商业资料数字推理题的解题技巧

合集下载

数字推理答题技巧(公开版)

数字推理答题技巧(公开版)

数字推理答题技巧施久亮解题突破五大要诀――抓住数列的阿喀琉斯之踵一、先加减,后乘除,根据数字大小变化的规律判断属于何种数列类型1、数字快速增减的2、数字平稳增减的3、数字高低起伏的4、数字非常接近的二、分析项数,确定关键项,注意项与项之间关系,注意数列的级数(确定是几项关联、几级数列或组合还是间隔)1、项数低于或等于5项的2、项数为6项的3、项数大于6项的4、项数超多的三、抓住关键项,分析敏感数字1、平方数、立方数及其相邻数2、0、1及其相邻数以及常见变化3、基本数列4、分数题注意通分后的变化,关注小分子分母项四、找准起步点1、特别注意1、2项之间的关系五、寻找薄弱环节,确定关键数字,一举突破1、数列的不和谐部分、与众不同部分2、敏感数字,如0或1及其附近数3、从选项中找突破口基本功练习一、心算练习二、数字基础三、熟练基本数列四、中央及浙江真题练习数字推理基础一、基本数列(加减乘除)1、加减法数列差的几种形式:等差(常数):3例1:2 5 8 11 14自然顺序数:1、2、3、4、5例1:2 3 5 8 12 17平方数或立方数例1:5 6 10 19 45 70加减法单项数列1、2、3、4、5加减法双项数列2 3 5 8 13 21 例1:56,79,129,202,325 ()例2:3,-1,5,1,()A.3B.7.C.25D.64加减法三项数列例1:1 2 4 7 13 24 ()例2:1 4 3 5 2 6 4 7 ()2、乘除法数列乘除法单项数列乘除法双项数列例1:3,4,12,48,()A 96B 36C 192D 5763、加减法和乘除法混合数列例1:16 17 36 111 448 ( )例2:5,( ),39,60,105.A.10B.14C.25D.30例3:-2 ,-1, 1, 5 () 29A.17B.15C.13D.11例4:172,84,40,18,()例5:-1,0,1,2,9,()A.11B.82C.729D.730例6:3, 7, 16, 107,()A.1707B.1704C.1086D.1072二、数列的组合和延伸一级数列二级数列三级数列间隔组合数列分段组合数列对称组合数列三、题目类型1、单项数列例1:27 16 5 ()1/7例2:1\7 1\26 1\63 1\124 ( )例3:-1,0,27,()。

数字推理题四种思路

数字推理题四种思路

一、从题干数列里看规律通过分析数列中所给数字的多少,根据数字大小变化的趋势,分析数列是不是常用的数列,如加法数列、减法数列、乘法数列、除法数列、分数数列、小数数列、等差数列、等比数列、平方数列、立方数列、开方数列、偶数数列、奇数数列、质数数列、合数数列,或者是复合数列、混合数列、隔项数列、分组数列等。

为了解题方便,可以借助于题后答案所提供的信息,或是数列本身的变化趋势,初步确定是哪一种数列,然后调整思路进行解题。

具体方法如下:(1)先考察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,如将相邻的两个数相加或相减,相乘或相除之后,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者从中间向两边推导也是较为有效的。

例:150,75,50,37.5,30,( )A. 20B. 22.5C. 25D. 27.5——『2009年北京市公务员录用考试真题』【答案:C】前项除以后项后得到:2;3\2;4\3;5\4;( ),分子是2,3,4,5,( 6 ),分母是1,2,3,4,( 5 ),所以( )与前一项30的倍数是6/5;则( )×6/5=30,( )=25。

(2)观察数列特点,如果数列所给数字比较多,数列比较长,超过5个或6个,就要考虑数列是不是隔项数列、分组数列、多级数列或常规数列的变式。

如果奇数项和偶数项有规律地交替排列,则该数列是隔项数列;如果不具备这个规律,就可以在分析数列本身特点的基础上,三个数或四个数一组地分开,就能发现该数列是不是分组数列了。

如果是,那么按照隔项数列或分组数列的各自规律来解答。

如果不是隔项数列或分组数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后寻求答案。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。

通过观察规律,可以将下一个数字或者数字序列进行
推理。

2.数字运算:在数字推理题中,经常出现的是数字的运算关系。

可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。

3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。

4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。

5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。

可以通过这些限制条件进行推理。

6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。

7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

数字推理题的解题方法

数字推理题的解题方法

数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。

1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。

3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。

4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。

常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。

(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。

(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。

(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。

(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1。

(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50。

数字推理题的答题技巧与一般规律

数字推理题的答题技巧与一般规律

数字推理题的答题技巧与一般规律1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。

一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。

两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。

只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。

由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。

只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。

需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。

因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。

这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。

有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。

此时,与其“卡”死在这里,不如抛开这道题先做别的题。

在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。

在做这些难题时,有一个基本思路:“尝试错误”。

很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。

行测指导:数字推理30种解题技巧

行测指导:数字推理30种解题技巧

行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。

【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。

【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。

【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。

取尾数列一般拥有相加取尾、相乘取尾两种形式。

【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。

【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。

关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。

【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。

【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。

【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。

【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。

银行考试行测备考:数字推理解题思路

银行考试行测备考:数字推理解题思路

银行考试行测备考:数字推理解题思路下边就银行考试中的数字推理浅谈一下数字推理的一些个答题技巧。

数理能力主要测查考生理解、把握事物间量化关系和解决数量关系问题的能力。

数字推理题所涉及的数字规律千变万化,对于数字推理题没有万能的解法,建议考生应重点分析题干数字的运算关系和位置关系。

这就要求考生掌握相关的基础数学知识,还要掌握一定的解题方法,提高解题速度。

所以解题的时候需要也是要用一些思维方式。

(一)直觉思维直觉思维是对事物直观认识的特殊思维方式,是逻辑思维的凝结或简缩。

它包括数字直觉和运算直觉两个方面。

数字直觉数字直觉是人们对数字基本属性深入了解之后形成的。

通过数字直觉解决数字推理问题的实质是灵活运用数字的基本属性。

自然数平方数列:由于题干数字的迷惑性,数字推理规律隐藏得很深,解题时可能是直觉思维、构造思维、转化思维交替运用的过程,是猜证结合的过程,这就是一种综合思维。

当前数字推理规律求新求异,真题中时有“出人意外”的数字推理规律出现,这就要求我们在掌握一些基本解题方法的基础上,结合对数字推理规律的积累,多角度开阔思路,实现数字推理解题能力的全面提升。

(二)解题思路1.当数列呈递增或递减趋势,且变化幅度不大时,优先使用作差法。

另外,当数列中无明显规律,寻找数项特征和结构特征也没有头绪时,也可以考虑使用作差法理清关系。

2.当数字之间存在明显倍数关系时,应优先应考虑使用作商法。

3.数列有平稳、递增趋势,但通过作差不能解决问题,利用多次方和作商也不能解决时,可考虑取两项或三项求和,从而寻找新数列的规律。

4.拆分法的应用,拆分法是指将数列中的数字拆分成两个或多个部分,然后通过每部分的规律得到原数列规律的方法,在公务员考试中,拆分法主要有整数乘积拆分与整数加减拆分两种。

对于这种题型,一般来说一套卷子5道,考生在考场上不要过于纠结该种题型,平时只有多做题才能在考场上发挥出预想到的效果,见识更多的规律才行。

银行招聘考试有必要报培训班吗?当前,银行招聘考试逐渐成为应届毕业生,特别是金融类专业重点关注的热门考试之一,银行招聘考试如同中考、高考、公务员等一样,给了一个可以通过自身的努力与奋斗实现自己的理想与自身价值的平台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A thesis submitted toin partial fulfillmentof the requirementfor the degree ofMaster of Engineering目录:单击进入相应的页面☺目录:F (1)第一部分:数字推理题的解题技巧 (2)第二部分:数学运算题型及讲解 (6)第三部分: 数字推理题的各种规律 (8)第四部分:数字推理题典!! (16)(数字的整除特性) (63)继续题典 (66)本题典说明如下:本题典的所有题都适用!1)题目部分用黑体字2)解答部分用红体字3)先给出的是题目,解答在题目后。

4)如果一个题目有多种思路,一并写出. 5)由于制作仓促,题目可能有错的地方,请谅解ts_ljm 06-3-7中午第一部分:数字推理题的解题技巧行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。

如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。

并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。

应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。

如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。

数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。

1,2,3,5,(),13A 9B 11C 8D7选C。

1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12B 13C 10D11选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

5,3,2,1,1,()A-3B-2 C 0D2选C。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比。

从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)后项为前两项之积+13.平方关系1,4,9,16,25,(36),4966,83,102,123,(146)8,9,10,11,12的平方后+24.立方关系1,8,27,(81),1253,10,29,(83),127立方后+20,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。

一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/24/39/416/525/6(36/7)分子为等比,分母为等差2/31/22/51/3(1/4)将1/2化为2/4,1/3化为2/6,可知下一个为2/86.带根号的数列。

这种题难度一般也不大,掌握根号的简单运算则可。

限于计算机水平比较烂,打不出根号,无法列题。

7.质数数列2,3,5,(7),114,6,10,14,22,(26)质数数列除以220,22,25,30,37,(48)后项与前项相减得质数数列。

8.双重数列。

又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为3 2,5,7,10,9,12,10,(13)每两项之差为31/7,14,1/21,42,1/36,72,1/52,()两项为一组,每组的后项等于前项倒数*2 (2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。

22,39,25,38,31,37,40,36,(52)由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。

34,36,35,35,(36),34,37,(33)由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。

2.01, 4.03,8.04,16.07,(32.11)整数部分为等比,小数部分为移动求和数列。

双重数列难题也较少。

能看出是双重数列,题目一般已经解出。

特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。

9.组合数列。

此种数列最难。

前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。

最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。

只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。

1,1,3,7,17,41()A 89B 99C 109D 119选B。

此为移动求和与乘除关系组合。

第三项为第二项*2+第一项65,35,17,3,()A 1B 2C0D 4选A。

平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=14,6,10,18,34,()A 50B 64C 66D 68选C。

各差关系与等比关系组合。

依次相减,得2,4,8,16(),可推知下一个为32,32+34=66 6,15,35,77,()A 106B117 C 136 D 163选D。

等差与等比组合。

前项*2+3,5,7依次得后项,得出下一个应为77*2+9=163 2,8,24,64,()A 160B512 C 124 D 164选A。

此题较复杂,幂数列与等差数列组合。

2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=1600,6,24,60,120,()A 186B 210C 220D 226选B。

和差与立方关系组合。

0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。

1,4,8,14,24,42,()A 76B 66C 64D68选A。

两个等差与一个等比数列组合依次相减,得3,4,6,10,18,()再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。

10.其他数列。

2,6,12,20,()A 40B 32C30 D 28选C。

2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=301,1,2,6,24,()A48B96 C 120 D 144选C。

后项=前项*递增数列。

1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5 1,4,8,13,16,20,()A20 B 25 C 27D28选B。

每三项为一重复,依次相减得3,4,5。

下个重复也为3,4,5,推知得25。

27,16,5,(),1/7A16 B 1 C 0 D 2选B。

依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。

这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。

这种数列一般难题也较多。

综上所述,行政推理题大致就这些类型。

至于经验,我想,要在熟练掌握各种简单运算关系的基础上,多做练习,对各种常见数字形成一种知觉定势,或者可以说是条件反射。

看到这些数字时,就能立即大致想到思路,达到这种程度,一般的数字推理题是难不了你了,考试时十道数字推理在最短的时间内正确完成7道是没有问题的。

但如果想百尺竿头更进一步,还请继续多做难题。

强烈建议继续关注我们的清风百合江苏公务员,在下次公务员考试之前,复习冲刺的时候,我们会把一些难题汇总并做解答,对大家一定会有更多的帮助的。

讲了这么多,自我感觉差不多了。

这篇文章主要是写给没有经过公务员考试且还未开始准备公务员考试的版友看的属于入门基础篇,高手见笑了。

仓促完成,难免有不妥之处,欢迎版友们提出让我改善。

目前准备江苏省公务员考试时间很充裕,有兴趣的朋友可以先开始看书准备。

也欢迎有对推理题有不懂的朋友把题目帖出来,大家讨论。

相关文档
最新文档