《流形与几何》测验一 - MathInstitute
瑟斯顿 三维流形与几何拓扑 -回复

瑟斯顿三维流形与几何拓扑-回复什么是瑟斯顿(Cech)三维流形与几何拓扑?如何定义它们?这些概念与几何学和拓扑学的联系是什么?在本文中,我们将一步一步回答这些问题。
首先,让我们来了解什么是瑟斯顿三维流形。
瑟斯顿三维流形是指具有一些特定性质的三维空间。
它是几何学和拓扑学中的一个重要概念,因为它能够帮助我们理解和研究空间的结构与性质。
在几何学中,我们通常关注的是空间的度量性质,例如距离和角度。
而拓扑学则更关注空间的形状和连通性。
瑟斯顿三维流形处于这两者的交叉点上,它既有几何学的度量性质,又有拓扑学的形状和连通性。
那么,如何定义瑟斯顿三维流形呢?在数学上,我们可以通过瑟斯顿流形的三个条件来定义它。
首先,瑟斯顿三维流形是一个拓扑空间,它是一个具有开覆盖的空间,其中每个开集可以由一个有限个开集覆盖。
其次,瑟斯顿三维流形是局部欧几里德的,也就是说,每个点都有一个邻域与欧几里德空间同胚。
最后,瑟斯顿三维流形是可分离的,也就是说,存在一个可数的稠密子集。
瑟斯顿三维流形的定义可能有些复杂,但它确实是一个重要的数学概念。
它具有广泛的应用,例如在物理学中描述时空的结构,以及在计算机图形学和计算机视觉中进行形状分析和建模。
接下来,让我们了解一下几何拓扑学。
几何拓扑学是拓扑学的一个分支,它研究的是在不考虑度量性质的情况下,空间的形状和连续性的性质。
几何拓扑学关注的是空间的内禀性质,例如空间的维度、曲率和纽结。
它与其他分支的拓扑学相比,更强调空间的几何性质。
在几何拓扑学中,瑟斯顿三维流形是一个重要的研究对象。
它在研究三维几何形状和连续性方面提供了一个框架。
瑟斯顿三维流形的研究涉及到许多重要的问题和概念,例如拓扑等价性、壳结构、结点结构等。
最后,让我们来看一下瑟斯顿三维流形与几何学和拓扑学的联系。
几何学和拓扑学是数学中密切相关的两个分支。
几何学研究空间的度量性质和形状,而拓扑学研究空间的连通性和变形性质。
瑟斯顿三维流形作为几何学和拓扑学的交叉领域,将这两个分支相互结合起来。
大学数学一年级下学期单元测试题全册

大学数学一年级下学期单元测试题全册第一章流形简介1. 下列命题中正确的是:(A) 一个流形一定是拓扑空间;(B) 一个流形一定是度量空间;(C) 具有欧氏空间的所有性质的空间不是流形;(D) 平凡空间是流形。
2. 判断以下说法是否正确:(A) 同胚不一定相似;(B) 积流形上的切空间同直积切空间的直和;(C) 边界上的点不是流形内点。
3. 证明:球面$\mathbb{S}^{2}$是拓扑意义下的一维流形。
第二章相对论简介4. 判断以下说法是否正确:(A) 只有除质量外的量才能不变;(B) 相对论中能量和质量守恒而动量不守恒;(C) 任何速度均不可能超过光速;(D) 在相对论中时间和空间是相对的。
5. 试证明相对论中的能量-动量关系式。
6. 阐述闵可夫斯基时空中的四矢量概念。
第三章微积分基础7. 下列极限中,不收敛的是:(A) $\lim_{x \to 0} \frac{\sin x}{x}$;(B) $\lim_{n \to \infty} \frac{(n!)^2}{(2n)!}$;(C) $\lim_{n \to \infty} \sqrt[n]{n}$;(D) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$。
8. 求下列定积分:(A) $\int_{-\infty}^{\infty} e^{-x^2} dx$;(B) $\int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{\sin x}}$;(C) $\iiint_{\Omega} xyz dV$,其中$\Omega$为单位球体。
9. 求曲线$\begin{cases}x = t - \sin t, \\y = 1 - \cos t\end{cases}$从$t=0$到$t=2\pi$的长度。
第四章线性代数简介10. 判断以下说法是否正确:(A) 矩阵的秩小于其列数;(B) n次线性方程组有解的充分必要条件是系数矩阵和增广矩阵的秩相同;(C) 矩阵的逆存在的充要条件是该矩阵的秩等于其行数;(D) 任何矩阵都可以对角化。
几何量试题及答案

几何量试题及答案几何量是数学中的一个重要分支,它涉及到形状、大小、位置等概念。
以下是一些常见的几何量试题及答案,供学生练习和参考。
# 试题一:点、线、面的位置关系问题:在平面直角坐标系中,点A(3,4)、B(-1,2)、C(2,-1),判断点A、B、C是否在同一直线上。
答案:要判断三点是否共线,可以计算线段AB和AC的斜率是否相等。
斜率公式为:\[ k = \frac{y_2 - y_1}{x_2 - x_1} \]对于线段AB,斜率\( k_{AB} = \frac{2 - 4}{-1 - 3} = \frac{-2}{-4} = \frac{1}{2} \)。
对于线段AC,斜率\( k_{AC} = \frac{-1 - 4}{2 - 3} = \frac{-5}{-1} = 5 \)。
由于\( k_{AB} \neq k_{AC} \),所以点A、B、C不在同一直线上。
# 试题二:三角形的内角和问题:已知三角形ABC的三个内角分别为α、β、γ,证明三角形的内角和为180度。
答案:根据三角形内角和定理,任意三角形的内角和等于180度。
证明如下:设三角形ABC的顶点A、B、C分别对应角α、β、γ。
将三角形ABC沿边BC翻折,使得点A与点A'重合,形成四边形ABA'C。
由于翻折,A'C与AC重合,A'B与AB重合,所以四边形ABA'C是一个矩形。
在矩形ABA'C中,对角线相等,即∠A'AB = ∠ABC,∠ABA' = ∠ACB。
由于矩形的对角线互相平分,所以∠A'AB + ∠ABA' = 180度。
又因为∠A'AB = α,∠ABA' = γ,所以α + β + γ = 180度。
# 试题三:圆的面积和周长问题:已知圆的半径为r,求圆的面积和周长。
答案:圆的面积公式为:\[ A = πr^2 \]圆的周长公式为:\[ C = 2πr \]其中,π是圆周率,约等于3.14159。
第八届哈佛大学麻省理工数学竞赛代数题及解答

February 19, 2005
Individual Round: Algebra Subject Test
1. How many real numbers x are solutions to the following equation? |x − 1| = |x − 2| + |x − 3|
3. Let x, y, and z be distinct real numbers that sum to 0. Find the maximum possible
value of
xy x2
+ +
yz y2
+ +
zx z2
.
Solution: −1/2
Note that 0 = (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx. Rearranging, we get that
√
x2 + 2 − x
x4 + 4 .
8. Compute
∞ n=0
n4
+
n n2
+
1
.
9. The number 27,000,001 has exactly four prime factors. Find their sum.
10. Find the sum of the absolute values of the roots of x4 − 4x3 − 4x2 + 16x − 8 = 0.
0 = (x2 − x − 4)2 − (x2 − x − 4) + 15x − 36 = x4 − 2x3 − 7x2 + 8x + 16 − x2 + x + 4 + 15x − 36 = x4 − 2x3 − 8x2 + 24x − 16 = (x − 2)(x3 − 8x + 8) = (x − 2)2(x2 + 2x − 4). √
初等几何研究第一章习题的答案(1)

初等⼏何研究第⼀章习题的答案(1)初等⼏何研究试题答案⼀、线段与⾓的相等 P4911. ⊙O 1、⊙O 2相交于A 、B,⊙O 1的弦BC 交⊙O 2于E,⊙O2的弦BD 交⊙O 1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2)若DF=CE,则∠DBA=∠CBA. 证明:(1)连接AC 、AE 、AF 、AD在⊙O 1中,由∠CBA=∠DBA 得AC=AF 在⊙O 2中,由∠CBA=∠DBA 得AE=AD 由A 、C 、B 、E 四点共圆得∠1=∠2 由A 、D 、B 、E 四点共圆得∠3=∠4 所以△ACE ≌△AF ∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4 ∵DF=CE ∴△ACE ≌△AFD ∴AD=AE在⊙O 2中,由AD=AE 可得∠DBA=∠CBA2.在△ABC 中,AC=BC,∠ACB=90O ,D 是AC 上的⼀点,AE ⊥BD 的延长线于E,⼜AE=12BD,求证:BD 平分∠ABC. 证明:延长AE,BC 交于点FAED BCA 90 ADE BDC CBD CAFACF BCA 90 AC BC ACF BCD AF BD 11AE BD AE AF22ABEE BE BE ABF BD ABC∠=∠=?∠=∠∴∠=∠∠=∠=?=∴∴==∴=⊥∴∠∠⼜⼜⼜平分即平分3.已知在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180o-2α, 求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD 是等腰三⾓形且底⾓是∠CDB=[180o-(180o-2α)]÷2=α.∴∠BDE=(180°-2α)-α=180o-3α∴A 、B 、D 、E 共圆同理A 、C 、D 、E 共圆∴∠BAC=∠CAD=∠DAE4.设H 为锐⾓△ABC 的垂⼼,若AH 等于外接圆的半径.求证:∠BAC=60o 证明:过点B 作BD ⊥BC,交圆周于点D,连结CD 、AD ∵∠DBC=90o, ∴CD 是直径,则∠CAD=90o 由题,可得AH ⊥BC, BH ⊥AC ∴BD ∥AH, AD ∥BH ∴四边形ADBH 是□∴AH=BD ⼜∵AH 等于外接圆的半径(R) ∴BD=R,⽽CD=2R ∴在Rt △BCD 中,CD=2BD,即∠BCD=30o ∴∠BDC=60o ⼜∵∠BAC=∠BDC∴∠BAC=∠BDC=60o5. 在△ABC 中,∠C=90o ,BE 是∠B 的平分线,CD 是斜边上的⾼,过BE 、CD 之交点0且平⾏于AB 的直线分别交AC 、BC 于F 、G,求证AF=CE. 证明:如图∵∠1=∠3,∠1=∠2. ∴∠2=∠3, ∴GB = GO, ∵∠5=∠4=∠6,∴CO =CE, ∵ FG ∥AB, ∴AF /CF=BG /CG=GO /CG, ⼜∵△FCO ∽△COG,∴CO /CF=GO /CG=AF /CF, ∴CO=AF, ∵CO=CE, ∴AF=CE.6. 在△ABC 中,先作⾓A 、B 的平分线,再从点C 作上⼆⾓的平分线值平⾏线,并连结它们的交点D 、E,若DE ∥BA,求证:△ABC 等腰.证明:如图所⽰设AC 、ED 的交点为F ∵AD 是∠A 的平分线∴∠1=∠2 ∵DE ∥AB ∴∠1=∠3 ∵CE ∥AD ∴∠3=∠5, ∠4=∠2 ∴∠1=∠2=∠3=∠4=∠5则△FAD 和△FCE 是等腰三⾓形∴AF=DF,EF=CF ∴AC=DE 同理可证 BC=DE ∴AC=BC ∴△ABC 是等腰三⾓形7. 三条中线把△ABC 分成6个三⾓形,若这六个三⾓形的内切圆中有4个相等. 求证:△ABC 是正三⾓形.证明:∵△AOF 、△AOE 、△COD 、△COE 、△BOF 、△BOD ⾯积都相等∴S △OFB =S △OEC 即:21BF ×r+21FO ×r+21BO ×r=21CE ×r+21OE ×r+21OC ×r 21 (BF+FO+BO)×r=21 (CE+OE+OC)×r ∴r rOF E AHIG LK JBF+FO+BO=CCE+OE+OC∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ ∴2DH+2BH=2FK+2CK ∴2BF=2CE ⼜F 、E 分别为AB 、AC 之中点∴AB=AC 同理:AB=BC 故△ABC 是正三⾓形.8. 平⾏四边形被对⾓线分成四个三⾓形中,若有三个的内切圆相等证明:该四边形为菱形.证明:⼜∵△AO B 、△BOC 、△COD 、△DOA 四个三⾓形的⾯积相等()()1122OD DC OC r OB BC OC r ∴++?=++?CD OC OD BC OB OC∴++=++OD OC DC OE OG OB OC BC OI OG++--=++--2222DF CF BH CH ?+=+22DC BCDC BC== ∴四边形为菱形9. 凸四边形被对⾓线分成4个三⾓形,皆有相等的内切圆,求证:该四边形是菱形 . 证明:连结O 1 、O 2,分别作O 1 、O 2到AC 的垂线,垂⾜分别为P 、M∵在△ABC 中,BO 是☉O 1 、☉O 2的公切线∴BO ⊥O 1 O 2⼜∵☉O 1 、☉O 2半径相同,且都与AC 相切∴O 1 O 2‖AC ∴BO ⊥AC BD ⊥AC ∵两个相等的内切圆☉O 1 、☉O 3在对顶三⾓形△AOB 与△COD 中∴周长C △AOB =C △COD ∴AO+BO+AB=CO+DO+CD ⼜∵OP=OQ=OM=ON ∴(AO+BO+AB)-(OP+OQ)= (CO+DO+CD)-(OM+ON) ∴2AB=2CD ∴AB=CD 同理AD=BC∴四边形ABCD 是平⾏四边形⼜∵AC ⊥BD ∴四边形ABCD 是菱形10. 在锐⾓△ABC 中,BD,CE 是两⾼,并⾃B 作BF ⊥DE 于F,⾃C 作CG ⊥DE 于G ,证明:EF=DG .证明:设O,M 分别是BC,FG 的中点, 所以OM ∥BF,因为BF ⊥FG , 所以OM ⊥FG ,ABDCEFIHGO ABDCP NO 1O 2O O 3O 4 M Q MGFEDA⼜因为∠BEC=∠BDC=90所以BCDE四点在以BC为直径的圆上, 因为OM⊥DE, 所以OM平分ED, 所以FM-EM=MG-MD 即EF=DG.11. △ABC中,M是BC的中点,I是内⼼,BC与内切圆相切与K.求证:直线IM平分线段AK.证明:作出∠A的旁切圆O,设它与BC边和AB,BC的延长线分别切于D,E,F,连接AD交内接圆于L,则因内接圆和旁切圆以A为中点成位似,则:IL⊥BC,即K,I,L共线于是原题借中位线可如下转化MI平分AK, ∴M平分DK ∴BD=KC 后者利⽤圆I与圆O两条外公切线相等∴EG=FH ∴BD+BK=CD+CK 则反推过去,得到IM平分线段AK.12.在△ABC中,M是BC的中点,I是内⼼,A H⊥BC于H,AH交MI于E,求证:AE 与内切圆半径相等.证明:如图所⽰作△ABC的内切圆,∴切点分别交于BC于点K、AB于点F、AC于点G,连接KL与AC∴KL是直径, ⼜∵M为BC的中点,I为内⼼,则A L∥MI⼜∵A H⊥BC ∴A H∥LK ⼜∵点E点I分别都在AH、LK上∴A E∥LI ∴四边形AEIL为平⾏四边形∴A E=LI 命题得证.13. 在矩形ABCD中,M是AD的中点,N是BC的中点,在CD的延长线取P 点,记Q为PM与AC的交点,求证:∠QNM=∠MNP 证明:利⽤矩形的中⼼设O是矩形ABCD的中⼼,则O也是MN的中点, 延长QN交OC的延长线于R,如图,则O ⼜是PR的中点,故NC平分∠PNR.,⽽NM⊥NG. ∴NM平分∠PNQ14. 给定以O为顶点的⾓,以及与此⾓两边相切于A、B的圆周,过A作OB的平⾏线交圆于C,连结OC交圆于E,直线AE交OB于K,求证:OK=KB.证明:如图所⽰,过C作圆的切线交OB延长线于D.∵OD,OA,CD都是圆的切线,且A C∥CD∴四边形ACDO是等腰梯形,∠DOA=∠D∵∠BOC=∠ACO,∠ACO=∠OAKIOMLKHGFEDCBAELKM HGFIB CA∴∠BOC=∠OAK ∵∠DOA=∠D ∴△AOK ~△ODC ∵21=OD CD ∴21=AO KO∵OA=OB ∴OB=OA=2KO,即OK=KB15. 在等腰直⾓?ABC 的两直⾓边CA,CB 上取点D 、E 使CD=CE,从C 、D 引AE 得垂线,并延长它们分别交AB 于K 、L,求证:KL=KB. 证明:延长AC ⾄E'使CE'=CE,再连BE'交AE 的延长线于H. ∵?ABC 是等腰直⾓三⾓形∴AC=BC ,∠ACB=∠BCE'=90° ⼜∵CE=CE' ∴?BCE'≌?ACE ∴∠CAE=∠CBE'∵∠AEC=∠BEH ∴?BHE ∽?ACE ∴∠BHE=∠ACB=90° ∵DL ∥CK ∥E'B 及DC=CE' ∴KL=LB.16. 点M 在四边形ABCD 内,使得ABMD 为平⾏四边形,试证:若∠CBM= ∠CDM,则∠ACD=∠BCM.证明:作AN ∥BC 且AN=BC,连接DN 、NC∵ABMD 为平⾏四边形,AN ∥BC 且AN=BC∴ABCN 、DMCN 为平⾏四边形,AD=BM ∴DN=CM 、AN=BC ∴△ADN ≌△BMC ∴∠1=∠3,∠2=∠4,∠6=∠7∵∠1=∠2 ∴∠3=∠4 ∴A 、C 、N 、D 共圆(视⾓相等)∴∠5=∠7(同弧AD )∴∠5=∠6即∠ACD=∠BCM17. 已知∠ABC=∠ACD=60°,且∠ADB=90°-21∠BDC,求证:△ABC 是等腰的证明:延长CD 使得BD =DE,并连结AE ∵∠ADB =90°-21∠BDC ∴2∠ADB +∠BDC =180° ⼜∠BDC +∠ADB +∠ADE =180° ∴∠ADB =∠ADE ⼜∵BD =DE,AD =AD ∴△ADB ≌△ADE ∴∠ABD =∠AED =60°,AB =AE ⼜∵∠ACD =60°∴△ACE 为正三⾓形∴AC =AE ∴AB =AC ∴△ABC 为等腰三⾓形18.⊙O1、⊙O2半径皆为r,⊙O1平⾏四边形`过的⼆顶A、B,⊙O2过顶点B、C,M是⊙O1、⊙O2的另⼀交点,求证△AMD 的外接圆半径也是r.证明:设O为MB的终点连接CO并延长⊙O1于E 则由对称知O为CE的中点∵O平分MB O平分CE∴MEBC是平⾏四边形∴ME∥BC∥AD∴MEAD亦是平⾏四边形∴△MAE≌△AMD∴△AMD的外接圆半径也为r19. 在凸五边形ABCDE中,有∠ABC=∠ADE,∠AEC=∠ADB,求证:∠BAC=∠DAE.证明:连接BD,CE,设它们相交于F,如图,∵∠AEC=∠ADB. ∴A,E,D,F四点共圆.∴∠DAE=∠DFE. ⼜∠ABC=∠ADE=∠AFE.∴A,B,C,F四点共圆∴∠BAC=∠BFC.⼜∠DFE=∠BFC. ∴∠BAC=∠DAE.20.在锐⾓△ABC中,过各顶点作其外接圆的切线,A、C处的两切线分别交B处的切线于M、N,设BD是△ABC的⾼(D为垂⾜),求证:BD平分∠MDN.证明:如上图,m、n分别表⽰过M、N的切线长,再⾃M作MM’⊥AC于M’, 作NN’⊥AC于N’,则有∵∠N=∠B=∠NCN’∴△MAM’∽△NCN’∴AM’/’CN’=AM/CN=m/n⼜∵MM’∥BD∥NN’∴M’D/DN’=MB/BN=m/n由等⽐性质知m/n=(M’D-AM’)/(DN’-CN’)=AD/DC∴△ADM∽△CDN ∴DM/DN=m/n即DM/m=DN/n∴BD平分∠MDN21.已知:AD、BE、CF是△ABC的三条⾼.求证:DA、EB、FC是△DEF的三条⾓平分线.证明:连结DF、FE、DE ∵C F⊥AB AD⊥BC ∴B、D、H、F共圆∴∠1=∠3 ∵AD⊥BC BE⊥AC ∴B、D、E、A共圆∴∠2=∠3 ∴∠2=∠1 ∴AD平分∠EDF 同理,CF平分∠2 1OEMDB O OCADCB EAFEFD BE 平分∠FED即证:DA 、EB 、FC 是△DEF 的三条⾓平分线22.已知AD 是△ABC 的⾼,P 是AD 上任意⼀点,连结BP-CP,延长交AC 、AB 于E 、F,证DA 平分∠EDF. 证明:过E 、F 两点分别作EH 、FG ,使EH ⊥BC,FG ⊥BC,且交CF 、BE 于I 、J∵EH ⊥BC,AD ⊥BC,FG ⊥BC ∴EH ∥AD ∥FG ∴EI EH =AP AD =FJ FG ∴FJ EI FG EH = ⼜∵GDHDPJ EP = ∴△EIP ∽△JFP ∴PJEPFJ EI =∴△EHD ∽FGD∴∠DFJ =∠DEI ∴∠FDB=∠EDC 即∠ADF=∠AD 即DA 平分∠EDF23.圆内三条弦PP 1、QQ 1、RR 1、两两相交,PP 1与QQ 1交于B,QQ 1与RR 1交于C,RR 1与PP 1交于A,已知:AP=BQ=CR,AR 1=BP 1=CQ 1,求证:ABC 是正三⾓形.解:设AP=BQ=CR=m,AR 1=BP 1=CQ 1, 则由相交弦定理得{m(c+n)=n(b+m) m(a+n)=n(c+m) m(b+n)=n(a+m) 即ma=ncmb=na mc=n 三式相加得m=n 所以a=b=c 即△ABC 是正三⾓形24.H 为?ABC 的垂⼼,D 、E 、F 分别为BC 、CA 、 AB 的中点,⼀个以H 为⼼的圆交DE 于P 、Q, 交EF 于R 、S,交FD 于T 、V . 求证:CP=CQ=AR=AS=BT=BU 证明:连结AS 、AR 、RH由相交弦定理知:AH ·HA`=BH ·HB`=CH ·HC`AS 2=AR 2=AK 2+KR 2设O H 的半径为r, 在?KR 中,KR 2=r 2-HK 2∴AS 2=r 2+(AK+KH )·(AK-HK )=r 2+AH ·(AK-HK) 在?ABC 中,F 、E 为AB 、AC 的中点,且AA ⊥`BC∴AK=KA` ∴AS 2=AR 2=r 2+AH ·HA` 同BC HDEFR S T QK C`A `B `理:BT 2=BU 2=r 2+BH ·HB` CP 2=CQ 2=r 2+CH ·HC`25、在锐⾓三⾓形ABC 中,AD 、BE 、CF 是各边上的⾼,P 、Q 分别在线段DF 、EF 上,且∠PAQ 与∠DAC 同向相等.求证:AP 平分∠FPQ证明:作出△APQ 的外接圆,延长PF 交圆于R,分别连结 RA 、RQ 由图可知,AQPR 内接于圆∴∠PRQ=∠PAQ=∠DAC=21∠DFE 由外⾓定理得,∠PRQ+∠FQR=∠DFE ∴FC ∥RQ ∴AF ⊥RQ FR=FQ ∴AF 垂直平分RQ∴∠ARQ=∠AQR ⼜AQPR 内接于圆∴∠APQ=∠ARQ∠APR=∠AQR ∴∠APQ=∠APR ∴AP 平分∠FPQ00090)2()1(,45,30,15.26=∠==∠=∠=∠=∠=∠=∠??BAC ABAC CQP BRP CPQ BPR ARQ AQR PQR C B A PQR 求证:之外,且在、、是任意三⾓形,RF D E A B C P Q27.已知:凹四边形ABCD 中,?=∠=∠=∠45D B A .求证:AC=BD. 证明: 如图,延长DC 交AB 于点E,延长BC 交AD 于点F.∵?=∠=∠45D A ,DE AE =∴且?=∠90AED ⼜?=∠45B ?=∠∴45ECBDBAC DEB S AEC S EBEC =∴∴=∴。
微分几何测试题集锦(含答案)

微分几何测试题集锦(含答案)《微分几何》测试题(一)一.填空题:(每小题2分,共20分)⒈向量r(t)??t,3t,a?具有固定方向,则a=___t__。
??? ⒉非零向量r(t)满足?r,r,r??0的充要条件是以该向量为切方向的曲线为平面曲线⒊设曲线在P点的切向量为?,主法向量为?,则过P由?,?确定的平面是曲线在P点的___密切平面__________。
⒋曲线r?r(t)在点r(t0)的单位切向量是?,则曲线在r(t0)点的法平面方程是__________________________。
⒌曲线r?r(t)在t = 1点处有??2?,则曲线在t = 1对应的点处其挠率?(1)。
⒍主法线与固定方向垂直的曲线是__ 一般螺线_ _ ⒎如果曲线的切向与一固定方向成固定角,则这曲线的曲率与挠率的比是___常数_________________。
)y点(x0,y0,z0的⒐曲面z?(z,x在)法线方程是_____________________。
1二.选择填空题:(每小题3分,共30分)11、若曲线的所有密切平面经过一定点,则此曲线是___C___。
A、直线B、平面曲线C、球面曲线D、圆柱螺线12、曲线r?r(t)在P(t)点的曲率为k , 挠率为?,则下列式子___A___不正确。
A、k?13r??r??r?2 B、k?对于曲r??r??r?3 C、k?r D、??的第一基本?r?r??r???? 2?r??r???形式、面I?Edu2?2Fdudv?Gdv2,EG?F2__D___。
A、?0B、?0C、?0D、?0三.计算与证明题:(22题14分,其余各9分)21、已知圆柱螺线r??cost,sint,t?,试求??0,1, ⑴在点???的切线和法平面。
?2? ⑵曲率和挠率。
22、对于圆柱面?:r???cos?,?sin?,u?,试求⑴?的第一、第二基本形式;2⑵?在任意点处沿任意方向的法曲率;⑶?在任意点的高斯曲率和平均曲率;⑷试证?的坐标曲线是曲率线。
瑟斯顿 三维流形与几何拓扑 -回复

瑟斯顿三维流形与几何拓扑-回复瑟斯顿(Seifert)三维流形与几何拓扑引言:在数学中,几何拓扑学是研究几何对象不变性的一个分支。
而瑟斯顿三维流形是几何拓扑学中的一个重要概念。
在本文中,我们将一步一步地回答“瑟斯顿三维流形与几何拓扑”这个主题,从基本概念到相关定理的介绍,希望能够让读者对这一领域有一个初步的了解。
1. 什么是流形?首先,我们需要了解什么是流形。
在数学中,流形是指具有局部欧几里得空间性质的空间。
简单来说,流形可以用一个数学模型在局部上近似为欧几里得空间。
例如,一个二维的球面就是一个流形,因为在局部上它可以用平面模型来近似。
流形的定义可以更加抽象和严格,但是这个直观的理解对于我们理解瑟斯顿三维流形非常有帮助。
2. 什么是三维流形?三维流形是指具有欧几里得空间性质的三维空间。
与二维流形不同,三维流形在拓扑学中更加复杂而有趣。
瑟斯顿三维流形是研究三维流形的一项重要课题。
3. 瑟斯顿三维流形的研究内容和目的是什么?瑟斯顿三维流形的研究内容包括它们的分类、性质以及与其他数学领域的联系等。
其中,最重要的目标就是对三维流形的分类和刻画。
瑟斯顿三维流形的分类问题是一个关键的研究方向,在数学界引起了广泛的兴趣和讨论。
通过对三维流形进行分类,我们可以更好地理解它们的区别和共性,揭示它们的内在结构以及与其他数学领域的联系。
4. 瑟斯顿三维流形的分类方法有哪些?瑟斯顿三维流形的分类存在许多不同的方法和定理。
其中,瑟斯顿两个定理是最重要的结果之一。
第一个定理是瑟斯顿-佩尔曼定理,它指出了三维流形的规范分解问题。
这个定理的重要性在于它使得三维流形的分类变得可行。
第二个定理是瑟斯顿定理,它刻画了闭曲面边界的三维流形。
这两个定理为瑟斯顿三维流形的分类研究提供了重要的工具和方法。
5. 瑟斯顿三维流形的应用领域有哪些?瑟斯顿三维流形的研究不仅局限于数学领域,它也有着广泛的应用。
例如,在物理学中,瑟斯顿三维流形与弦理论的研究有着密切的联系。
《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案一、单选题1. 菱形的仿射对应图形是()A 、菱形B 、平行四边形C 、正方形D 、不等边四边形答案:B2. 圆经过中心射影之后的对应图形是()A 、圆B 、椭圆C 、二次曲线D 、二共点直线答案:C3. 射影平面上所有射影变换的集合构成群,称为射影变换群,它是()A 、8维群B 、6维群C 、4维群D 、3维群答案:A4. 正六边形经过中心射影后的对应图形是()A 、正六边形B 、二次曲线C 、二平行直线D 、内接于二次曲线的六边形答案:D5. 在射影平面上,两条相交直线可以把平面分成几个区域?()A 、1B 、2C 、3D 、4答案:B6. 欧式平面内所有正交变换的集合构成群,称为正交变换群,它是()A 、3维群B 、4维群C 、6维群D 、8维群答案:A7. 双曲型曲线与无穷远直线的关系是()A 、相交B 、相切C 、相离D 、相割答案:A8. 下面属于欧式几何学的是()A 、梯形B 、离心率C 、重心D 、塞瓦定理和麦尼劳斯定理答案:B9. 直角三角形经过中心射影后的对应图形是()A 、三角形B 、等腰三角形C 、直角三角形D 、四边形答案:A10. 共点的直线经过中心射影之后的对应图形是()A 、二直线B 、二垂直直线C 、共点的直线D 、二平行直线答案:C11. 在射影平面上二阶曲线可共分为()类.A 、2B 、3C 、4D 、5答案:D12. 双曲线有几条主轴?()A 、1B 、2C 、3D 、4答案:B13. 已知两点A(2,-1,1),B(3,1,-2),下列哪一个点与它们共线?()A 、(7 ,-1 ,0)B 、(7 ,-1 ,1)C 、(5 ,0 ,2)D 、(0 ,0 ,1)答案:A14. 等腰梯形的仿射对应图形是:()A 、等腰梯形B 、梯形C 、四边形D 、平行四边形答案:B15. 对于非恒等二维射影变换下列说法错误的是()A 、是非奇线性对应B 、保持共线四点的交比不变C 、不变直线不能超过三条D 、不共线的不变点至多有三个答案:C16. 下列哪些图形具有射影性质?()A 、平行直线B 、三点共线C 、两点间的距离D 、两直线的夹角答案:B17. 圆的仿射对应图形是:()A 、梯形B 、四边形C 、椭圆D 、平行四边形答案:C18. 矩形的仿射对应图形是:()A 、四边形B 、平行四边形C 、梯形D 、圆答案:B19. 下列名称或者定理不属于仿射几何学的是A 、三角形的垂心B 、梯形C 、在平面内无三线共点的四条直线有六个交点D 、椭圆答案:A二、判断题1. 一维基本形间的射影对应不保持对应四元素的交比. ()A 、正确B 、错误答案:错误2. 两全等三角形经仿射对应后得两全等三角形()A 、正确B 、错误答案:错误3. 射影平面的不共点三直线将平面分成四部分.()A 、正确B 、错误答案:正确4. 一个角的内外角平分线调和分离角的两边()A 、正确B 、错误答案:正确5. 共线三点的单比经中心射影后不变. ()A 、正确B 、错误答案:错误6. 二直线所成角度是相似群的不变量.()A 、正确B 、错误答案:正确7. 射影平面上的一直线能将射影平面剖分成两部分. ()A 、正确B 、错误答案:错误8. 三点形经中心射影之后还是三点形.()A 、正确B 、错误答案:正确9. 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此射影变换一定是对合. ()A 、正确B 、错误答案:正确10. 在仿射变换下,等腰三角形的对应图形是三角形. ()A 、正确B 、错误答案:正确11. 仿射变换的基本不变量是单比. ()A 、正确B 、错误答案:正确12. 抛物线有一对主轴. ()A 、正确B 、错误答案:错误13. 三角形的垂心属于仿射几何学的范畴()A 、正确B 、错误答案:错误14. 在仿射变换下,正方形的对应图形是正方形.()A 、正确B 、错误答案:错误15. 共线点的极线必共点,共点线的极点必共线()A 、正确B 、错误答案:正确16. 椭圆和双曲线的四个焦点中有二实点二虚点.()A 、正确B 、错误答案:正确17. 配极变换是一种非奇线性对应,()A 、正确B 、错误答案:正确18. 两个三角形的面积之比是仿射不变量. ()A 、正确B 、错误19. 德萨格定理属于射影几何学的范畴. ()A 、正确B 、错误答案:正确20. 二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数. ()A 、正确B 、错误答案:正确21. 菱形的仿射对应图形是四边形. ()A 、正确B 、错误答案:错误22. 两点列的底只要相交构成的射影对应就是透视对应. ()A 、正确B 、错误答案:错误23.A 、正确B 、错误答案:正确24. 两个不同的无穷远点所决定的直线上可以含有有穷远点.()A 、正确B 、错误答案:错误三、名词解释1. 图形的仿射性质答案:图形经过任何仿射变换后都不变的性质称为图形的仿射性质.2. 二次曲线的直径答案:无穷远点关于二次曲线的有穷极线称为此二次曲线的直径.3. 二次曲线的中心答案:无穷远直线关于二次曲线的极点称为此二次曲线的中心.4. 配极原则答案:如果P点的极线通过Q点,则Q点的极线也通过P点.5. 二阶曲线答案:在射影平面上,成射影对应的两个线束对应直线的交点的集合称为二阶曲线.6. 二次曲线的渐近线答案:二次曲线上的无穷远点的切线,如果不是无穷远直线,则称为二次曲线的渐近线.7. 对偶原则答案:在射影平面里,如果一个命题成立,则它的对偶命题也成立.8. 完全四点形答案:由四个点(其中无三点共线)以及连结其中任意两点的六条直线所组成的图形称为完全四点形.四、问答题1. 下列图形的仿射对应图形是什么?(1)圆;(2)等腰三角形;(3)三角形的内心;(4)两个合同的矩阵;(5)三角形的重心;(6)相似三角形;(7)三角形的垂心;(8)矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《流形与几何》测验一2015.3.23
说明:从下列题目中选择5题完成并于一周内交给我.
1.设M,N分别为m,n维微分流形,证明M×N为m+n维微分流形.
2.设M,N为微分流形,f:M→N为光滑映射.如果f的秩恒等于l,则
任给p∈M,存在包含p的局部坐标邻域U以及包含q=f(p)的局部坐标邻域V,使得f(U)⊂V,且f的局部表示形如
(x1,···,x m)→(x1,···,x l,0,···,0).
3.设f:M→N为微分流形之间的淹没,证明f将开集映为开集.
4.定义映射f:GL(3,R)→GL(3,R)为f(A)=AA .计算f的秩,并说
明O(3)(3阶正交矩阵的全体)为正则子流形.
5.设f:M→N为微分流形之间的光滑映射.如果S为M的正则子
流形,则f|S:S→N仍为光滑映射;如果T为N的正则子流形,且f(M)⊂T,则存在光滑映射g:M→T,使得f=i◦g,其中i:T→N 为包含映射.
6.设f:R n→R为光滑函数,x0∈R n.记
S={x∈R n|f(x)=f(x0)}.
设∇f(x0)=0,证明在x0附近S为正则超曲面.
7.设{Aα}为R n中的一族局部有限的闭集,证明它们的并集仍为闭集.
8.设M,N为紧致微分流形,f为M×N上的光滑函数.证明:任给ε>
0,存在M上的有限个光滑函数g i和N上的有限个光滑函数h i(i= 1,···,k),使得
f(x,y)−
k
∑
i=1
g i(x)h i(y)
<ε,∀x∈M,y∈N.
1。