傅里叶级数的推导

合集下载

傅里叶变换推导详解

傅里叶变换推导详解

傅里叶变换推导详解三角函数标准形式为公式2.1所示f\left( t \right) = Asin\left( \omega t + \varphi\right)\ \ \ \ \ \ \ \ \ \ \ (2.1)\ \在物理意义上这个函数又称之为正弦信号(正弦波),其中的t为时间变量,A为波幅, ω为角速度, φ为相位,我们可以通过公式2.2求得这个正弦波的频率。

f = \frac{\omega}{2\pi}\ (2.2)根据等式2.2,角速度和正弦波的频率是正相关的。

同时,因为三角函数是周期函数,其在-π到π的积分必定为0,由此性质可写出式2.3,2.4\int_{- \pi}^{\pi}{\sin\left( \text{nx} \right){dx =0\ \ \ \ \ \ \ \ \ (2.3)}}\int_{- \pi}^{\pi}{\cos\left( \text{nx} \right){dx =0\ \ \ \ \ \ \ \ \ (2.4)}}设某三角函数为f\left( x \right) = \sin\left( \text{nx} \right)\ \ \ \ \ \ \ \ \ (2.5)在式2.5两边同时乘以 \sin\left( \text{mx} \right) 同时,对两边在-π到π内进行积分,得出\int_{- \pi}^{\pi}{f\left( x \right)sin(mx)dx} =\int_{- \pi}^{\pi}{\sin\left( \text{nx}\right)sin(mx)dx}\ \ \ \ \ (2.6)由三角函数的积化和差公式,上式可变形为\int_{- \pi}^{\pi}{f( x )\sin( \text{mx} )\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{{ \cos\lbrack ( m - n )x \rbrack - \cos\lbrack ( m + n )x \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\cos\lbrack ( m - n )x \rbrack\text{dx}} - \frac{1}{2}\int_{-\pi}^{\pi}{\cos\lbrack ( m + n )x \rbrack\text{dx}}\ \ \ (2.7)依据上述推导方法我们可以继续推导出下列公式:\int_{-\pi}^{\pi}{\cos( \text{mx} )\cos( \text{nx} )}dx =\frac{1}{2}\int_{- \pi}^{\pi}{{ \cos\lbrack ( m - n )x \rbrack + \cos\lbrack ( m + nx ) \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\cos\lbrack ( m - n )x \rbrack\text{dx}} + \frac{1}{2}\int_{-\pi}^{\pi}{\cos\lbrack ( m + n )x \rbrack\text{dx}}\ (2.8)\int_{-\pi}^{\pi}{\sin( \text{mx} )\cos( \text{nx} )}dx =\frac{1}{2}\int_{- \pi}^{\pi}{{ \sin\lbrack ( m - n )x \rbrack + \sin\lbrack ( m + n )x \rbrack }\text{dx}} = \frac{1}{2}\int_{- \pi}^{\pi}{\sin\lbrack ( m - n )x \rbrack\text{dx}} + \frac{1}{2}\int_{-\pi}^{\pi}{\sin\lbrack ( m + n )x \rbrack\text{dx}}\ \ \ (2.9)因为三角函数在-π到π内的积分为0,因此当 m \neq n 时,式2.7、2.8、2.9的结果必定为0,因此可以得出以下结论,频率不同的三角函数相乘在一个周期内(-π到π)的积分必定为0。

傅里叶级数公式推导

傅里叶级数公式推导

傅里叶级数公式推导
傅里叶级数是一种将周期函数表示为无穷级数的方法,其基本思想是将周期函数表示为具有不同频率的正弦和余弦函数的无穷级数。

以下是傅里叶级数公式的推导过程:
设f(x)是一个周期为T的周期函数,即f(x+T)=f(x)。

第一步,将f(x)在一个周期内进行离散化,即f(x)=∑n=−NNf(xn)δ(x−xn),其中xn=nT/N,δ(x)是狄拉克δ函数。

第二步,利用三角恒等式sin2(θ)+cos2(θ)=1,将δ(x−xn)展开为正弦和余弦函数的无穷级数。

具体地,δ(x−xn)=2π1[cos(T2π(x−xn))+i sin(T2π(x−xn))]。

第三步,将第二步中的δ(x−xn)代入第一步中的f(x),得到f(x)=2π1∑n=−NN f(xn)[cos(T2π(x−xn))+i sin(T2π(x−xn))]。

第四步,将第三步中的f(x)表示为傅里叶级数的形式。

由于f(x)是周期函数,因此可以将f(x)表示为无穷级数∑k=−∞∞ak cos(T2πkx)+bk sin(T2πkx),其
中ak和bk是傅里叶系数。

综上,傅里叶级数公式可以表示为:f(x)=∑k=−∞∞ak cos(T2πkx)+bk sin(T2πk x),其中ak和bk是傅里叶系数。

傅里叶级数展开的推导过程

傅里叶级数展开的推导过程

傅里叶级数展开的推导过程傅里叶级数展开的推导过程听起来像是高深莫测的数学魔法,其实它的背后却藏着一段轻松的故事。

想象一下,有个小伙子,他每天都在想着如何把复杂的波形简单化。

说白了,傅里叶就像个数学界的“魔术师”,他手里拿着一个神奇的工具,能把各种各样的信号分解成一堆简单的正弦波,简直就像是把一首复杂的交响乐拆解成一个个简单的音符,听着特别舒服。

傅里叶的理念很简单。

他说,每一个周期性函数都可以用一堆正弦和余弦函数来表示。

你没听错,就是那种我们在初中物理课上学的正弦波。

想象一下,咱们常常听的音乐,其实都是各种波形的叠加。

这就好比是做沙拉,里边的生菜、西红柿、黄瓜混在一起,最终给我们呈现出一道美味的沙拉。

而傅里叶就是教我们如何把这些食材分开,让我们清楚每种材料的味道。

真是厉害,感觉他简直就是个“沙拉大师”。

傅里叶的一个重要工具就是积分。

你知道,积分就像是一个大网,把一切都捞进来,经过它的“处理”,信号就变得干净利落了。

想想看,把整个海洋的水都过滤一下,最后剩下的就是纯净的水,这样的感觉多棒!傅里叶把函数通过积分的方式,从时间域转换到了频率域。

你听到“频率”这词,脑海里是不是就浮现出摇滚乐的节奏?正是这些频率构成了我们耳朵听到的音乐。

傅里叶用他的智慧,把复杂的东西变得简单,让我们看到了信号的本质,真是妙不可言。

傅里叶的级数展现出来的时候,就像魔术师的压箱宝,特别吸引人。

傅里叶级数可以把任何周期函数表示成一系列的正弦和余弦波。

想想看,就像把一块大巧克力切成小块,一口一块,咔嚓咔嚓的,简直过瘾。

我们用傅里叶级数的时候,首先要确定函数的周期,这就像选定了巧克力的种类。

把每一块波形的系数算出来,就像量一量每块巧克力的重量,只有这样才能确保每一口都恰到好处。

在这个过程中,傅里叶还给我们提供了一些公式,嘿,这可是他的独门秘籍哦!咱们只要把函数代进去,就能得到那些神秘的系数。

听起来是不是像调配鸡尾酒?只要按比例加点儿伏特加、柠檬汁、糖浆,摇一摇,哇!一杯美味的鸡尾酒就完成了。

a的傅里叶变换推导过程

a的傅里叶变换推导过程

a的傅里叶变换推导过程全文共四篇示例,供读者参考第一篇示例:傅里叶变换是一种数学工具,用于将一个函数在时域(或空域)中的表达转换为在频域中的表达。

傅里叶变换在信号处理、通信系统、图像处理等领域有着广泛的应用。

在这篇文章中,我们将探讨关于傅里叶变换的推导过程,特别是针对复数形式的傅里叶级数。

我们需要了解傅里叶级数的定义。

给定一个周期为T的函数f(t),它的傅里叶级数表示为:\[ f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(2 \pi n \nu t) + b_n \sin(2 \pi n \nu t)] \]a_0表示直流分量,a_n和b_n分别表示函数f(t)在时域中的余弦分量和正弦分量,\nu = 1/T 表示频率。

接着,我们将复数形式的傅里叶级数引入。

假设复数形式的傅里叶级数为:c_n为复数系数,e^{i\theta} = \cos(\theta) + i \sin(\theta)。

根据欧拉公式,我们知道任意函数f(t)可以表示为其实部和虚部的和,即:我们可以将傅里叶级数的复数形式表示为实部和虚部的形式,再进行简化处理,得到:|c_n|表示c_n的模,\angle c_n表示c_n的幅角。

这个形式更加简洁,对于分析傅里叶级数的性质更加方便。

接下来,我们推导傅里叶变换的定义。

假设我们有一个信号f(t),对应的傅里叶变换为F(ν):将f(t)进行傅里叶级数展开,并利用正交性质,我们可以得到傅里叶变换的表达式为:这个表达式说明了信号f(t)的频谱F(ν)可以表示为分量c_n在频域中的分布。

在实际应用中,我们可以利用这一性质对信号进行频谱分析和处理。

我们对复数形式的傅里叶级数和傅里叶变换的推导过程进行了简要说明。

傅里叶变换是一种强大的数学工具,能够帮助我们理解信号的频域特性,为信号处理和通信系统设计提供重要参考。

希望这篇文章能够帮助读者更好地理解傅里叶变换的原理和推导过程。

傅里叶级数的推导

傅里叶级数的推导

傅里叶级数的推导————————————————————————————————作者:————————————————————————————————日期:傅里叶级数的推导2016年12月14日09:27:47傅里叶级数的数学推导首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。

但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。

一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。

如下就是傅里叶级数的公式:不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。

单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。

能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程:1、把一个周期函数表示成三角级数:首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ)这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。

然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。

傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。

傅里叶级数的数学推导

傅里叶级数的数学推导

傅里叶级数的数学推导首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。

但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。

一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。

如下就是傅里叶级数的公式:不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。

单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin 和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。

能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢下面来详细解释一下此公式的得出过程:1、把一个周期函数表示成三角级数:首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ)这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。

然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。

傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢因为正弦函数sin可以说是最简单的周期函数了。

于是,傅里叶写出下式:(关于傅里叶推导纯属猜想)这里,t是变量,其他都是常数。

与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。

傅里叶级数复指数展开公式

傅里叶级数复指数展开公式

傅里叶级数复指数展开公式傅里叶级数复指数展开公式是一种将任意周期函数展开为一系列正弦和余弦函数的方法。

它被广泛应用于信号处理、电子工程和物理学等领域。

在这篇文章中,我们将详细介绍傅里叶级数复指数展开公式,包括其基本原理、数学推导和应用示例。

首先,我们需要了解什么是傅里叶级数。

傅里叶级数是一种将任意周期函数表示为正弦和余弦波的和的方法。

考虑一个周期为T的函数f(t),它可以表示为如下形式的级数:f(t) = a0 + a1*cos(ωt) + a2*cos(2ωt) + a3*cos(3ωt) + ...其中,ω是频率,a0、a1、a2等是系数。

这个级数称为傅里叶级数展开。

现在,我们介绍傅里叶级数复指数展开公式。

傅里叶级数复指数展开公式将傅里叶级数中的余弦函数用复指数函数表示。

它的形式如下:f(t) = ∑(c_n*exp(inωt))其中,c_n是系数,n是一个整数,ω是角频率。

这个公式的好处是简化了计算,因为复指数函数具有较简单的性质。

为了推导傅里叶级数复指数展开公式,我们需要介绍欧拉公式。

欧拉公式是一个重要的数学公式,它将复指数函数表示为正弦和余弦函数的和:exp(iθ) = cos(θ) + i*sin(θ)将欧拉公式应用于傅里叶级数中的复指数项,可以得到:f(t) = ∑(c_n*cos(nωt) + i*c_n*sin(nωt))再将正弦函数用e^ix和e^-ix的形式表示,可以得到:f(t) = ∑(c_n/2*(e^(inωt) + e^(-inωt))) +∑(i*c_n/2*(e^(inωt) - e^(-inωt)))将上述两个级数合并,可以得到傅里叶级数复指数展开公式。

在展开公式中,每一项都是一个复指数函数的和,其中包含傅里叶级数的系数c_n和相应的频率nω。

傅里叶级数复指数展开公式具有广泛的应用。

例如,在信号处理中,它可以用于将信号分解为不同频率的正弦和余弦波的和,以便分析和处理。

三角波的傅里叶变换公式详细推导

三角波的傅里叶变换公式详细推导

一、概述三角波是一种常见的周期性信号,在信号处理和电子电路中都有广泛的应用。

三角波的傅里叶变换公式是描述三角波信号频谱特性的重要数学工具,其推导过程涉及复数运算、积分变换等数学知识,对于理解信号处理和频域分析具有重要意义。

二、傅里叶变换的基本概念1. 傅里叶级数的定义傅里叶级数是描述周期信号的频域特性的数学工具,它将一个周期为T的函数f(t)表示为一组基本正弦函数和余弦函数的线性组合: \[ f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n\cos(n\omega_0t) + b_n \sin(n\omega_0t) \right) \]其中,\( \omega_0 = \frac{2\pi}{T} \)为基本角频率,\( a_0, a_n, b_n \)为系数。

2. 傅里叶变换的定义对于非周期信号f(t),其傅里叶变换F(ω)定义为:\[ F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt \] 其中,\( \omega \)为频率,i为虚数单位。

三、三角波的定义和周期函数表示1. 三角波的定义三角波是一种周期为2π的信号,其数学表示为:\[ x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (-1)^{n+1}\frac{4a}{n^2\pi^2} \cos(n\omega_0t) \]其中,a为三角波的幅值。

2. 三角波的周期函数表示三角波还可以表示为一个以T=2π为周期的函数:\[ x(t) = \frac{8a}{\pi^2} \sum_{n=1,3,5...}\frac{\sin(n\omega_0t)}{n^2} \]其中,ω0=π/T为基本角频率。

四、三角波的傅里叶级数展开1. 三角波的基本角频率三角波的基本角频率为ω0=π/T,其中T为三角波的周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅立叶级数(Fourier Series) 推导
终于还是在外国人的教材上看到了原来傅立叶级数是大大的有道理的。

这本书名字叫做<patial differential equations an introduction>,就是偏微分方程导论。

作者是Walter A.Strauss。

正是在建立经典物理学的过程之中,傅立叶在研究热的传播时,伯努利在研究波的传播和扩散时,得到了以下的偏微分方程(这个推导在物理课本上有,国内的诸多教材都有推导,也不是很难,不是这篇文章关注的焦点,就略提一下,不详谈了):
(1)
当然,这个方程的第二个式子和第三个式子是偏微分方程的初值和边值条件,现在这个被称做是狄利克莱条件。

在不同的场合下,初边值一般是不同的,比如其他还有纽曼条件,罗宾条件等,但是方程的解法却是大同小异。

傅立叶又是怎么解这个方程的呢。

OK,接下来就来看看傅立叶是怎样给这个方程的解加上自己的名字的。

在上面这个方程的推导过程中,傅立叶发现,这个解u其实可以表示为
X(x)·T(t),如果哪位仁兄想问为什么,只好请您再屈驾看一下物理课本了。

u=X(x)T(t)代入上述方程就可以得到
(其中λ是一个常数。

因为)
行了,现在得到两个二阶常微分方程,自己都会解了。

经过一番尝试,我们会发现,只有当λ>0时,这两个方程的解才会有一些意义。

我们就来看一看吧,现在已经假设λ=β*β>0并且β>0
那么这个常微分方程组的解就具有以下形式
其中A,B,C,D都是常数。

第二步就是把边界条件加进来
对于C=D=0这样的平凡解,我们当然不感兴趣,所以我们还是让βl=nπ
A和B是一些确定的常数,这些解的和仍然是一个解,所以任意的有限和是原方程的一个解
呵呵,到此为止,看到傅立叶级数了。

接下的任务就是计算A和B。

幸好,我们有以下规律
于是,有以下推导
(2)
有了这个公式以后,方程(1)的解才算是完全地得到了。

接下来,人们自然会想,那么什么样的函数才可以用傅立叶级数来表示呢?经过近一个世纪的争论,才惊讶地知道原来所有函数都可以表示为傅立叶级数(这句
话大有问题,但是像我这样的升斗小民也就只能把所有可积函数理解为黎曼可积的了)。

这个问题的证明思路也不难,那就是用公式(2)把一个普通函数强行化为傅立叶级数,再证明这个级数收敛甚至是一致收敛就可以了。

说到这里,可以总结一下了。

傅立叶研究一个物理过程,得到了一个偏微分方程,用特殊的方法去处理这个方程,发现解是三角函数的函数项级数。

而它就是后来被称做傅立叶级数的东西。

进一步又发现,随便一个函数都可以用公式(2)处理成傅立叶级数,再一研究又发现这个级数竟收敛于原来的函数。

于是这个意义就大了。

在通讯的时候可以说成是任何信号都可以表示成几个三角函数的叠加(因为收敛,所以取有限和便可以很好地达到实际应用时的精度要求),而三角函数的信号是最容易产生的。

这在很长的一段时间内都是通讯的基础。

整个推导过程其实是很细致的,我能写下以上文字已是很吃力了,中间有很多模糊的地方,现在看来也只好这样了。

相关文档
最新文档