质量常用统计技术

合集下载

探究企业质量管理应用统计技术

探究企业质量管理应用统计技术

探究企业质量管理应用统计技术企业质量管理是指企业通过建立和运行质量管理体系,以满足顾客需求和提高组织绩效。

统计技术在企业质量管理中起着重要的作用,可以帮助企业收集、分析和解释数据,以改善产品和服务的质量。

本文将探究企业质量管理中应用的几种统计技术。

第一种统计技术是抽样技术。

在企业质量管理中,抽样是指从总体中选择一部分样本进行检验,以估计总体的特征。

通过抽样技术,企业可以节省时间和成本,同时仍然能够获取有关产品和服务质量的可靠信息。

在生产过程中,可以对一定数量的产品进行抽样检验,以确定产品是否符合质量标准。

第二种统计技术是控制图。

控制图是一种用于监控和改进过程稳定性和能力的工具。

它通过对比过程数据与预先设定的控制界限来识别异常情况,并采取相应的措施纠正问题。

控制图可以帮助企业实时监控质量指标,及时发现和解决问题,从而提高产品和服务的稳定性和一致性。

第三种统计技术是假设检验。

假设检验是一种用于验证关于总体特征的假设的方法。

在企业质量管理中,可以使用假设检验来判断产品或服务是否符合特定要求。

假设检验可以用于判断一批产品的平均值是否等于预期值,或者判断两个产品批次之间的差异是否显著。

第四种统计技术是回归分析。

回归分析是一种用于研究两个或多个变量之间关系的方法。

在企业质量管理中,可以使用回归分析来确定影响产品或服务质量的关键因素,并建立预测模型。

回归分析可以帮助企业确定影响产品缺陷率的因素,并提出相应的改进措施。

统计技术在企业质量管理中扮演着重要的角色。

通过应用抽样技术、控制图、假设检验、回归分析和多变量分析等统计技术,企业能够更好地了解和改进产品和服务的质量,提升竞争力和客户满意度。

常用统计技术在质量管理中的应用

常用统计技术在质量管理中的应用

方差分析在质量管理中的应用
方差分析是一种用于比较不同组数据的变异和误差的统计 方法。在质量管理中,方差分析可用于评估不同批次、不 同生产条件或不同供应商的产品质量稳定性。
通过比较不同组之间的变异和误差,分析它们对产品质量 的影响,从而确定哪些因素对产品质量有显著影响,并采 取相应的改进措施。
相关与回归分析在质量管理中的应用
常用统计技术在质量管理中的贡献与限制
数据依赖性
统计技术需要大量数据作为基础,数据的质量和完整 性直接影响分析结果。
技术复杂性
统计技术需要专业人员操作,且技术更新快,需要不 断,统计技术不能一刀切 地应用于所有情况。
未来研究方向与展望
01
研究方向
02
智能化技术:随着人工智能和大数据的发展,如何将智能 化技术与统计技术结合,提高质量管理效率是未来的研究 重点。
控制图的优缺点与注意事项
优点
能够及时发现异常波动,预防不良品的产生。
缺点
需要收集大量数据,计算和控制限可能随时 间变化。
注意事项
定期检查控制图,确保其有效性;当发现异 常时,及时采取措施纠正。
06
案例分析
描述性统计在质量管理中的实际应用案例
总结词
描述性统计用于收集、整理、描述数据,帮 助我们更好地理解数据分布和特征。
控制图的原理与绘制
原理
控制图是一种统计工具,用于监控过程 是否处于控制状态,并检测异常波动。
VS
绘制
通过收集数据,计算中心线(CL)和上下 控制限(UCL和LCL),绘制控制图。
控制图的应用与解读
应用
用于监控生产过程中的关键质量特性,如产品尺寸、重量等。
解读
通过观察数据点是否超出控制限,判断过程是否受控,并找出异常波动的原因。

质量分析7种统计工具

质量分析7种统计工具

PPT文档演模板
质量分析7种统计工具
散布图
1. 概念:判断各种因素对产品质量特性有无影响及影 响程度大小的一种工具。
2. 变量之间的关系:
完全确定的函数:只要知道了一个变量就可以求出另 外一个变量,如S=πr2
相关关系:如小孩的年龄和体重有一定的关系,一般 年龄越大,体重越重。通过统计得出大致关系:小孩 年龄=年龄x2+7(公斤)。不是所有的2周岁小孩体重 都是11公斤,但总是11公斤左右。这种非确定的依赖 或制约关系叫作相关关系。相关关系不能用函数来关 系表示,但可以借助统计技术——散布图来描述这种 变量之间的关系。
4.3如果两对数据完全相同,则在点上加一个圈表 示重复。三对数据重复,则加两 个圈表示。
PPT文档演模板
质量分析7种统计工具
散布图
5.观察与分析
5.1对比法:对照前面六个典型图,推断结果变量与原因变量之间 的相关关系。
65..2注符意号事鉴项定法:在作好的散布图上画一条与y轴和x轴平行的P 6.1线.相和关Q的线判,定使只P线限左于右画和图Q所线用上的下数的据点范数围大之致内相,等不。能随意延伸 5.3判P定线范和围Q线。将有坐延标伸平需面要分时成应四扩个大区搜域集。数分据别的数范出围二,个重对新角作区相域关
PPT文档演模板
质量分析7种统计工具
散布图 3. 几种典型的散布图
PPT文档演模板
质量分析7种统计工具
散布图 4. 做法:
4.1搜集数据:应搜集30对以上,数据太少相关不 明显。将数据填入数据表,把原因因素定为X,对 应的结果因素定为Y。
4.2打点:坐标的取值范围应包括数值的最大值和 最小值,不一定从零开始,越往右上取值越大。 纵横坐标取值范围的长度应基本相等,标上纵横 坐标的刻度、名称、单位及图名。

634质量分析常用的统计方法(分层法及简易图表)

634质量分析常用的统计方法(分层法及简易图表)

某产品质量故障原因构成饼分图
环境 13%
其他 6%
操作者 43%
测量 17%
设备 21%
三、柱状图

柱状图是用长方形的高低来表示数据大 小,并对数据进行比较分析。如QC小组 活动前后效果对比柱状图(下图)。
QC小组活动前后效果对比柱状图
50 45 40 35 30 25 20 15 10 5 0 活动前
操作者


合计
共计
23
27
50
分析




由前两张分层表得出:为降低漏油率,应采用李师 傅的操作方法并选用B厂的汽缸垫。 然而事实并不是如此简单:由最后一张分层表可以 看出,李师傅用B厂的汽缸垫时,漏油率为3/7=43%。 因此,这样的简单处理是有问题的。 正确的方法是:⑴当采用A厂的汽缸垫时,应推广 采用李师傅的操作方法;⑵当采用B厂的汽缸垫时, 应推广采用王师傅的操作方法。这样,他们的漏油 率都是0。 结论:运用分层表时,不宜简单地按单一因素分类, 必须考虑各个因素的综合影响效果。
按汽缸垫生产厂家分层
操作者 一厂 二厂 共计 漏油 9 10 19 不漏油 14 17 31 漏油率(%) 39 37 38
按两种因素交叉分层
操作者 王 漏油情况 漏油 不漏油 漏油 不漏油 漏油 不漏油 漏油 不漏油 汽缸垫 A厂 6 2 0 5 3 7 9 14 B厂 0 11 3 4 7 2 10 17 合计 6 13 3 9 10 9 19 31
分层法示例(2)

某厂生产的橡胶垫的其外径尺寸,规范是 φ(26.1±0.2)mm,最近发现外径尺寸超差, 具体见下页直方图。
分析
• 实现产品成型是由甲、乙、丙3个工人完成的, 为分析是否是由人的因素引起的超差,故对3 个工人进行分层画直方图。

质量管理中的统计技术与方法

质量管理中的统计技术与方法
AQL不是描述抽样方案特征的指标,而是描述过程平均质量的指标。它被看着是接受收 的过程和不可接受的过程平均之间的分界线。
抽样检验
五、检验水平(IL):
检验水平反应了批量(N)和样本量(n)之间的关系,分为I 、 II 、 III 三个检验水平,水平 II 为正常检验水平。
GB2828中,检验水平的设计原则是:如果批量增大,一般样本量也随之增大, 大批量中一般样本量占的比例比小批量中样本量所占的比例要小。
散布图(Scatter)
直方图(Histogram)
定义:直方图是通过对数据的加工整理,从而分析和掌握数据 的分布状况和估算工序不合格率的一种方法。
用途:常用于分析质量原因,测量工序能力,估计工序不合格 率等,
作直方图的三大步骤: (1)作频数分布图; (2)画直方图; (3)进行相关计算。
总结一
总结二
提高过程能力指数方法
1)减少质量特性值分布的标准差s:
标准差s表示质量特性的离散(质量不一致性)的程度。 在实际生产过程中减少标准差s往往是困难的,需要通过技术改造、质量改
进等措施来实现。
2)放宽公差范围:
产品公差是设计过程所确定的,是以给社会(客户)造成损失最小为出发点, 通过质量损失函数的计算、分析而确定的。因此,对放宽公差来提高过程能 力必须持非常慎重的态度,轻易不可采用。
P = d1+d2+d3+…dK/n1+n2+n3+…nk; 对于老产品,k≥20批; 新产品:先用k = 5—10批初估,然后补充到20批再估; 预测供应商方可能提交产品的平均质量; 需求方用以规定或改变合同中的AQL值。
四、可接收质量水平(AQL)
在抽样检验中,认为可以接受的连续提交检验批的过程平均上限值,它又称为合格质量 水平。

质量管理常用技术

质量管理常用技术

Method Environment 原因
特性
结果
2、利用逻辑推理法绘制因果图的步骤
❖ 确定结果 ❖ 主骨 ❖ 大骨 ❖ 中骨 ❖ 小骨 ❖ 作出相关标记
3、利用发散整理法绘制因果的步骤
❖ ——选题,确定质量特性 ❖ ——尽可能找出所有可能会影响结果的因素 ❖ ——找出各原因之间的关系 ❖ ——将认为对结果有显著影响的因素标出来 ❖ ——标出必要的信息 ❖ 小骨中骨大骨进行系统分类
❖ (一)概念 ❖ ——是为了对发生频次从最高到最低的项目进
行排列而采用的简单图示技术。组成如下: ❖ 一个横纵坐标 ❖ 两下纵坐标 ❖ 几个按高低顺序(“其他”除外)排列的矩形 ❖ 一条累计百分比折线(Parato曲线)确定
(二)制作排列图步骤
❖ 1、确定所要调查的问题驻及如何收集数据 ❖ (1)选题,确定问题的种类 ❖ (2)确定问题调查的期间 ❖ (3)对数据进行分类 ❖ (4)制作排列图用数据表 ❖ 2、设计数据记录表 ❖ 3、填表、统计 ❖ 4、制作排列图用数据表 ❖ 5、按从大到小顺序填表,“其他”排最后
额最好在纵轴上表示。
2、使用排列图的注意要点
❖ 排列图的目的在于有效解决问题, ❖ 基本点是抓住“关键的少数”。 ❖ 分析主要原因,确定主要问题。 ❖ 确定采取措施的顺序,解决主要问题。 ❖ 对照采取措施前后的排列图,研究组成各个项目
的变化,找到主要原因,可以连续使用,找到复杂 问题的最终原因。
(五)排列图和因果结合使用
业方法。
(四)排列图的注意事项
❖ 1、制作排列图的注意要点 ❖ (1)分类方法不同得到排列图不同。 ❖ (2)抓住“关键的少数”; ❖ A:0-80%;B:80-90%;C:90-100% ❖ (3)如果“其它”项所占的百分比很大,则分类

质量管理方法-直方图法

质量管理方法-直方图法

Ƶ Êý fi Ƶ ÂÊ Pi
3
0.06
5
0.10
10 0.20
16 0.32
8
0.16
6
0.12
2
0.04
50 100%
直方图(练习) 32
18 频数 16 14 12 10
8 6 4 2 0
14.2 14.5 14.8 15.1 15.4 15.7 16.0
直方图(练习)
X 33
• 尺有所短,寸有所长;物有所不足,智有 所不明。——战国·楚·屈原《卜居》
折齿型
9
2)缓坡型:主要是由于操作中上限或下限控 制太严造成的。
缓坡型
10
3)孤岛型:原材料一时发生变化,工人一时变换;
孤岛型
11
4)双峰型:两组机器、或材料、或操作工人施工; 然后把这两方面数据混在一起整理产生的。
双峰型
12
5)陡壁型:有意将不合格的产品剔除;
陡壁型
13
对于正常型直方图,将其分布范围B=[S,L](S 为一批数据中的最小值,L为一批数据中的最大 值)与标准范围T=[SL,Su], SL为标准下界限, Su为标准上界限)进行比较,就可以看出产品质 量特性值的分布是否在标准范围内,从而可以 了解生产过程或工序加工能力是否处于所希望 的状态。为了方便,可在直方图上标出标准下 界限值和标准上界限值。
T
T
B
B
SL ( S )
( L ) Su
SL ( S )
( L ) Su
直方图在标准范围内的情况 17
直方图的分布范围B没有超出标准范围T,但没有余量。此时分布中心稍有偏移 便会出现不合格品,所以应及时采取措施,缩小产品质量特性值的分布范围。

质量统计分析方法

质量统计分析方法

质量统计分析方法质量统计分析是一种用来评估产品或服务质量的方法,通过收集和分析数据,可以帮助企业了解产品或服务的质量状况,找出存在的问题,并采取改进措施。

在质量管理中,统计分析方法起着至关重要的作用,它能够为企业提供客观的数据支持,帮助企业制定科学的决策,提高产品或服务的质量水平。

一、数据收集。

在进行质量统计分析时,首先需要收集相关的数据。

数据可以来源于产品的生产过程、客户的反馈、市场调研等多个方面。

通过收集大量的数据,可以更全面地了解产品或服务的质量状况,为后续的分析提供充分的依据。

二、质量测量指标。

在进行质量统计分析时,需要选择合适的质量测量指标。

常用的质量测量指标包括产品的合格率、不良品率、客户投诉率、服务满意度等。

通过这些指标的测量,可以客观地评估产品或服务的质量水平,找出存在的问题,并进行针对性的改进。

三、统计分析方法。

在进行质量统计分析时,可以运用多种统计分析方法。

比如,可以利用控制图来监控产品质量的稳定性,通过对比实际数据和标准数据的差异,及时发现异常情况;可以运用散点图来分析产品的相关性,找出影响产品质量的关键因素;还可以利用回归分析来建立质量预测模型,预测产品或服务的质量表现。

四、质量改进措施。

通过质量统计分析,可以找出产品或服务存在的问题,并制定相应的改进措施。

比如,可以通过质量成本分析,找出造成质量问题的成本,并采取降低成本、提高质量的措施;可以通过质量功能展开(QFD)分析,了解客户需求,为产品设计和生产提供指导;还可以通过六西格玛方法,系统地改进生产过程,提高产品的质量水平。

五、持续改进。

质量统计分析不是一次性的工作,而是需要持续进行的过程。

通过不断地收集数据、分析数据,发现问题、改进问题,可以实现产品或服务质量的持续提升。

因此,企业需要建立健全的质量管理体系,将质量统计分析纳入到日常的管理工作中,形成持续改进的机制。

总结。

质量统计分析是企业质量管理的重要手段,通过收集和分析数据,可以客观地评估产品或服务的质量状况,找出存在的问题,并采取改进措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三个工厂的零件强度
工厂
量件强度Βιβλιοθήκη 甲103 101 98 110

113 107 108 116

精品资料网
82 92 84 86
在这一例子中,考察一个因子: 因子A:工厂
该因子有三个水平:甲、乙、丙 试验指标是:零件强度
这是一个单因子试验的问题。每一水平下的 试验结果构成一个总体,现在需要比较三个总体 均值是否一致。如果每一个总体的分布都是正态 分布,并且各个总体的方差相等,那么比较各个 总体均值是否一致的问题可以用方差分析方法来 解决。
试验中所考察的指标(可以是质量特性也可 以是产量特性或其它)用Y表示。Y是一个随机变 量。
单因子试验:
若试验中所考察的因子只有一个。
精品资料网
[例2.1-1] 现有甲、乙、丙三个工厂生产同一种零 件,为了了解不同工厂的零件的强度有无明显的差 异,现分别从每一个工厂随机抽取四个零件测定其 强度,数据如表所示,试问三个工厂的零件的平均 强度是否相同?
y )2
i1 j1
精品资料网
引起数据波动(差异)的原因不外如下两个:
一是由于因子A的水平不同,当假设H0不真 时,各个水平下指标的均值不同,这必然会使试 验结果不同,我们可以用组间离差平方和来表示, 也称因子A的离差平方和:
SA
r
m
yi
y
2
i 1
这里乘以m是因为每一水平下进行了m次试验。
精品资料网
单因子方差分析表
来源 偏差平方和
因子A
SA
误差e
Se
总计T
ST
自由度
fA r 1 fe n r fT n 1
均方和
F比
MS A S A f A F MS A MSe MSe Se fe
精品资料网
各个离差平方和的计算:
ST
rm
i1 j1
yij
y
2
r
m
yi2j
i1 j1
T2
n
SA
因子A 误差e 总计T
S A 1304 Se 188 ST 1492
自由度
fA 2 fe 9 fT 11
二是由于存在随机误差,即使在同一水平下 获得的数据间也有差异,这是除了因子A的水平 外的一切原因引起的,我们将它们归结为随机误 差,可以用组内离差平方和表示:
r m
Se
yij yi 2
i1 j1
Se:也称为误差的离差平方和
精品资料网
可以证明有如下平方和分解式:
ST S A Se
ST、SA、Se 的自由度分别用 fT 、f A、fe 表示,它们也有分解式: fT f A fe ,其中:
T2


yr1 , yr 2 ,, yrm
Tr
均值
y1 y2
… yr
精品资料网
m
记第i 水平下的数据和为Ti,Ti yij ; j 1
记第i水平下的数据均值为 yi ,总均值为 y 。此 时共有n=rm个数据,这n个数据不全相同,它们的 波动(差异)可以用总离差平方和ST去表示
ST
r
m
(
yij
精品资料网
(3)计算各离差平方和:
ST=121492-12002/12=1492, SA=485216/4-12002/12=1304, Se= 1492-1304=188,
fT=3×4-1=11 fA=3-1=2 fe=11-2=9
精品资料网
(4)列方差分析表: [例2.1-1]的方差分析表
来源 偏差平方和
r
m
i1
yi
y
2
r
Ti2
i1 m
T2 n
Se ST S A
其中 Ti 是第i个水平下的数据和;T表示 所有n=rm个数据的总和。
精品资料网
进行方差分析的步骤如下:
(1)计算因子A的每一水平下数据的和 T1,T2,…,Tr及总和T;
(2)计算各类数据的平方和 yi2j , Ti2 ,T 2; (3)依次计算ST,SA,Se; (4)填写方差分析表;
质量常用统计技术
方差分析 回归分析 试验设计
精品资料网
上海质量教育培训中心 2005年
第一节 方差分析 一、几个概念 二、单因子方差分析
精品资料网
一、几个概念
在试验中改变状态的因素称为因子,常用大写 英文字母A、B、C、…等表示。
因子在试验中所处的状态称为因子的水平。 用代表因子的字母加下标表示,记为A1,A2,… ,Ak。
当 H0 不真时,表示不同水平下的指标的均 值有显著差异,此时称因子A是显著的,否则 称因子A不显著。检验这一假设的分析方法便 是方差分析。
精品资料网
方差分析的三个基本假定 1. 在水平 Ai 下,指标服从正态分布N ( i ,2 ) ; 2. 在不同水平下,各方差相等; 3. 各数据 yij 相互独立。
精品资料网
设在一个试验中只考察一个因子A,它有r个 水平,在每一水平下进行m次重复试验,其结果用 yi1 , yi2 ,, yim 表示,i=1,2, …, r。 常常把数据列成 如下表格形式:
水平 A1 A2 … Ar
单因子试验数据表
试验数据

y11 , y12 ,, y1m
T1
y21 , y22 ,, y2m
(5)对于给定的显著性水平α,将求得的F 值与F分布表中的临界值 F1 f A, fe 比较,当 F F1 f A, fe 时认为因子A是显著的,否则认为 因子A是不显著的。
精品资料网
对上例的分析 (1)计算各类和: 每一水平下的数据和为: T1 412,T2 444,T3 344 数据的总和为T=1200 (2)计算各类平方和: 原始数据的平方和为: yi2j 121492 每一水平下数据和的平方和为 Ti2 485216
fT 试验数 1 f A 水平数 1 fe fT f A
因子或误差的离差平方和与相应的自由度 之比称为因子或误差的均方和,并分别记为:
MS A S A f A
MSe Se fe
两者的比记为:F MSA MSe
精品资料网
当F F1 ( f A, fe )时认为在显著性水平 上因
子A是显著的。其中 F1 ( f A , fe ) 是自由度为 f A , fe 的F分布的1-α分位数。
精品资料网
二、单因子方差分析
假定因子A有r个水平,在Ai水平下指标服 从正态分布,其均值为 i,方差为 2 ,i=1,2, …, r。每一水平下的指标全体便构成一个总体,共 有r个总体,这时比较各个总体的问题就变成比 较各个总体的均值是否相同的问题了,即要检验 如下假设是否为真:
精品资料网
H0 : 1 2 r
相关文档
最新文档