准谐振反激变压器设计
准谐振反激式电源原理(NCP1207 P38)

Keywords: quasi-resonant,switching power supply, flyback, NCP1207
II
目
录
摘要 ............................................................................................................................................I Abstract .................................................................................................................................. II 第1章 绪论 ............................................................................................................................ 1 1.1.1 开关电源的发展 ................................................................................................. 1 1.1.2 准谐振开关电源的优点[3] .................................................................................. 2 1.1.3 准谐振开关电源的缺点[3] .................................................................................. 3 1.2 设计要求 ...................................................................................................................... 3 1.3 完成设计方案 .............................................................................................................. 4 1.3.1 DC-DC 主回路拓扑............................................................................................. 4 1.3.2 控制方法及实现方案 ......................................................................................... 4 1.3.3 提高效率的方法及实现方案.............................................................................. 4 第 2 章主电路设计 .................................................................................................................... 5 2.1 准谐振开关电源的基本原理[4] .................................................................................... 5 2.2 输入电路 ...................................................................................................................... 7 2.2.1 输入电路的选择 ................................................................................................. 7 2.2.2 主要参数计算..................................................................................................... 7 2.3 变换电路 ...................................................................................................................... 9 2.3.1 变压器设计......................................................................................................... 9 2.2.2 开关管选用....................................................................................................... 14 2.2.3 谐振电容 .......................................................................................................... 14 2.4 缓冲电路 ..................................................................................................................... 15 2.4.1 缓冲电路原理................................................................................................... 15 2.4.2 参数计算 .......................................................................................................... 16 2.5 输出电路 .................................................................................................................... 18 2.5.1 输出整流器的选择 ........................................................................................... 18 2.5.2 输出滤波电路设计 ........................................................................................... 19 第3章 控制电路设计 .......................................................................................................... 20 3.1 控制芯片 NCP1207 [5] ................................................................................................ 20 3.2 过电压保护电路和磁通复位检测电路 ...................................................................... 22 3.4 过电流保护电路 ........................................................................................................ 23 3.5 电压反馈电路 ............................................................................................................ 24
反激变压器设计实例

反激变压器设计实例设计一个反激变压器是一个非常复杂的工程,需要考虑许多因素,包括输入电压、输出电压、功率需求、电流负载、转换效率等。
在这里,我将给出一个反激变压器的设计实例,以帮助你更好地理解。
假设我们需要设计一个输入电压为220V,输出电压为12V的反激变压器,功率需求为60W。
首先,我们需要确定变压器的转换比。
转换比可以通过输出电压和输入电压的比值来确定。
在本例中,转换比为12V/220V,即0.0545接下来,我们需要确定主电压边(Primary Side)的匝数。
主电压边上的匝数决定了变压器的转化比。
然后,我们需要确定次电压边(Secondary Side)的匝数。
次电压边的匝数通过主电压边的匝数和转换比来计算。
在本例中,次电压边的匝数为1000*0.0545,约为54.5、为了简化设计,可以选择将次电压边的匝数设定为55接下来,我们需要根据功率需求来确定变压器的尺寸。
功率可以通过输入电压和电流来计算。
在本例中,输入电压为220V,功率为60W,那么电流为60W/220V,约为0.27A。
然后,我们可以根据电流负载来确定导线截面积。
在本例中,电流为0.27A,我们可以选择导线截面积为0.5mm²。
接下来,我们需要计算主电压边的绕线长度。
主电压边的绕线长度可以通过主电压边的匝数和导线的长度来计算。
在本例中,主电压边的匝数为1000,并且我们选择导线长度为2m,那么主电压边的绕线长度为1000*2m,约为2000m。
然后,我们需要计算次电压边的绕线长度。
次电压边的绕线长度可以通过次电压边的匝数和导线的长度来计算。
在本例中,次电压边的匝数为55,并且我们选择导线长度为2m,那么次电压边的绕线长度为55*2m,约为110m。
接下来,我们需要计算变压器的转换效率。
转换效率可以通过输出功率和输入功率来计算。
在本例中,输出功率为60W,输入功率可以通过输入电压和电流来计算,即220V*0.27A,约为59.4W。
反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
准谐振反激变换器

Prepare by:Steve Huang Date:Aug,亦稱準諧振(QR)轉換 器,可設計出電磁干擾(EMI)特徵波形較小的開 關電源。這些轉換器基於反激式架構,且QR控 制單元包含簡單的邏輯電路(無振蕩器),從而 使任何SMPS設計工程師都能輕而易舉的理解 準諧振。
只要正確設計,準方波轉換器亦可帶來一些優點,特別 是在電源必須靠近敏感信號如RF或視頻信號工作的應 用中。因此,這些轉換器不僅非常適合用於電視機、機 頂盒或DVD錄影機,也很適用於線路濾波器尺寸可大 大減小的外部電源。
備註1
DCM(不連續電流模式)優點: 1.開關(MOSFET)為零導通損失 2.良好的輸入電壓/負載暫態變動響應 3.迴授容易達到穩定(單一極點) 4.二極體的逆向恢復時間不是很重要,因為在逆向電 壓出現前,電流就已降至零 5.可使用較小之變壓器 缺點: 1.在開關(MOSFET)和二極體會出現高的峰值電流 2.需要大的輸出電容值,約為操作在CCM時的兩倍
準方波諧振電源原理圖vds電壓波形波谷典型vds電壓波形輸入電壓固定與負載的關係負載愈大工作頻率愈低負載固定與輸入電壓的關係輸入電壓愈高工作頻率愈高準諧振較弱的emi特徵波形圖a和圖b描述了兩個工作在同一點上但採用不同開關技術的系統所呈現的傳導emi特徵波形
準諧振(Quasi-Resonant)反激式轉換器
準方波諧振電源原理圖
波谷 Vds電壓波形
準諧振
典型Vds電壓波形
負載(固定)-與輸 入電壓的關係 輸入電壓愈高-工 作頻率愈高
輸入電壓(固定)與負載的關係
負載愈大-工作 頻率愈低
較弱的EMI特徵波形
圖(a)和圖(b)描述了兩個工作在同一點上但採用不 同開關技術的系統所呈現的傳導EMI特徵波形。
基于准谐振技术的反激式高压电源设计

in
1
在导通结束前,初级电流上升达到:
Ipeak=
(2)
式中I 为峰值电流,A;T 为开关管导通时间,s。
peak
on
此时变压器储存的能量为:
E=
(3)
开关管导通时,一个周期内直流母线电压提供的功 率为:
P=
(4)
式中,T为开关管的开关周期,s。
2 准谐振反激式电源
准谐振反激式电源原理如图3所示。其中,R1为变压 器初级电感的等效电阻,Lleak为原边等效漏感量,Coss为 MOS管的外部输出电容。当发生准谐振时,原边能量全
第38卷 第11期 2020年 11月
数字技术与应用 Digital Technology &Application
Vol.38 No.11 N2o0v2e0m年b第er 12102期0
设计开发
DOI:10.19695/12-1369.2020.11.39
基于准谐振技术的反激式高压电源设计
VCS=0.14×(VCOMP-2.5)×(3-VVFF)
(5)
式中,VCS、VCOMP、VVFF为各引脚上的电压,V。
误差放大器的电压一般取VCOMP=5.6V,上式可简
化为:
VCS=0.43×(3-VVFF)
=0.43×(3-VCC×
)
(6)
V 为芯片外部供电电压,V;R ,R 为分压电阻,Ω。
裴子轩 吴一 黎坤
(中国航天第九研究院十六研究所,陕西西安 710100)
摘要:如今,高频开关电源的使用愈加广泛,但随着开关频率的增加,相应的开关损耗也会增加。基于L6565D控制芯片,采
用准谐振技术,设计了一种反激式高压电路,应用于激光陀螺高压电源中。由于L6565D控制芯片具有电压前馈功能,可以根据
反激变压器设计过程

反激变压器设计过程电源参数根据功率、输入输出的情况,我们选择反激电源拓扑。
反激式变压器的优点有:1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求。
2. 转换效率高,损失小。
3. 变压器匝数比值较小。
4. 输入电压在很大的范围内波动时,仍可有较稳定的输出。
设计步骤:1、决定电源参数。
2、计算电路参数。
3、选择磁芯材料。
4、选择磁芯的形状和尺寸。
5、计算变压器匝数、有效气隙电感系数及气隙长度。
6、选择绕组线圈线径。
7、计算变压器损耗和温升。
原理图步骤一、确定电源参数:(有些参数为指标给定,有些参数从资料查得)注:电流比例因数:纹波比例,在重载和低收入情况下的纹波电流和实际电流的比例。
步骤二、计算电路参数:最低直流输入电压:Z为损耗分配因数,如果Z=1.0表示所有损耗都在副边,如果Z=0表示所有的损耗都在原边,在这里取Z=0.5表示原副边都存在损耗。
步骤三、选择磁芯材料:铁氧体材料具有电阻率高,高频损耗小的特点,且有多种材料和磁芯规格满足各要求,加之价格较其它材料低廉,是目前在开关电源中应用最为广泛的材料。
同时也有饱和磁感应比较低,材质脆,不耐冲击,温度性能差的缺点。
采用的是用于开关电源变压器及传输高功率器件的MnZn功率铁氧体材料PC40,其初始磁导率为2300±25%,饱和磁通密度为510mT(25℃时)/390mT(100℃时),居里温度为215℃。
选择磁芯材料为铁氧体,PC40。
步骤四、选择磁芯的形状和尺寸:高频功率电子电路中离不开磁性材料。
磁性材料主要用于电路中的 变压器、扼流圈(包括谐振电感器)中。
变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的。
磁性材料(Magnetic materials)有个磁饱和问题。
如果磁路饱和,会导致变压器电量传递畸变,使得电感器电感量减小等。
对于电源来说,有效电感量的减小,电源输出纹波将增加, 并且通过开关管的峰值电流将增加。
反激变压器设计过程

反激变压器设计过程1、初始值设定1.1 开关频率fkHz对于要接受EMI规格适用的产品,不要设定在150kHz预计余量的话120kHz左右以上;一般设定在65kHz左右;1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定;1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流在规格书上有规定的情况下3种类,进行设定;另外,在这最大输出电流中需包括对于各自偏差的余量;1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max V =接插件端输出电压+线间损失0.1~0.5V +整流元器件Vf 0.4~0.6V※ 在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同;只保证输出电压 ※只在装置试验时电压可变的情况下; 磁芯用最大输出电压来设计;绕线是用额定输出电压来设计;保证所有的性能※在实际使用条件下通常的电压可变的情况下; 磁芯、绕线都用最大输出电压来设计;1.5 一次电流倾斜率设定输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率;K 的设定公式如下;作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更;1.6 最大占空比设定一般设定为0.45~0.65;1.7 最大磁通密度设定Bmax设定为磁芯的产品目录上所记载的饱和磁通密度×0.8~0.9;设计的要点:单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右;图1-2中表示了TDK 制的磁珠磁芯PC44的B-H 曲线图; 磁芯的磁通密度BT,如图1-2所示,与磁场强度HA/m 成比例,增加;另外,当B 达到一定的值时,在那基础上,即使增加H,B 也不会增加;在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET 破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用;另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意;※磁芯的饱和磁通密度是根据温度而变动;在TDK 制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%;因此,如果在25℃的条件下设计的话,有可能发生使用时的故障;1.8 绕线电流密度设定绕线电流密度对绕线的温度上升有一定影响,因此一定要考虑冷却条件、使用温度范围、变压器构造等,再进行适当的设定;设计要点:・ 变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定2、变压器特性设计2.1 计算一次绕组的电流峰值变压器总输出功率P 2W 是瞬时最大值;在输出电流规格书中有设定峰值条件的情况下,用I o peak ×V N2max ;另外,多输出的情况下,将各电路的输出功率的总和作为变压器总输出功率;变压器效率一般为0.95;2.2 计算一次/二次绕组的匝数比匝数比根据输出入电压和最大占空比来决定;2.3 计算一次绕组的电感量3、变压器构造设计3.1 计算一次绕组的电流有效值 计算一次绕线电流有效值I N1 TYP RMS ;不用考虑瞬时最低动作输入电压、过电流、峰值最大电流;首先求出占空比α;接着用以上所求出的占空比α,求出一次绕线电流有效值;作为标准,从1.1.8项中设定的绕线电流密度I/SA/mm 2和一次绕线电流有效值I N1typrms A 中,计算出一次绕线截面积S N1mm 2;3.2 计算二次绕组的电流有效值※省略以下的详细计算,可以将直流输入电流的1.6倍作为一※可以省略以下的详细计算,将直流输出电流的1.4倍作为二在实使用条件的通常驻机构状态下,用在1.3.1项中算出的占空比α、一次绕线电流有效值IN1typrmsA,算出连续流出的最大的二次绕线电流有效值;替换为与各自的二次绕线和一次卷的绕线比,进行计算,另※多输出变压器的情况下,将N12中加上对于全功力的其电路输出功力的比率;外在所求得的IN2typrmsA作为标准,从在1.1.8项中设定的绕线电流密度I/SA/mm2与二次绕线电流有效值IN2typrms中,计算出二次绕线断面积Smm2;N2设计要点:・变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定的;绕线电流密。
反激变压器的设计

反激变压器的设计————————————————————————————————作者: ————————————————————————————————日期:反激变压器的设计//========================================================反激变压器设计最简单的方法ﻫ我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: ﻫ1,VDC min=VAC min * 1.2VDC max=VAC max* 1.42,输出功率Po=P1+P2+Pn......ﻫ上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降ﻫ3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗) ﻫ4,输入平均电流:Iav = Pin/VDCminﻫ5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax/(Ip*fs) fs为开关频率ﻫ7,初级匝数:Np=VDC min *Dmax /(ΔB*Ae*fs) ﻫ上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(FlybackTransformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:2.转换效率高,损失小.1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.ﻫ4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实3. 变压器匝数比值较小. ﻫ现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM/ DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.ﻫ第二节. 工作原理ﻫ在图1所示隔离反驰式转换器(The isolatedflybackconverter)中, 变压器" T"有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:ﻫ当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp/ 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e=-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.ﻫ由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN/1-Dmax ﻫVIN:输入直流电压;Dmax: 最大工作周期Dmax = ton/ Tﻫ由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax= 0.4,以限制Vcemax≦ 2.2VIN.开关管Tron时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip =IL /n.因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp= NsIs而导出. Ip亦可用下列方法表示:Ic=Ip= 2Po/ (η*VIN*Dmax)η: 转换器的效率公式导出如下:输出功率:Po= LIp2η/ 2T输入电压:VIN = Ldi /dt设di = Ip,且1/ dt = f /Dmax,则:VIN = LIpf/ Dmax或Lp= VIN*Dmax / Ipf则Po又可表示为: ﻫPo= ηVINf DmaxIp2/2f Ip= 1/2ηVINDmaxIp∴Ip=2Po/ηVINDmax上列公式中:ﻫVIN:最小直流输入电压(V)ﻫDmax:最大导通占空比ﻫLp: 变压器初级电感(mH)ﻫIp :变压器原边峰值电流(A)f:转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。