专题平面几何的最值问题

合集下载

平面几何的最值问题及求法

平面几何的最值问题及求法
5 一
数 学教 学
21 年第 5 00 期
平 面几何 的最值 问题 及 求法
55 21 3 0广东 省东莞市常 学( 部 平中 高中 )陈 洪波


利用三角形的性质
利用三 角形 “ 两边之和大 于第三边, 两边之
设正 △AB 的边长为 2 M 是 J 边上的中点, , E ; j是边B [ ) 上的任意一点, +P 的最大值 P M 和最小值分别记为s , 和t 则求 s 一t的值. 解: 如图 2 . P ≤ ,’ ,F ≤ M, ’ J ) PA+ PM ≤ CA+ CM = 2+ 、3 /. /
所 以P P = xOp 2 / ' +O " P
例2 ( 0 年全国初中数学联合竞赛试题) 2 0 0
21 年第 5 00 期
=  ̄ OP2+ OP2= 1 v - / 0 / 2

数 学教 学
52 —5
解: 以点 为旋转 中心, ABC 将 E按顺时针 方向旋转 6 。 ABG 连结 EF, AB 0到 F, 则 EF为
A1

‘ \ ,

、 \\ M 、1 ^

3 。 0 .
j、 、 ‘ , N
图4
设 正方 形 边 长 为 , BG = , 则 GH = - , 4 x
B 日 : 日 :
( ) + .
由G H 十 日 =AG , 得
1 2 +
分析: 因河宽一定的, 以桥 M Ⅳ 的长度一 所 定, 只须使 M +BⅣ 最短即可. 可平移 M ( 或
于 B. ’Rc . △DD G中, DG. 。DD . DD > . .

M 连结 CM 则 . , M = 9 。 所以 0, M xA +C = / C2 = 、7 . = 、 . /,’ / .£ / / 7 从而 8 一t =( 十 ) 一7 4 . 。 。 2 。 =4 5 二、 利用对称变换 例3 (00 20 年黄 冈初 中数学竞赛试题) 如图 3 , (B = 4 。 二 ) 5 角内有一 点P, PO = 1, 0 在 角的两条 边上有两点 Q 均不 同于点 D, 、 求 AP R的周长的最小值. Q

几何中的最值问题

几何中的最值问题

几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。

在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。

本文将从不同角度介绍几何中的最值问题及其应用。

一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。

最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。

此外,还有最大和最小的边界问题。

这些问题需要考虑的是给定条件下的最大可行解或最小可行解。

例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。

这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。

二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。

这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。

例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。

为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。

对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。

另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。

三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。

这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。

例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。

如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。

通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。

几何中的最值问题

几何中的最值问题

几何中的最值问题在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

变式1:A、B两点分别在直线L的两侧,在直线L上取一点P使P A-PB最大。

ALB例2、如图所示,△ABC中,AB=3,AC=2,以BC为边的△BCP是等边三角形,求AP的最大值、最小值。

A'例3、已知:如图⊙O1与⊙O2相交于C、D,A是⊙O1上一点,直线AD交⊙O2于点B。

⑴当点A在弧CAD上运动到A’点时,作直线A’D交⊙O2于点B’,连结A’C、B’C。

证明:△A’B’C ∽△ABC。

(2)问点A’在弧CAD上什么位置时,S△A’B’C最大,说明理由。

(3)当O1 O2=11,CD=9时,求S△A’B’C的最大值。

BB图1 图2例4、已知:如图△ABC是一块锐角三角形余料,边长BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设矩形的长QM=y mm ,宽MN=x mm(1)求证:y=120- x(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?。

初中数学专题04几何最值存在性问题(解析版)

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。

12.平面几何的最值问题(教师版)

12.平面几何的最值问题(教师版)


∴当 x 1 2 ,即当 x=3 时,y 有最小值 4.
2
x 1
②运用基本不等式:y= x 1 2 2 2 2 x 1
x 1 2 +2=4, 2 x 1
∴当 x 1 = 2 ,即当 x=3 时,y 有最小值 4. 2 x 1
③借用判别式,去分母,得 x2+2(1-y)x+1+2y=0,
由△=4(1-y)2-4(1+2y)=4y(y-4)≥0,得 y≥4,
①求 y 关于 x 的函数关系式;
②当 x 为何值时,△PBC 的周长最小?求出此时 y 的值.
(南通市中考试题)
第 9 题图
第 10 题图
第 11 题图
第 12 题图
11.如图,已知直线 l : y kx 2 4k ( k 为实数).
(1) 求证:不论 k 为任何实数,直线 l 都过定点 M,并求点 M 的坐标; (2) 若直线 l 与 x 轴、y 轴的正半轴交于 A,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)
例 1 在 Rt△ABC 中,CB=3,CA=4,M 为斜边 AB 上一动点.
过点 M 作 MD⊥AC 于点 D,过 M 作 ME⊥CB 于点 E,
则线段 DE 的最小值为
.(四川省竞赛试题)
解题思路:四边形 CDME 为矩形,
连结 CM,则 DE= CM,将问题转化为求 CM 的最小值.
解: 12 5
解: 如图,B′M+MN 的最小值为点 B′到 AB 的距离 B′F,
BE= AB BC 4 5 cm,BB′= 8 5 cm, AC
AE=
AB2 BE 2
202
4
5
2
8
5 cm.
在△ABB′中,由 1 BB′•AE= 1 AB•B′F,得 B′F=16cm.

(完整)八年级平面几何最值问题

(完整)八年级平面几何最值问题

八年级平面几何最值问题解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。

1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

2、如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。

3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1B .3C . 2D .3+1 6、如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-)7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【 】 A 、1 B 、2 C 、3 D 、48、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角 坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA十QB 的值最小的点,则OP OQ ⋅= .答案:1.4 2.15 3.1<AD<4 4.3 5.B 6.B 7.B 8.2+9.5。

高中数学:几何最值问题求法

高中数学:几何最值问题求法

高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。

分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。

由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。

由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。

二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。

x为实数,方程有解,,解得,故。

即。

2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。

当时,,即;当y=7时,,即。

注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。

【中考攻略】中考数学 专题8 几何最值问题解法探讨

【中考攻略】中考数学 专题8 几何最值问题解法探讨

【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1BC 5D .52 【答案】A 。

【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。

【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。

DE=∴OD 1。

故选A 。

例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

【答案】4。

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。

在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,∴△BME≌△BMN(SAS )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题25 平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ABDCMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDCA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBAC路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME F DCABP解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △PAB的最小值. (中学生数学智能通讯赛试题)11CPABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △PAB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △PAB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)AF EAA 1DB D 1B 1C 1CAB CO第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△PAB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =FA . (1) 当∠BAD =75°时,求 ⌒BC的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC 边上任意一点.连结AQ ,DQ ,过P 作PE ∥DQ 交于AQ 于E ,作PF //AQ 交DQ 于F . (1) 求证:△APE ∽△ADQ ;(2) 设AP 的长为x ,试求△PEF 的面积S △PEF 关于x 的函数关系式,并求当P 在何处时,S △PEF 取得最大值?最大值为多少?(3) 当Q 在何处时,△ADQ 的周长最小?(须给出确定Q 在何处的过程或方法,不必证明)(无锡市中考试题)FEABD CQP11.在等腰△ABC 中,AB =AC =5,BC =6.动点M ,N 分别在两腰AB ,AC 上(M 不与A ,B 重合,N 不与A ,C 重合),且MN ∥BC .将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y ,试写出y 与x 的函数关系式,当x 为何值时,y 的值最大,最大值是多少? (宁夏省中考试题)NB CA MB 级1.已知凸四边形ABCD 中,AB +AC +CD = 16,且S 四边彤ABCD =32,那么当AC = ,BD = 时,四边形ABCD 面积最大,最大值是 . (“华杯赛”试题)2.如图,已知△ABC 的内切圆半径为r ,∠A =60°,BC =23,则r 的取值范围是 .(江苏省竞赛试题)yxr COFE EDF O BC A OBCAABP D GAB第2题图 第3题图 第4题图 第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧 ⌒AB组成一个弓形,则此弓形面积的最小值为 .4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCABDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB 相交于点E .(1) 求证:AB ·AF =CB ·CD ;(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MDC ABNFE DABC Pyxl OABxyH EA CBGF 第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;(2) 当x 为何值时,y 取得最大值?求出y 的最大值.(上海市竞赛试题)。

相关文档
最新文档