1)模型。

接着,用DPS 数据处理系统软件中的一次滑动平均模型依次预测出各项目未来五年的投资利润率。

对于风险损失率,我们用每组数据的标准差来衡量风险损失的大小,将预测出来的投资利润率加入到样本数据序列中,算出该组数据的标准差,用该值来衡量未来五年的风险损失率。

相关文档
最新文档