钢柱计算
常用钢筋计算公式

常用钢筋计算公式柱钢筋1.柱纵筋单根长度=柱基础内插筋+柱净高+锚固长度+搭接长度*搭接个数搭接长度(Lle):如为机械连接或焊接连接时,搭接长度为0 a.柱基础内插筋长度=基础高-基础保护层+弯折长度搭接长度(Lle):如果考试时候题中说明为不考虑,不用计算弯折长度:当基础高>LaE时,弯折长度为max(6d,150)当基础高≤LaE时,弯折长度为15db.柱净高长度:基础顶面——顶层梁地面之间的垂直高度c.顶层锚固长度:①中柱锚固长度=梁高-保护层+12d②边、角柱锚固长度:⑴内侧钢筋锚固长度同中柱⑵外侧钢筋锚固长度:1.5LaE(考试用)2.柱箍筋:单根长度=(b-2c+h-2c)*2+2* max(10d,75)b.柱宽;h.柱高;c.柱保护层根数=(加密区长度/加密区间距+1)+(非加密区长度/非加密区间距-1)加密区长度:①嵌固部分以上长度为:hn/3(hn本层柱净高)②非嵌固部分以上长度为:max(hc,hn/6,500)(考试用)③柱梁节点加密区长度为:梁高+max(hc,hn/6,500)(考试用)④当有刚性地面时,除柱端钢筋加密区外尚应在刚性地面上、下各5 00mm高度范围内加密箍筋。
梁钢筋1.梁上部纵筋长度=总净跨长+左锚固+右锚固+搭接长度*搭接个数搭接长度:如为机械连接或焊接连接时,搭接长度为0左(右)锚固长度:当hc-保护层<LaE时,弯锚,锚固长度=支座宽-保护层+15d当hc-保护层≥LaE时,直锚,锚固长度= max(LaE,0.5hc+5d)保护层:是柱保护层2.下部通长筋长度=净跨长+左锚固+右锚固+搭接长度*搭接个数左(右)锚固长度:同梁上部钢筋(下部钢筋在中支座中的锚固能直锚的时候直锚)3.上部端支座负筋:第一排=1/3净跨长+左(右)锚固长度第二排=1/4净跨长+左(右)锚固长度左(右)锚固长度:同梁上部钢筋4.上部中间支座负筋:第一排=1/3净跨长*2(净跨长取相邻两跨最大值)+支座宽第二排=1/4净跨长+*2(净跨长取相邻两跨最大值)+支座宽5.架立筋单长=净跨长-净跨长/3*2+150*26.箍筋单长(2肢箍)=(长-2保+宽-2保)*2+2* max(10d,75)根数加密区根数=[(加密区长度-50)/加密区间距+1]*2非加密区根数=(净跨长-2*加密区长度)/非加密区间距-1加密区长度:一级抗震:max(2Hb,500)二级--三级抗震:max(1.5Hb,5 00)7.侧面纵向钢筋(腰筋)构造筋长度(G打头的钢筋)=净跨长+2*15d抗扭筋长度(N打头的钢筋)=净跨长+2*锚固长度锚固长度同框架梁下部钢筋8.拉筋:当梁宽≤350时,拉筋直径为¢6(计算工程量时用¢6.5来计算)当梁宽>350时,拉筋直径为¢8拉筋单长=梁宽-2*保+2* max(10d,75)拉筋根数=[(净跨长-50*2)/(非加密区间距*2)+1]*(腰筋根数/2)9.附加吊筋:吊筋单根长度=次梁宽+2*50+2*(梁高-2保)/sin45°(sin60°)+2*20d当主梁高≤800时,吊筋角度为45度;当主梁高>800时,吊筋角度为60度.备注:主次梁相交处,注意附件的箍筋10.屋面框架梁屋面梁上部通长筋=总净跨长+左锚固+右锚固+搭接长度*搭接个数搭接长度:如为机械连接或焊接连接时,搭接长度为0左(右)锚固长度=支座宽-保护层+梁高-保护层(保:为柱的保护层)板钢筋1.板底受力筋单根长度=净跨长+左伸长度+右伸长度+弯钩长度*2板面受力筋单根长度=净跨长+锚固长度*2板底受力筋根数=板面受力筋根数=分布范围/板筋间距+1伸出长度:端支座为梁、圈梁、剪力墙时,伸出长度= max(1/2支座宽,5d)端支座为砌体墙时,伸出长度=max(1/2墙厚,12 0,板厚)180°弯钩长度=6.25d(当钢筋为一级钢时,末端需加180°弯钩)锚固长度:支座宽-保护层≥la时,直锚,直锚长度=la支座宽-保护层<la时,弯锚,弯锚长度=支座宽-保护层+15d分布范围=净跨长-1/2板筋间距*22.端支座板负筋长度=锚入长度+板内净尺寸+弯折长度中间支座板负筋长度=左标注长度+右标注长度+弯折长度*2(注意标注的长度是否含支座宽)负筋根数=布筋范围/板负筋间距+1锚入长度:支座宽-保护层≥la时,直锚,直锚长度=la支座宽-保护层<la时,弯锚,弯锚长度=支座宽-保护层+15d弯折长度:板厚-保护层*2(保护层为板的保护层)布筋范围:净跨长-1/2板筋间距*23.分布筋单根长度=净跨(轴线)长度-负筋标注长度*2+搭接长度*2搭接长度:分布筋与负筋的搭接长度为150mm端支座分布筋根数=(负筋板内净长-1/2板分布筋间距)/分布筋间距+1中间支座分布筋根数=(左侧板内净长-1/2板分布筋间距)/分布筋间距+1+(右侧板内净长-1/2板分布筋间距)/分布筋间距+1独立基础钢筋1.独立基础底板长度<2500时X方向底板钢筋单根长度=X方向的基础边长-2*保护层X方向底板钢筋根数=(Y方向的基础边长—min(75,S/2)*2)/S+1S为X方向独立基础钢筋的分布间距Y方向底板钢筋单根长度=Y方向的基础边长-2*保护层Y方向底板钢筋根数=(X方向的基础边长—min(75,S/2)*2)/S+1S为X方向独立基础钢筋的分布间距2.独立基础底板长度≥2500时X方向底板钢筋单根长度:①外侧钢筋单根长度=X方向的基础边长-2*保护层外侧钢筋根数:2根②其余钢筋单根长度= X方向的基础边长-保护层**.1* X方向的基础边长其余钢筋根数=(Y方向的基础边长—min(75,S/2)*2)/S-1Y 方向底板钢筋单根长度:①外侧钢筋单根长度=Y方向的基础边长-2*保护层外侧钢筋根数:2根②其余钢筋单根长度= Y方向的基础边长-保护层*1* Y方向的基础边长其余钢筋根数=(X方向的基础边长—min(75,S/2)*2)/ S-1。
钢结构的计算方法

钢结构计算(我的计算方法,仅供参考)1、先算预埋件:以套计算以吨位计算:长度×该规格的理论重量2、钢柱:柱底板、节点板、牛腿并入钢柱,高强螺栓以套计算,理论重量×长度×榀数翼缘板=(钢柱顶标高-柱底板板底标高)*翼缘板宽度*翼缘板的理论重量腹板=(钢柱顶标高-柱底板板底标高)*(此腹板截面高度-两块翼缘板厚度)*腹板的理论重量3、钢梁:节点并入钢梁,高强螺栓以套计算4、檩条:C型:理论重量×(单根总长度+两端各加0.4)×根数Z型:理论重量×(各轴线段搭接+搭接长度)×根数檩托板计算,并入钢梁,普通螺栓以套计算具体详见节点图5、隅撑:长度=(钢梁的高度h+檩条的高度之和)×√2,理论重量×长度×个数包含节点板普通螺栓以套计算6、系杆:轴线间长度×理论重量,包含节点板普通螺栓以套计算7、拉条:直拉条=(檩条间距+两端各加50mm)×该规格的理论重量斜拉条=√(檩条间距的平方+水平距离的平方)×该规格的理论重量撑杆=檩条间距×该规格的理论重量普通螺母以套计算,一根拉条有两个螺母8、水平支撑:斜长=(开间长度a2+进深长度b2)的算数平方根,重量=长度×该规格的理论重量包含节点板普通螺栓以套计算9、柱间支撑:(同水平支撑)10、圆钢理论重量=0.00617*d2钢板理论重量=7.85*t角钢理论重量(kg/m)=0.00795* t*(2 b-t)或者可以查五金手册〕圆管理论重量(kg/m)=0.02466*壁厚*(钢管直径-壁厚)槽钢理论重量(kg/m) =(h+2b- 2t)*t*0.00785〕。
钢柱计算

计算书工程名称:XXXXXXXXXXXXXX计算性质:成品H型钢支撑立柱构件验算计算:校核:审定:XXXXXXXXXXXXXXXXXXXXXXXXXXXX二○一一年九月5.1米高成品H型钢立柱验算书,----- 设计信息 -----钢材等级:235立柱高(m):5.100米立柱截面:日本标准宽翼缘H型钢:340X250x9x14x14立柱平面外计算长度:5.100米强度计算净截面系数:1.000设计内力:轴力设计值 N (kN):400.000----- 设计依据 -----《钢结构设计规范》(GB 50017-2003)----- 立柱构件设计 -----1、截面特性计算A =99.53cm2; Ix =21200cm4; Iy =3650cm4;ix =14.6cm; iy =6.05cm;Wx=1250cm3; Wy=292cm3;2、柱构件强度验算结果根据《钢结构设计规范》(GB 50017-2003)5.1.1条式5.1.1-1立柱构件强度计算最大应力(N/mm2): σ=N/An=40.189 < f=215.000 (f查表3.4.1-1) 立柱构件强度验算满足。
3、柱构件平面内稳定验算结果平面内计算长度(m):5.100平面内长细比λx=510/14.6=34.932对x轴截面分类:a 类轴心受压稳定系数φx:0.953柱平面内长细比:λx=34.932 < [λ]= 150.000 ([λ]查表5.3.8)根据《钢结构设计规范》(GB 50017-2003)5.1.2条式5.1.2-1柱构件平面内稳定计算最大应力(N/mm2): N/ΨA=42.189 < f=215.000 (f查表3.4.1-1) 柱构件平面内验算满足。
4、柱构件平面外稳定验算结果平面外计算长度(m):5.100平面外长细比λy:84.298对y轴截面分类:b 类轴心受压稳定系数φy:0.659柱平面外长细比:λy=510/6.05=84.298 < [λ]= 150.000 ([λ]查表5.3.8)根据《钢结构设计规范》(GB 50017-2003)5.1.2条式5.1.2-1柱构件平面外稳定计算最大应力(N/mm2): N/ΨA= 60.954 < f=215.000 (f查表3.4.1-1) 柱构件平面外验算满足。
钢柱计算长度系数确定及长细比相关问题答疑

钢柱计算长度系数确定及长细比相关问题答疑钢柱计算长度系数的确定是钢结构常规设计方法中重要的一环,本文对于钢结构中常用的结构形式,门式刚架和钢框架结构结构中的钢柱确定中遇到的几个问题一一解答,希望对设计人员在钢柱计算长度系数确定时能够有所帮助.1、《门式刚架轻型房屋钢结构技术规范》GB51022-2015确定刚架柱的计算长度系数都有哪些算法?按门规附录A.0.1-A.0.5规定的方法以及A.0.8规定的方法,两种方法有何异同?应该如何选择?1)门式刚架规范对于门式刚架柱计算长度系数确定提供了两种算法,一种是按照门式刚架规范附录A.0.1-A.0.5规定的方法确定刚架柱面内的计算长度系数;另一种是按照门式刚架规范附录A.0.8方法确定刚架柱面内的计算长度系数.对于门式刚架规范的两种方法,二维设计程序是通过参数中的勾选项实现的,见下图:图1门式刚架二维设计参数定义勾选该选项后,程序按照门式刚架规范附录A.0.8方法确定刚架柱面内的计算长度系数,不勾选时,程序按照门式刚架规范附录A.0.1-A.0.5规定的方法确定刚架柱面内的计算长度系数.对于存在摇摆柱的门式刚架,在采用两种方法确定计算长度系数时,程序都会按照A.0.6条要求对于刚架柱的计算长度系数进行放大.2)第一种方法即A.0.1-A.0.6这套方法,其基本设计思路与钢规和梁柱线刚度比方法较为相似,采用梁柱线刚度比作为钢柱面内计算长度系数,这种方法对于门式刚架结构形式没有特别要求,可以支持较为复杂的门式刚架带夹层、高低跨、阶形柱等都可以参考此方法计算得到柱的计算长度系数.第二种方法与旧版门式刚架规程中所规定的一阶弹性方法较为接近,程序主要基于公式A.0.8-1确定,即:由公式可以看出其方法的特点是根据整体抗侧刚度以及柱承担的轴向力得到钢柱的计算长度系数,因此可以考虑单层各跨各柱之间的相互支援作用,同时可以看到该方法适用范围较窄,规范规定各跨梁的标高无突变,无高低跨时可用,但通过对应公式可以看出,该方法同样不适用与刚架柱中间增加节点后截面出现变化的情况,或带夹层的情况,如果使用该方法就会出现柱的计算长度系数异常大的现象,例如下图中带夹层的门式刚架模型的1-5号柱,图2门式刚架柱及其位置其中1、2号柱为截面有变化的阶形柱,3-5号柱为夹层位置的柱,其分别按照门规附录的两种方法分别计算上述柱的计算长度系数,得到以下结果,我们会发现,对于分段的阶形柱和夹层柱按照门式刚架规范附录A.0.8方法计算得到的柱面内计算长度系数相较另一种方法差异很大,一般是A.0.1-A.0.5方法的若干倍,明显偏大,所以在出现上述现象,此时A.0.8的这种方法就不太合适了.门式刚架规范两种算法的比较表12在钢柱长细比等指标不满足规范要求时,为什么很多情况下,增大柱截面尺寸后长细比等指标不但没有降低,反而变大了?为了更清楚说明这种现象产生的原因,以如下简单模型中的框架柱为例,只改变中柱的截面,其他条件均不改变的情况下,考察不同柱截面的回转半径、强轴方向的计算长度系数这两个参数,以及长细比的变化趋势.图3钢框架模型轴侧图该模型中柱采用程序中的国标热轧H型截面,其他条件不变,截面依次增大,分别为HW400*400 HW400*408,HW414*405,HW428*407,HW458*417,HW498*432.首先通过下面折线图来看回转半径的变化,我们发现回转半径并不会随着截面的增大而增大,在截面由HW400*400变为HW400*408时,其腹板厚度和翼缘长度均变大了,为什么回转半径反而变小呢?这是由于回转半径i=√(I/A),它由截面惯性距和截面面积共同控制,当截面变大时,截面面积和惯性矩同时增大,截面面积增大的速率大于截面惯性矩时,则会出现回转半径减小的情况,而总体上,回转半径由于受到这种条件的制约,增大的趋势也非常缓慢.再来看柱计算长度系数的变化趋势,它再一次和我们一般的认知有着相反的趋势,柱的计算长度系数会随着柱截面的加大而增大,出现这种现象的原因我们要从柱计算长度系数确定过程来分析,根据旧钢规和新钢标对于框架柱计算长度系数确定的方法,其主要过程参数为相交于柱上、下端并与之刚接的横梁线刚度之和与柱线刚度之和的比值K1、K2,通过规范附录公式及对应表格,我们得到无论是无侧移框架还是有侧移框架失稳模式,柱计算长度系数,都与K1、K2呈反比关系,而在不改变梁截面的情况下,增大柱截面而不改变梁截面的情况下会使K1、K2这两个参数变小(最底层柱K2不变),进而柱的计算长度系数始终是呈增大的趋势.最后柱的长细比也是随着截面的增大而变大,究其原因还是由于柱计算长度系数和回转半径的变化趋势和速率导致的,上面我们已经知道柱的计算长度是逐渐增大的趋势,而总体上回转半径也呈缓慢增大的趋势,此时柱的长细比变化趋势由计算长度随着柱截面增大的速率和回转半径增大的速率之间的大小关系决定,计算长度比回转半径增大的快,长细比就会增大,反之则长细比减小,在这个例子中计算长度系数的增速要比回转半径快.综上,单纯的通过调整柱截面来让长细比满足要求可能会付出很高的代价.图4框架柱回转半径、计算长度系数和长细比变化趋势3钢框架柱长细比超限该如何调整?由上一问我们得出在一些情况下我们不能单纯的通过调整柱的截面来调整长细比超限的情况,我们应该从以下几个方面去进行长细比的调整.1)在满足强柱弱梁的前提下,增加梁截面尺寸可以降低柱的长细比水平.在柱截面受到建筑限制或增大截面无效的情况下,可以通过适当增大长细比验算方向的与柱刚接的梁截面尺寸来使首层柱K1增大,其他层柱K1,K2都增大的方式减小柱的计算长度系数,进而减小柱的长细比.2)在条件允许的情况下,对于有支撑结构增加支撑杆件或增加已有支撑杆件的刚度使结构由有侧移框架变为无侧移框架.3)采用规范提供的性能化设计方法或性能化设计思想有效增加长细比限值,使长细比更容易满足.如采用新钢标17章抗震性能化设计方法时,满足了相应性能目标的要求后,其长细比限值有所降低.抗规8.1.3注2:多、高层钢结构房屋,当构件的承载力满足2倍地震作用组合下的内力要求时,7~9度构件抗震等级允许按降低1度确定,通过该条可以使承载力能力用较大富裕度的构件,降低其抗震等级,进而其所对应的长细比限值等指标也有所降低.4在调整钢框架中框架梁截面尺寸后为什么与其相连的计算长度系数没有变化?在钢框架中的框架梁很多情况下需要与框架柱做铰接连接,在这种情况下,根据旧钢规和新钢标的附录中均有当横梁与框架柱刚接时,其横梁线刚度取0,此时铰接横梁的线刚度就与参数K1,K2的确定没有影响了,K1,K2不变,计算长度系数自然不会发生变化.。
钢柱,钢斜撑计算

B3层H型钢,钢柱支撑承载力计算柱所受荷载及自重计算实际受荷载面积:59m2;计算时受荷面积按8mx8m=64m2考虑B3顶板厚:140mm 计算得0.14x26x64=233knB2顶板厚:160mm 计算得0.16x26x64=266knB1顶板厚:180mm 计算得0.18x26x64=300kn首层~1-5层顶板厚:100mm 计算得0.1x26x64=166kn x5层=832kn混凝土容重按26kn/m3考虑各层板下梁的重量按1kn/m3考虑1x64x8层=512kn各层梁下柱身的重量按1.1x1.1x26x5m=173kn考虑x7层=1211kn各受荷范围内活荷载均按5KN/m2考虑5x64x8层=2560kn恒荷载总计:233+266+299+832+512+1211=3354kn活荷载总计:2560kn荷载总计:5914kn待加固柱四面,每面有两根H型钢支顶,共8根,计算假定只用4根钢柱承担所有重量,每根所承担5914/4=1500KN地下三层层高4.30m,框架梁高按600mm考虑,钢柱净高4.3-0.6=3.7mH型钢柱受压稳定系数计算:截面:HW502X470x20x25ix:213.545 mmiy:114.619 mmA:32955 mm截面材性:Q235绕X轴长细比为17.3265绕X轴截面为b类截面绕Y轴长细比为32.2807绕Y轴截面为b类截面按GB 50017--2003 第132页注1 计算算得绕X轴受压稳定系数φx = 0.977445算得绕Y轴受压稳定系数φy = 0.927807强度验算:轴压力N = 1500 KN由最大板厚25 mm 得截面抗拉抗压抗弯强度设计值f = 205 MPa计算得强度应力为45.5166 MPa 满足!稳定验算:计算得绕X轴稳定应力为46.5669 MPa 满足!计算得绕Y轴稳定应力为49.0583 MPa 满足!局部稳定验算:翼缘外伸宽度与厚度之比为9 满足!(GB50017--2003 第57页5.4.1-1)腹板高厚比为22.6 满足!(GB50017--2003 第58页5.4.2-1)综上计算,钢柱计算结果远远大于实际荷载,因此H型钢选用符合安全要求。
钢结构工程量如何计算

钢结构工程量如何计算范本一:计算钢结构工程量的详细步骤一、引言钢结构是现代建筑中常用的结构形式之一,其计算工程量的准确性对于工程的顺利进行和预算的合理安排有着重要的作用。
本文将详细介绍钢结构工程量的计算方法。
二、材料工程量计算1. 钢梁工程量计算①梁的数量:根据设计图纸确定梁的数量,考虑到工程的安全性可适当增加备用梁的数量。
②梁的长度:根据设计图纸和建筑方案计算每根梁的长度,并考虑到连接件的长度。
③梁的断面积:根据梁的设计要求计算梁的断面积,包括上弦、下弦和腰板的断面积。
④梁的重量:根据梁的断面积和单位长度的质量计算每根梁的重量。
2. 钢柱工程量计算①柱的数量:根据设计图纸确定柱的数量,考虑到工程的安全性可适当增加备用柱的数量。
②柱的长度:根据设计图纸和建筑方案计算每根柱的长度,并考虑到连接件的长度。
③柱的断面积:根据柱的设计要求计算柱的断面积。
④柱的重量:根据柱的断面积和单位长度的质量计算每根柱的重量。
三、连接件工程量计算1. 螺栓工程量计算①螺栓数量:根据设计要求计算所需的螺栓数量。
②螺栓长度:根据连接件的厚度和螺栓的设计要求计算螺栓的长度。
③螺栓的重量:根据螺栓的数量和单位重量计算螺栓的总重量。
2. 焊接工程量计算①焊缝长度:根据设计要求计算所需的焊缝长度。
②焊条消耗量:根据焊缝的长度和焊缝的尺寸计算所需的焊条消耗量。
四、附加工程量计算1. 防腐工程量计算根据设计要求和钢结构的暴露程度计算所需的防腐工程量,包括防腐涂料的用量和工程材料的数量。
2. 补充工程量计算根据设计要求和工程实际情况计算钢结构工程中的各项补充工程量,如防火涂料、清理工程等。
五、法律名词及注释1. 工程量计算:指根据设计要求和建筑方案计算工程中所需材料的数量和重量的过程。
2. 单位长度的质量:指单位长度钢梁或钢柱的重量,常用单位为kg/m。
六、附件1. 工程图纸2. 设计方案3. 工程规范4. 施工技术文件5. 其他相关文件范本二:计算钢结构工程量的操作指南一、引言钢结构工程量的准确计算是保证工程质量和预算合理性的基础。
钢结构的计算方法

钢结构的计算方法文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]钢结构计算(我的计算方法,仅供参考)1、先算预埋件:以套计算以吨位计算:长度×该规格的理论重量2、钢柱:柱底板、节点板、牛腿并入钢柱,高强螺栓以套计算,理论重量×长度×榀数翼缘板=(钢柱顶标高-柱底板板底标高)*翼缘板宽度*翼缘板的理论重量腹板=(钢柱顶标高-柱底板板底标高)*(此腹板截面高度-两块翼缘板厚度)*腹板的理论重量3、钢梁:节点并入钢梁,高强螺栓以套计算4、檩条:C型:理论重量×(单根总长度+两端各加0.4)×根数Z型:理论重量×(各轴线段搭接+搭接长度)×根数檩托板计算,并入钢梁,普通螺栓以套计算具体详见节点图5、隅撑:长度=(钢梁的高度h+檩条的高度之和)×√2,理论重量×长度×个数包含节点板普通螺栓以套计算6、系杆:轴线间长度×理论重量,包含节点板普通螺栓以套计算7、拉条:直拉条=(檩条间距+两端各加50mm)×该规格的理论重量斜拉条=√(檩条间距的平方+水平距离的平方)×该规格的理论重量撑杆=檩条间距×该规格的理论重量普通螺母以套计算,一根拉条有两个螺母8、水平支撑:斜长=(开间长度a2+进深长度b2)的算数平方根,重量=长度×该规格的理论重量包含节点板普通螺栓以套计算9、柱间支撑:(同水平支撑)10、圆钢理论重量=0.00617*d2钢板理论重量=7.85*t角钢理论重量(kg/m)=0.00795* t*(2 b-t)或者可以查五金手册〕圆管理论重量(kg/m)=0.02466*壁厚*(钢管直径-壁厚)槽钢理论重量(kg/m) =(h+2b- 2t)*t*0.00785〕。
实腹钢柱计算公式

实腹钢柱计算公式一、金属结构构件制作按设计图示钢材尺寸以吨计算,不扣除孔眼、切边的重量,焊条、铆钉、螺栓等重量已包括在项目内不另计算。
在计算不规则或多边形钢板重量时按其最小外接矩形面积计算。
二、实腹柱、吊车梁、H型钢按图示尺寸计算,其中腹板及翼板宽度按每边增加10mm计算。
三、计算钢柱制作工程量时,依附于柱上的牛腿及悬臂梁的重量应并入柱身的重量内。
四、计算吊车梁制作工程量时,依附于吊车梁的连接钢板重量并入吊车梁重量内,但依附于吊车梁上的钢轨、车挡、制动梁的重量,应另列项目计算。
五、单梁悬挂起重机轨道工字钢含量及垃圾斗、出垃圾门的钢材含量,项目规定与设计不同时,可按设计规定调整,其他不变。
六、计算钢屋架制作的工程量时,依附于屋架上的檩托、角钢重量并入钢屋架重量内。
七、计算钢托架制作工程量时,依附于托架上的牛腿或悬臂梁的重量应并入钢托架重量内。
八、计算钢墙架制作工程量时,墙架柱、墙架梁及连系拉杆重量并入钢墙架重量内。
九、计算天窗挡风架制作工程量时,柱侧挡风板及挡雨板支架重量并入天窗挡风架重量内,天窗架应另列项目计算,天窗架上的横挡支爪、檩条爪应并入天窗架重量计算。
十、钢支撑制作项目包括柱间、屋架间水平及垂直支撑以吨为单位计算。
十一、计算钢平台制作工程量时,平台柱、平台梁、平台板(花纹钢板或箅式)、平台斜撑、钢扶梯及平台栏杆等的重量,应并入钢平台重量内。
十二、钢制动梁的制作工程量包括制动梁、制动桁架、制动板重量。
十三、钢漏斗制作工程量,矩形按图示分片,圆形按图示展开尺寸,并依钢板宽度分段计算,依附漏斗的型钢并入漏斗重量内计算。
十四、球节点钢网架制作工程量按钢网架整个重量计算,即钢杆件、球节点、支座等重量之和,不扣除球节点开孔所占重量。
你看看每个构件它是由什么构成的,把它能分解成什么(槽钢、钢板、角钢。
)按其长度或面积乘以相应的理论重量就可以了最后在算防锈漆等。
我们都是这样算的。
图中标注H(500~950)*350*14*16此工程量是不能按最宽的950来计算的,要按照型钢成型面积计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将 、 代入公式(1)或(2),可求得受拉侧锚栓的总拉力 :
水平抗剪承载力:
(二)底板全截面受压,所有锚栓均不产生拉力时:
如上图所示,通过 0 点弯矩平衡, 具体列法,及各部分公式的算法含义。
当
时,底板出现受拉区,一侧锚栓受拉。
Hale Waihona Puke (2)底板全截面受压,所有锚栓均不产生拉力时:
当
时,底板全截面受压,锚栓均不产生拉力。
(3)底板出现受拉区,但分布较小,所有锚栓均不产生拉力时:
当 节点验算:
时,底板出现受拉区,但所有锚栓均不产生拉力。
底板下的混凝土最大受压应力:
受拉侧锚栓的总有效面积:
水平抗剪承载力 当
圆形底板刚接柱脚压弯节点技术手册
2011 年 10 月 28 日 16:13 先闻公司 15 次阅读 共有评论 0 条
根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入 式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。
软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第 二版)中的相关条文及规定,并对相关计算过程自行推导。
设计注意事项
刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分 的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。
为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不 容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:
(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强 措施;
(2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有 15%~20%的富裕量,软件一般按 20%考虑。
(3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜 控制在 5~8kN/cm2 的范围,作为预加拉力的施工方法,宜采用扭角法。
受拉侧锚栓的总拉力:
水平抗剪承载力:
综上三种情况,类同于矩形柱底板计算情况,可将圆形底板分成三种情况:(1)底板出现 受拉区,且分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力;(2)底板全截面受压, 所有锚栓均不产生拉力;(3)底板出现受拉区,但分布较小,所有锚栓均不产生拉力。
(1)底板出现受拉区,且分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力时:
时,不需设置抗剪件即满足抗剪要求;
当
时,需另外设置抗剪件以满足抗剪要求。
参数说明: 为偏心距,
;
为底板下混凝土的轴心抗压强度设计值;
为底板下混凝土局部承压时的轴心抗压强度设计值提高系数,因软件无法判定基础与柱
底板的相对关系,所以按最不利情况考虑,取
;当用户有可靠依据时,可按下列条
文确定 的数值:
为混凝土局部受压面积; 为混凝土局部受压的计算底面积(局部受压面积需与计算底面积按同心原则确定),按 下图采用:
为由受拉侧底板边缘至受拉锚栓中心的距离(见上文图); 为底板受压区的长度;
为钢材的弹性模量与混凝土弹性模量之比,
。
柱脚底板的厚度 ,应同时符合下列公式的 要求,而且不应小于柱较厚板件厚度,且不宜 小于 30mm。
参数说明:
为根据柱脚底板下的混凝土基础反力和底板的支承条件,分别按悬臂板、
三边支承板、两相邻支承板、四边支承板、周边支承板、两相对边支承板计算得到的最大弯
锚栓支承托座加劲肋的上端与支承托座顶板的连接宜刨平顶紧。
锚栓在柱脚端弯矩作用下承受拉力,同时作为安装过程的固定之用。因此,其直径和数目应 按下文要求确定。但无论如何,尚须按构造要求配置锚栓。锚栓的数目在垂直于弯矩作用平 面的每侧不应小于 2 个,同时尚应与钢柱的截面形式和大小,以及安装要求相协调;其直 径一般可在 30~76mm 的范围内采用,且不宜小于 30mm。
锚栓应设置锚板和锚梁,此时锚栓的锚固长度均不宜小于 25d。具体长度可参照《钢结构 连接节点设计手册》(第二版)中锚栓表进行选取。
柱脚底板和锚栓支承托座顶板的锚栓孔径,宜取锚栓直径加 5~10mm;锚栓垫板的锚栓孔 径,取锚栓直径加 2mm。
在柱子安装校正完毕后,应将锚栓垫板与底板或锚栓支承托座顶板相焊牢,焊脚尺寸不宜小 于 10mm;锚栓应采用双螺母紧固,为防止螺母松动,螺母与锚栓垫板尚应进行点焊。
为受拉侧锚栓的总拉力; 为底板底面与混凝土或水泥砂浆之间的摩擦力; 为锚栓的抗拉强度设计值,按下表采用(Q235 钢为 140;Q345 钢为 180):
为受拉侧锚栓的总有效面积,根据总有效面积 ,可按《钢结构连接节点设计手册》 (第二版)第九章表 9-75(458 页)确定锚栓的直径和数目(下表):
积分公式中
为 所在位置(距 0 点 距离)的底板下混凝土压应力值,根
据与 、 间的受压区梯形形等比例关系求得。
积分公式中的 为 所在位置距离 0 点的距离; 为区域宽度。
因 与 合弯矩为 0,方向相反,所以数值上
,即:
即: 令:
令:
令:
上式写成:
则: 根据竖向合力平衡,
(8) ,得:
即: 代入 、 得:
如上图所示,通过 0 点弯矩平衡, 具体列法,及各部分公式的算法含义。
,据此可列平衡方程。下面介绍平衡方程的
偏心压力 和锚栓总拉力 对 0 点形成弯矩方向相同,可得:
底板下混凝土压应力形成对 0 点的弯矩方向与上式相反,利用积分方法可求得:
整理后即得:
积分公式中
为 宽度范围内的区域的长度。根据受压区
位于左侧半圆范围内时求得,该算式同样适用于受压区延伸至右侧半圆范围内时,因
不受正负号的影响。
积分公式中
为 所在位置(距 0 点 距离)的底板下混凝土压应
力值,根据与 位置的受压区三角形等比例关系求得。
积分公式中的 为 所在位置距离 0 点的距离; 为区域宽度。
因 与 合弯矩为 0,方向相反,所以数值上
为使锚栓能准确的锚固于设计位置,应采用刚强的固定架,以避免锚栓在浇灌混凝土过程中 移位。
加劲肋(加劲板)、锚栓支承加劲肋、锚栓支承托座加劲肋,以及锚栓支承托座顶板,与柱 脚底板和柱子板件等均采用焊缝连接。其焊缝形式和焊脚尺寸一般可按构造要求确定;当角
焊缝的焊脚尺寸满足
时[
],可参考下表采用。
细部设计计算
圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚 度不应小于柱子较厚板件的厚度,且不宜小于 30mm。
通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当 荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加 劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相
当柱脚的水平抗剪承载力 并局部浇灌细石混凝土。
时,应在柱脚底板下设置抗剪件或在柱脚处增设抗剪插筋
圆形底板半径 ,受偏心 的压力 作用,受拉锚栓面积定义为 ,锚栓近似认为距底板 边缘 ,受拉侧锚栓的总拉力 ,底板下混凝土最大压应力 ,混凝土受压区长度 。 (一)底板出现受拉区,分布较大,仅一侧锚栓出现拉力,另一侧不产生拉力时:
——与
有关的系数,按下表采用:
注:当
时,按悬伸长度为 的悬臂板计算。
③对四边支承板:
——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可 得;
——计算区格内,板的短边长度;
——与
有关的系数,按下表采用:
④对圆形周边支承板( 一般不出现在此区域内部):
——计算区格内底板下混凝土基础的最大分布反力,按上文中三种情况下对应计算可得 (计算区格内,非整个底板的最大反力);
柱脚底板的外径 ,应根据设置的加劲肋等补强板件和锚栓的构造特点,按下列公式先行 确定,并应符合有关要求。
参数说明: 为圆柱的截面直径,
;
为底板直径方向补强板件或锚栓支承托座板件的尺寸,可参照下文表格的数值确定;
为底板直径方向的边距,一般取
mm;
刚性固定露出式柱脚在柱脚端弯矩 、轴心压力 和水平剪力 共同作用下,应按下文所 列公式和要求,分别计算底板下混凝土基础的受压应力、受拉侧锚栓的总拉力或锚栓的总有 效面积、水平抗剪承载力。
,据此可列平衡方程。下面介绍平衡方程的
偏心压力 对 0 点形成弯矩方向相同,可得:
底板下混凝土压应力形成对 0 点的弯矩方向与上式相反,利用积分方法可求得:
整理后即得:
其中
积分公式中
为 宽度范围内的区域的长度。根据受压区
位于左侧半圆范围内时求得,该算式同样适用于受压区延伸至右侧半圆范围内时,因
不受正负号的影响。
(9) 利用(8)(9)式方程组,约去 ,可得:
即:
代入 、 、 ,由
得:
整理后得:
即:
,此时圆形柱底板全截面受压。
利用(1)(2)式方程组,约去 ,可得:
即:底板混凝土最大受压应力为 受拉侧锚栓的总拉力: 水平抗剪承载力: (三)底板出现受拉区,但分布较小,所有锚栓均不产生拉力时:
如上图所示,通过 0 点弯矩平衡, 具体列法,及各部分公式的算法含义。
积分公式中
为 所在位置(距 0 点 距离)的底板下混凝土压应
力值,根据与 位置的受压区三角形等比例关系求得。
积分公式中的 为 所在位置距离 0 点的距离; 为区域宽度。
因 与 合弯矩为 0,方向相反,所以数值上
,即:
即: 令:
令:
令:
上式写成:
根据竖向合力平衡,
(10) ,得: