无刷直流电机基础

合集下载

无刷电机设计基础知识三

无刷电机设计基础知识三

3 无刷直流电动机的电磁设计3.1 基本要求和主要指标3.1.1基本要求(1) 运行方式直流无刷电动机的运行方式有连续、短时和断续三种(2) 防护形式一般直流电动机的防护型式主要有防护式和封闭式两种。

(3) 温升一般交流电机包括同步电机和感应电机,转子不计算铁耗,然而该类电机正常稳态运行时,定子绕组产生的2个旋转磁场转速与转子本体转速存在较大的转差,转子铁芯损耗不容忽视。

不仅电磁设计时,其电磁负荷的选择应与常规电机有所区别,而且对通风冷却结构设计应予足够的重视。

(4) 效率(5) 电动机的转速变化率明确电机转速运行的最大区间,并应指明电机的常用转速区间,以便选择合适的电机数据,获得良好的力能指标。

3.1.2主要指标①额定功率P N = 100W②额定电压U N = 270V③额定转速n N = 1000 r/min④定子相数m = 3⑤极对数p = 4⑥定子槽数Z = 183.2 主要尺寸的确定3.2.1 定子铁心内径D a的选择我国目前制造的直流电机,其D a 与输出功率P N 的关系曲线如下,它可以作为选定D a 的初步依据。

由于P N /n N =0.0001,从张琛的《直流无刷电动机原理及应用》中图3.1定子内径D a 与单位转速输出功率P N /n N 的关系曲线查得:cm D a 5.5~0.4=,则取cm D a 5=3.2.2 电磁负荷的选择电负荷A 与磁负荷B 的选择与电动机的主要尺寸直接相关。

同时,A ,B 的选择与电动机的运行性能和使用寿命也密切相关,因此必须全面考虑各种因素,才正确选择A,B 的值。

(1) 线负荷A 高,磁负荷B 不变① 电机体积减小,节约材料② B 一定时,由于铁心重量减小,铁耗减小 ③ 绕组用铜量增加④ 增大电枢单位表面上铜耗,绕组温升增高 ⑤ 影响电机参数和电机特性: q a =ρAJ (2) 磁负荷B 高,线负荷A 不变① 电机体积减小,节约材料 ② 基本铁耗增大 ③ 磁路饱和程度增大 ④ 影响电机参数和电机特性电负荷A 与磁负荷B 与定子的内径D a 有关,根据已生产的电动机的经验数据绘制成曲线。

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理2009年10月14日无刷直流电动机一、概述直流电动机的主要优点是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。

但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。

缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。

随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。

本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。

又具有交流电动机结构简单、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。

元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。

无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。

二、无刷直流电动机的基本结构和类型(一)基本结构无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。

其基本结构如图5一20所示。

电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。

的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成的一对磁极。

转子位置传感器也由定子、转子两部分组成。

定子安装在主电动机壳内,转子和主转子同轴旋转。

它的作用是把主转子的位置检测出来.变成电信号去控制电子开关电路,故也称转子位置检测器。

电子开关电路中的功率开关元件分别与主定子上各相绕组相连接.通过位置传感器输出的信号,控制三极管的导通和截止.从而使主定子上各相绕组中的电流也随着转子位置的改变,按一定的顺序进行切换,实现无接触式的换向。

《无刷直流电机》课件

《无刷直流电机》课件
维护与成本
无刷直流电机结构简单,维护成本较低,而交流电机结构复杂,维护 成本较高。
与永磁同步电机的比较
磁场结构
无刷直流电机采用电子换向,没有永磁同步电机的永磁体,因此 磁场结构不同。
调速性能
永磁同步电机具有较高的效率和转矩密度,但调速范围较窄;而无 刷直流电机调速范围广,适用于多种应用场景。
成本与维护
可靠性
总结词
无刷直流电机具有较高的可靠性,能够保证长期稳定运行。
详细描述
无刷直流电机采用电子换向技术,减少了机械磨损和故障,因此具有较高的可靠 性。此外,无刷直流电机还具有较长的使用寿命和较低的维护成本,这使得它在 需要高可靠性的应用中成为理想选择,如医疗器械、军事装备等领域。
04
无刷直流电机的驱动控制
无刷直流电机的成本和维护相对较低,而永磁同步电机由于使用了 永磁材料,成本较高,但具有更高的效率和性能。
感谢您的观看
THANKS
05
无刷直流电机的发展趋势 与挑战
技术发展趋势
1 2 3
高效能化
随着技术的进步,无刷直流电机在效率、功率密 度和可靠性方面不断提升,以满足更广泛的应用 需求。
智能化控制
通过引入先进的控制算法和传感器技术,实现无 刷直流电机的智能化控制,提高其性能和稳定性 。
集成化设计
将无刷直流电机与其他部件(如驱动器、传感器 等)集成在一起,简化系统结构,降低成本。
详细描述
无刷直流电机采用先进的电子换向技术,避免了传统直流电 机机械换向器的损耗,因此具有更高的效率和功率密度。这 使得无刷直流电机在需要高效率和高功率密度的应用中表现 出色,如电动工具、电动车等领域。
调速性能
总结词
无刷直流电机具有优良的调速性能,可满足不同应用需求。

直流无刷电机的原理

直流无刷电机的原理

直流无刷电机的原理
直流无刷电机的原理是基于电磁感应和电子控制技术。

它由定子、转子和电子控制器组成。

1. 定子:定子是电机的固定部分,通常由一组绕制在铁芯上的线圈构成。

定子线圈通过交流或直流电源提供电流,产生磁场。

2. 转子:转子是电机的旋转部分,通常由一组永磁体组成。

通过外加的磁场与定子磁场产生相互作用,驱动转子旋转。

3. 电子控制器:电子控制器是控制电机工作的关键部分。

它监测定子磁场和转子位置的信息,然后根据需求调整电流的方向和大小,使电机保持稳定转速或实现特定的运动控制。

在工作过程中,电子控制器会根据转子位置和速度来切换定子线圈的通电顺序,确保电流在各相线圈之间正确地流动,从而产生一个旋转的磁场。

这个旋转的磁场与转子磁场相互作用,使得转子始终被吸引到下一相线圈的磁力最强的位置,从而保持转子的旋转。

与传统的直流有刷电机相比,直流无刷电机减少了刷子和集电环的摩擦和磨损,提高了电机的效率和寿命。

另外,无刷电机的转子通过永磁体实现磁场,因此转子具有良好的动态响应,能够快速切换磁极,实现高速运动和精确控制。

总结来说,直流无刷电机利用电磁感应和电子控制技术,通过定子线圈和转子永磁体的相互作用,实现电能到机械能的转换。

它具有高效率、长寿命和精确控制等特点,广泛应用于各种领域,如家电、汽车、航空航天等。

无刷直流电机运行原理与基本控制方法

无刷直流电机运行原理与基本控制方法

无刷直流电机运行原理与基本控制方法无刷直流电机(Brushless DC Motor,BLDC)是一种采用电子换向器来实现转子绕组换向的直流电机。

相比传统的有刷直流电机,在控制系统和效率方面有很大的优势。

下面将详细介绍无刷直流电机的运行原理和基本控制方法。

运行原理:无刷直流电机的核心部件是转子,上面装有多个永磁体。

转子内的绕组通过电子换向器将电流应用到绕组上,从而产生旋转力。

电子换向器根据传感器反馈的位置信息,控制电流的输入,实现转子绕组的换向。

无刷直流电机根据电子换向器的类型可以分为传感器式和传感器无式两种。

传感器式无刷直流电机通过安装在转子上的霍尔传感器等位置传感器来监测转子位置,并将此信息反馈给电子换向器。

电子换向器根据转子位置信号,控制电机的相序和相电流,实现电机的转动。

传感器无式无刷直流电机则通过估计转子位置来进行控制,无需外部传感器。

在转子上安装的霍尔传感器被去除,由控制器利用电机的后电动势(back electromotive force, BEMF)信号来计算转子位置。

基本控制方法:1.电压控制:电压控制是最基本的控制方法,通过控制电压的大小和频率来改变电机的转速。

在电压控制模式下,电机的角速度和负载之间可通过非线性函数表达,反映了电机的特性。

这种控制方法简单易实现,适用于对转速要求不高的应用。

2.电流控制:电流控制是常用的无刷直流电机控制方法,通过控制电机的相电流大小和方向来实现转速和扭矩的控制。

电流控制可以实现电机的低速高扭矩输出,适用于需要精确控制扭矩输出的应用。

3.速度控制:速度控制是无刷直流电机常用的控制方法之一,通过控制电机绕组的电流来实现转速的控制。

在速度控制模式下,控制器根据转速反馈信号对电流进行调节,使电机保持设定的转速。

这种控制方法适用于需要稳定转速输出的应用。

除了以上三种基本控制方法外,还有一种称为“无刷伺服”(BLDS)的控制方法。

BLDS控制方法将电流控制和速度控制相结合,通过对电流和速度的双闭环控制,可以实现更高精度、更稳定的转速控制。

直流无刷电机工作原理详解无刷电机中的专业知识点

直流无刷电机工作原理详解无刷电机中的专业知识点

直流⽆刷电机⼯作原理详解⽆刷电机中的专业知识点⽆刷电机⼯作原理电磁学基本知识⾸先给⼤家复习⼏个基础定则:左⼿定则、右⼿定则、右⼿螺旋定则。

左⼿定则这个是电机转动受⼒分析的基础,简单说就是磁场中的载流导体,会受到⼒的作⽤。

⽤于判断导线在磁场中受⼒的⽅向:伸开左⼿,使拇指与其他四指垂直且在⼀个平⾯内,让磁感线从⼿⼼流⼊,四指指向电流⽅向,⼤拇指指向的就是安培⼒⽅向(即导体受⼒⽅向)。

右⼿定则这是产⽣感⽣电动势的基础,跟左⼿定则的相反,磁场中的导体因受到⼒的牵引切割磁感线产⽣电动势。

⽤于判断在磁场中运动的导体产⽣的电流⽅向:伸开右⼿,使⼤拇指跟其余四个⼿指垂直并且都跟⼿掌在⼀个平⾯内,把右⼿放⼊磁场中,让磁感线垂直穿⼊⼿⼼,⼤拇指指向导体运动⽅向,则其余四指指向感⽣电动势的⽅向。

也就是切割磁感线的导体会产⽣反电动势,实际上通过反电动势定位转⼦位置也是普通⽆感电调⼯作的基础原理之⼀。

右⼿螺旋定则(安培定则)⽤于判断通电线圈的磁场极性:⽤右⼿握螺线管,让四指弯向螺线管中电流⽅向,⼤拇指所指的那端就是螺线管的N极。

直线电流的磁场的话,⼤拇指指向电流⽅向,另外四指弯曲指的⽅向为磁感线的⽅向。

为什么要讲感⽣电动势呢?不知道⼤家有没有类似的经历,把电机的三相线合在⼀起,⽤⼿去转动电机会发现阻⼒⾮常⼤,这就是因为在转动电机过程中产⽣了感⽣电动势,从⽽产⽣电流,磁场中电流流过导体⼜会产⽣和转动⽅向相反的⼒,⼤家就会感觉转动有很⼤的阻⼒。

不信可以试试。

三相线分开,电机可以轻松转动三相线合并,电机转动阻⼒⾮常⼤看完了三⼤定则,我们接下来先看看电机转动的基本原理。

第⼀部分:直流电机模型我们找到⼀个中学物理学过的直流电机的模型,通过磁回路分析法来进⾏⼀个简单的分析。

状态1当两头的线圈通上电流时,根据右⼿螺旋定则,会产⽣⽅向指向右的外加磁感应强度B(如粗箭头⽅向所⽰),⽽中间的转⼦会尽量使⾃⼰内部的磁感线⽅向与外磁感线⽅向保持⼀致,以形成⼀个最短闭合磁⼒线回路,这样内转⼦就会按顺时针⽅向旋转了。

无刷直流电动机的基本结构

无刷直流电动机的基本结构

图10-4 定子大小齿结构
定子铁心中放置对称的多相(三相、四相或五相)电 枢绕组,对称多相电枢绕组接成星形或封闭形(角形), 各相绕组分别与电子开关线路中的相应功率开关管相连。 当电动机经功率开关电路接上电源后,电流流入绕组,产 生磁场,该磁场与转子磁场相互作用而产生电磁转矩,电 动机带动负载旋转。电动机转动起来后,便在绕组中产生 反电动势,吸收一定的电功率并通过转子输出一定的机械 功率,从而将电能转换为机械能。要求绕组能流过一定的 电流,产生足够的磁场并得到足够的转矩。
图10-3 无刷直流电动机内转子结构型式 (a)面贴式;(b)内嵌式;(c)整体粘结式
定子是电机本体的静止部分,称为电枢,主要由导磁
定子铁心用硅钢片叠成以减少铁心损耗,同时为减少 涡流损耗,在硅钢片表面涂绝缘漆,将硅钢片冲成带有齿 槽的冲片,槽数根据绕组的相数和极数来定。常用的定子 铁心结构有两种,一种为分数槽(每极每相槽数为分数)集中 绕组结构,其类似于传统直流电机定子磁极的大齿(凸极) 结构,凸极上绕有集中绕组,有时在大齿表面开有多个小 齿以减小齿槽转矩,定子大、小齿结构如图10-4所示;另 一种与普通的同步电动机或感应电动机类似,在叠装好的 铁心槽内嵌放跨接式的集中或分布绕组,其线圈可以是整 距也可以是短距,为减少齿槽转矩和噪音,定子铁心有时 采用斜槽。
2 转子磁场相对于定子绕组位置的检测是无刷直流电动
机运行的关键,对这一位置检测的直接方法就是采用位置 传感器,将转子磁极的位置信号转换成电信号。 正余弦旋转变压器或者编码器也可用作位置传感器,但成 本较高,仅用在精密控制场合。此外,还有利用容易检测 的电量信号来间接判断转子磁极位置的方案,其中最具代 表性的是电动机定子绕组的反电动势过零检测法或者称为 端电压比较法(详见10.6节)

直流无刷电机工作原理应用和结构

直流无刷电机工作原理应用和结构

电机控制技术《直流无刷电机的基本结构及工作原理和应用》直流无刷电机的基本结构及工作原理和应用一、直流无刷电机的工作原理直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。

在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。

直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。

也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。

直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。

电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。

不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器 (inverter)转成3相电压来驱动电机。

换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂 (Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。

控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。

直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall- sensor),做为速度之闭回路控制,同时也做为相序控制的依据。

但这只是用来做为速度控制并不能拿来做为定位控制。

图一:直流无刷驱动器包括电源部及控制部要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器 (inverter)中功率晶体管的顺序,如下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
半桥控制转矩示意
电机在运行过程中,转矩的变化很大,从Tm/2→Tm,使电机的 转矩脉动很大,不适合在高精度的控制场合
11
BLDC全桥控制框图
3
在两两换向的情况下,其合成转矩比半桥控制增加了 3 倍,每隔60°电角 度换相一次,每个功率管导通120°,每个绕组通电240°。
12
BLDC全桥控制转矩
稀土合金磁体有钕(Nd)、钐钴(SmCo)以及钕铁硼、铁氧 体合金(NdFeB)等。
7
霍尔传感器
和有刷直流电机不同,BLDC 电机的换向是以电子方式控制的。要使BLDC 电机转动,必须按一定的顺序给定子绕组通电。为了确定按照通电顺序哪一个绕 组将得电,知道转子的位置很重要。转子的位置由定子中嵌入的霍尔效应传感器 检测。
无刷直流(BLDC)电机基础
1
定义
BLDC 电机是同步电机中的一种。也就是说,定子产生的磁场与转子产生的 磁场具有相同的频率。BLDC 电机不会遇到感应电机中常见的“差频”问题。
(所谓“同步”就是电枢绕组流过电流后,将在气隙中成一旋转 磁 场,而该磁 场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。)
15
电机速度控制的实现
转矩和转速特性
在连续工作区,电机可被加载直至额定转矩Tr。 在电机启停阶段,需要额外的力矩克服负载惯性,这时可使其短时工作在短 时工作区,只要其不超过电机峰值力矩Tp,且在特性曲线之内即可。
16
电机转速控制方法
1. 在BLDC电机中,力矩正比于电流,速度正比于电压。 2. 为了使BLDC电机速度可变,必须在绕组的两端加可变电 压。 3. 在电机控制中,采用PWM的形式对绕组两端的电压进行 调节。梯形
定子绕组:正弦
5
转子
转子用永磁体制成,可有2 到8 对磁极,南磁极和北磁 极交替排列
6
定子永磁体材料
一般采用铁氧体,优点是比较便宜,但缺点是给定体积的磁通
密度低。相比之下,合金材料单位体积的磁场密度高,生成相 同转矩所需的体积小。同时,这些合金磁体能改善体积与重量 之比,比使用铁氧体磁芯的同体积电机产生的转矩更大。
21
谢谢大家!
22
BLDC 电机可配置为单相、两相和三相。定子绕组的数量与其类型对应。 三相电机最受欢迎,使用最普遍。
2
BLDC的基本组成
BLDC电机结构框图
3
构造和原理
BLDC 电机的定子由铸钢叠片组成, 绕组置于沿内部圆周轴向开凿的槽 中。
这些绕组中的每一个都是由许多线圈互组成 的。在槽中放置一个或多个线圈,并使它们 相互连接组成绕组。沿定子圆周分布这些绕 组以构成均匀布的磁极
全桥控制时,转矩的脉动比半桥时小得多,只是从0.87Tm→Tm。
13
BLDC的换向控制
BLDC 电机转动时,每个绕 组都会产生叫做反电动势 (反电动势)的电压,根据 楞次定律,其方向与提供给 绕组的主电压相反。这一反 电动势的极性与励磁电压相 反。
14
电机的正转与反转
顺时针转动电机的顺序
逆时针转动电机的顺序
每当转子磁极经过霍尔传感器附近时,它们便会发出一个高电平或低 电平信号,表示北磁极或南磁极正经过该传感器。根据这三个霍尔传感器 信号的组合,就能决定换向的精确顺序
8
BLDC 电机与其他类型的电机比较
9
BLDC的半桥控制
在三相半控电路中,要求位置传感器输出信号的1/3周期为高电平, 2/3周期为低电平。在同一时刻只有一相线圈导通,这样使其效率 非常低下。
18
PWM波的生成
1.利用PWM技术,通过控制PWM信号的不同占空比,则绕组上的平均 电压可以被控制,从而控制电机的转速 2.在采用DSP或单片机时,可利用器件中的PWM产生模块生成PWM波 形。 3.根据转速要求设定占空比,然后输出6路PWM信号,加到6个功率管 上。
19
PWM波的死区
20
PWM控制信号调制方式
17
PWM波的概念
PWM是英文“Pulse Width Modulation”的缩写,“脉冲宽度调制”,简称脉宽调制。 它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛 应用于测量分析、功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷 的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管 导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。
相关文档
最新文档