导热理论基础

合集下载

导热基础必学知识点

导热基础必学知识点

导热基础必学知识点
1. 热传导:热量从高温区传导到低温区的过程。

热传导可以通过导热
机制(分子传导、电子传导和辐射传导)进行。

2. 热导率:物质传导热量的能力。

热导率越高,传热能力越高。

3. 热阻:物质对热传导的阻碍能力。

热阻越高,传热能力越低。

4. 热传导方程:描述热传导过程中温度分布的偏微分方程。

在稳态条
件下,热传导方程为焦耳定律,即热流密度等于热导率乘以温度梯度。

5. 导热系数:描述固体材料导热性能的物理量。

导热系数等于热导率
除以材料的厚度。

6. 热容量:物质吸收或释放的热量与温度变化之间的关系。

热容量越大,物质对热量的吸收或释放能力越强。

7. 热扩散:物质在受热时的体积膨胀现象。

热扩散系数描述了物质在
温度变化下的膨胀程度。

8. 热辐射:由热源发出的电磁辐射。

热辐射可以通过辐射传导方式进
行热传导。

9. 对流传热:通过流体介质(如气体或液体)的运动来实现热传输的
过程。

对流传热具有较高的传热效率。

10. 导热材料:具有较高热导率的材料,常用于热导设备或导热结构中,以实现高效的热传导。

常见的导热材料包括金属、陶瓷和导热塑
料等。

以上是导热基础必学的知识点,掌握了这些知识可以帮助理解热传导的基本原理和特性,对导热材料的选择和应用有一定的指导意义。

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。

2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。

① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。

2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。

2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。

若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。

3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

§ 2 -1 导热基本定律 一 、温度场 (Temperature field) 1 、概念 温度场是指在各个时刻物体内各点温度 分布的总称。 由傅立叶定律知,物体的温度分布是坐 标和时间的函数:
t f x, y, z,
其中 x, y , z 为空间坐标, 为时间坐标。

2 、温度场分类 1 )稳态温度场(定常温度场)
料称各向异性材料。此类材料 必须注明方
向。相反,称各向同性材料。
§ 2-2 导热微分方程式及定解条件
由前可知:
( 1 )对于一维导热问题,根据傅立叶定 律积分,可获得用两侧温差表示的导热量。 ( 2 )对于多维导热问题,首先获得温度 场的分布函数,然后根据傅立叶定律求得空 间各点的热流密度矢量。
一 、导热微分方程 1 、定义:根据能量守恒定律与傅立叶定律 ,建立导热物体中的温度场应满足的数学表 达式,称为导热微分方程。
d 时间内、沿 x 轴方向导入与导出微元体净热量
d x d x dx qx dxdydzd x
d 时间内、沿 y 轴方向导入与导出微元体净热量
d y d y dy qy y dxdydzd
d 时间内、沿 z 轴方向导入与导出微元体净热量
综上说明: ( 1 )导热问题仍然服从能量守恒定律; ( 2 )等号左边是单位时间内微元体热力学能的 增量(非稳态项); ( 3 )等号右边前三项之和是通过界面的导热使 微分元体在单位时间内 增加的能量 ( 扩散 项 ) ; ( 4 )等号右边最后项是源项; ( 5 )若某坐标方向上温度不变,该方向的净导 热量为零,则相应的扩散项即从导热微分方程中消 失。
t2
0 x δ
q 是该处的热流密度矢量。

传热学复习要点

传热学复习要点

传热学 复习要点1-3节为导热部分1.导热理论基础 (分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差 与其法线方向距离 的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数: λ=λ0(1+bt)t=q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度.当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热 (分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析 (对流换热=导热+热对流)(1) 对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程② 必须有直接接触(流体与壁面)和宏观运动;也必须有温差③ 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

第一章—导热理论基础

第一章—导热理论基础

第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律与导热问题的基本分析方法。

物质部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。

物质部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。

导热理论从宏观研究问题,采用连续介质模型。

第一节基本概念与傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体各点温度分布的总称,称为即为温度场(标量场)。

它是空间坐标和时间坐标的函数。

在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:①稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。

(如设备正常运行工况)稳态导热:发生于稳态温度场中的导热。

②非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。

(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。

2.从空间坐标分: ①三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ②二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τg ra d t③一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体温度相同的点连成的面即为等温面。

2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。

为了直观地表示出物体部的温度分布,可采用图示法,标绘出物体中的等温面(线)。

传热学复习要点

传热学复习要点

传热学复习要点1-3节为导热部分1.导热理论基础(分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差与其法线方向距离的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数:λ=λ0(1+bt)t= q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度. 当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热(分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析(对流换热=导热+热对流)(1)对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程②必须有直接接触(流体与壁面)和宏观运动;也必须有温差③由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

第一章 导热理论基础

第一章 导热理论基础

三维温度场
t t t t t t
f (x) f ( x, ) f ( x, y ) f ( x, y, ) f ( x, y, z ) f ( x, y , z , )
传热学 Heat Transfer
2.等温面,等温线 ①定义:同一时刻,温度场中所有温度相同的点 连接所构成的面叫做等温面。不同的等温面与同 一平面相交,则在此平面上构成的一簇曲线称为 等温线 ②特点:a、同一时刻,温度不同的等温线(面)不能相交;
y
x
1.温度场:某一时刻空间所有各点温度分布的总 称
温度场是时间和空间的函数:
t f ( x, y, z, )
传热学 Heat Transfer
稳态温度场
t f ( x, y, z )
非稳态温度场
t 0
t 0
t f ( x, y , z , )
一维温度场 二维温度场
传热学 Heat Transfer
1.导热基本定律的文字表达:
在导热现象中,单位时间内通过给定截面的热量, 正比于垂直于该截面方向上的温度梯度和截面面积, 方向与温度梯度相反。
2.导热基本定律的数学表达:
Agradt t q gradt n A n
t t t q ( i ) ( j ) ( k ) x y z
§1-2 导热系数
1.定义
q gradt
物理意义:物体中单位温度梯度单位时间通 过单位面积的导热量,标量,单位:W/(m· K) 2.导热系数数值表征物体导热能力的大小,由 实验测定
传热学 Heat Transfer
3.导热系数与物质种类及热力状态有关(温度, 压力(气体)),与物质几何形状无关。 常用物质之值:

传热学课件第二章导热基础理论

传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q




t x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档