军事卫星通信中的多址技术
卫星通信的多址方式

对方用户所在的地球站,并由该站与对方局连通。
3.3 时分多址技术
3.3.1 时分多址的概念及其应
用特点 1.TDMA的基本概念
如图3-14所示的是TDMA系统模型。从中可 以清楚地看出,在按时分多址方式工作的系统中, 由于分配给各地球站的是特定的时隙,而不是特 定的频带,因而每个地球站必须在分配给自己的 时隙中用相同的载波频率向卫星发射信号,并经 放大后沿下行链路重新发回地面。
4.随机分配
它是指通信中各种终端随机地占用卫星信道 的一种多址分配制度。
3.1.2 多址技术
在卫星通信中的信号分割和识别是以载波
频率出现的时间或空间位置为参量实现的,归
纳起来可分为频分多址(FDMA)、时分多址
(TDMA)、码分多址(CDMA)和空分多址 (SDMA)。
频分多址访问(FDMA)方式是卫星通信多 址技术中的一种比较简单的多址访问方式。在 FDMA中是以频率来进行分割的,其在时间和空 间上无法分开,故此不同的信道占用不同的频段, 互不重叠。 时分多址访问(TDMA)方式是以时间为参 量来进行分割的,其频率和空间是无法分开的, 那么不同的信号占据不同时间段,彼此互不重叠。
① 系统传输速率Rb
② 帧长
这就要求在KTs时间内能够存入的KS比 特与Tf时间内读出的比特数L相等,即 L=KS,故
【例3-1】 已知一个TDMA系统,采用QPSK 调制方式。设帧长Tf=250μs,系统中所包含的站 数m=5,各站所包含的通道数n = 4相同,保护时 间Tg = 0.1μs,基准分帧的比特数Br与各报头的比 特数Bp均为90比特,每个通道传输24路(PCM 编码,每取样值编8比特码,一群加一位同步比 特)。求PCM编码器输出速率Rs,系统传输的比 特率Rb、分帧长度Tb、帧效率ηf及传输线路要求 带宽B。
卫星通信中的多址技术

1.多址技术的概念和问题的本质
• 多址技术一直都是无线通信的关键技术之一, 甚至是移动通信换代的一个重要标志。 • 多址技术所要解决问题的特点是:通信(子) 网中的登记用户数常常远大于同一时刻实际请 求服务的用户数。其实就是研究如何将有限的 通信资源在多个用户之间进行有效的切割与分 配,在保证多用户之间通信质量的同时尽可能 地降低系统的复杂度并获得较高系统容量的一 门技术。其中对通信资源的切割与分配也就是 对无线信号空间的划分,在不同的维上进行不 同的划分就对应着不同的多址技术。
• 扩频多址(SSMA)系统的共同特点之一是扩 频,也就是说用于传输信息的信号带宽远大于 信息带宽;共同特点之二是在扩频的实现上, 不论通过什么途径扩频,但基本都是用一组优 选的扩频码进行控制,正因为此,扩频多址又 称为码分多址(CDMA)。或者说,CDMA是 在信号的扩展维——编码维上对无线信号空间 进行划分。顾名思义,码分多址就是给每个用 户分配一个唯一的扩频码(或称地址码),通 过该扩频码的不同来识别用户。
1.2 跳频码分多址(FH-CDMA)
• 跳频码分多址(FH-CDMA)在民用 通信中并不多见,但在军事抗干扰通 信中则是一种常见的通信方式。FH- CDMA的基本原理是优选一组正交跳 频码(地址码/扩频码),为每个用户 分配一个唯一的跳频码,并用该跳频 码控制信号载频在一组分布较宽的跳 频集中进行跳变。事实上,我们可以 简单地将FH-CDMA看作是一种由跳 频码控制的多进制频移键控(MFSK)。
CDMA(DSቤተ መጻሕፍቲ ባይዱCDMA)
• ---OFDM与多址技术的融合往往可以起到优 势互补的作用,是未来移动通信技术应用 的方向。具体的融合方案有多种,比较多 的是OFDM与DS-CDMA的融合,而这又 有三种[12]:MC-CDMA、MC-DS- CDMA和MT-CDMA。此外还有FH- OFDM(慢跳频与OFDM的融合)和TDMA -OFDM(TDMA与OFDM的融合)。
卫星通信 第3章 多址技术

如果没有back-off,那么K= BTR / Bc =12
19
三、时分多址技术(TDMA)
卫星通信系统时分多址技术:用不同时隙来区分地球 站的地址,只允许各地球站在规定的时隙内发射信号,这 些射频信号通过卫星转发器时,在时间上是严格依次排列、 互不重叠的。 卫星将在一个TDMA帧内的不同子帧时隙接收并转发 来自各地球站(它们都采用相同的载波)的突发脉冲串。 也就是说,每一地球站只在TDMA帧的一个子帧内接收和 发送突发脉冲。为了保证每一地面终端的突发(子帧)能 在所指定的子帧时隙到达卫星,对系统定时和信号格式将 有严格的要求。为此,每帧内的第一个子帧将由基准站发 出“基准”子帧以作为同步和网控之用。
(二)多址联接
• 频分多址(FDMA):各站、台发出的射频信号在指定的射频频带内, 但在频谱上互不重叠地排列,共同分用该射频频带,接收端用带通滤 波器分离各路射频信号。 • 时分多址(TDMA):以不同的时隙来区分地址,每站有一指定时隙, 各站只是在自己的时隙内发射信号。 • 码分多址(CDMA):每个用户有一个特定结构的码字作为地址,不 同用户的不同波形信号以同一频率发射出去,各站的接收是根据相应 的信号波形分离出自己需要的信号。 • 空分多址(SDMA):利用天线的方向性和用户的地区隔离性实现信 号的分离。
TDMA的效率
• 系统效率:在发射数据中信息所 占的百分比,不包括系统开销; • 帧效率:发送数据比特在一帧中 所占的百分比;
帧效率 一帧中的有效信息比特数 一帧中的总比特数
26
TDMA系统的信道数
总的信道数:总的TDMA时隙数。即每一 信道的TDMA时隙数乘以有效信道数。 N=m*[ (Bt + B保护)/(Bc+B保护)] m为每个信道所支持的TDMA用户数,Bt 为信道带宽,B保护保护带宽,Bc用户带 宽。
卫星通信第三卫星通信的多址技术

30
TDMA系统的不足
(1) 必须保持各地球站之间的精确同步,才 能让所有用户实现共享卫星资源的目的。 (2) 为了保证用户信息传递的连续性,要求 采用突发解调器(系统中各站在规定的 时隙内以突发的形式发射其已调信号)。 (3) 初期的投资较大,系统实现复杂,技术 设备复杂。
31
帧:整个系统的所有地球站时隙在卫星内占 据的整个时间段称为卫星的一个(TDMA)时帧。 一个TDMA帧是由一个同步分帧和若干个业 务分帧组成的。 基准分帧(同步分帧) :TDMA帧内的第一 个时隙,不含任何业务信息,仅用作同步 和网络控制。 数据分帧 :除基准地球站外其他地球站占 据的时隙。 保护时间:在各个时隙之间留有很小的时间 32 间隔,称为“保护时间”。
3.4.2 跳频码分多址系统
跳频(FH,Frequency Hopping)。在发送端, 利用PN码控制频率合成器,使频率在一个宽 范围内伪随机地跳变,跳频系统占用了比信 息带宽要宽得多的频带。在接收端,本地PN 码产生器提供一个和发端相同的 PN码,驱动 本地频率合成器产生同样规律的频率跳变, 和接收信号混频获得已调信号。
3.3.4 频分多址-时分多址 (FDMA-TDMA)方式 是指若干个窄带TDMA方式工作的地球站, 以频分多址方式共用一个转发器的一种技术。 传送相对较低速率(10Mbit/s以下)的信号。 特点:改变业务样式灵活,特别适合传输数 据,每个帧内的信道都可以采用按需分配方 式。但是由于要求功率放大器有输出补偿, 所以卫星转发器的效率低于单纯的TDMA系 统。 37
卫星通信中的多址接入技术

卫星通信中的多址接入技术在当今高度互联的世界中,卫星通信作为一种重要的通信手段,发挥着不可或缺的作用。
无论是在偏远地区的通信覆盖,还是在紧急救援、航空航天等领域,卫星通信都展现出了其独特的优势。
而在卫星通信系统中,多址接入技术则是实现多个用户同时有效通信的关键所在。
多址接入技术,简单来说,就是要解决如何在有限的卫星通信资源下,让众多用户能够有序、高效地进行通信。
想象一下,卫星就像是一个繁忙的交通枢纽,而多址接入技术就是负责指挥交通的规则和系统,确保每一辆车(用户)都能顺利通行,且不会发生混乱和碰撞。
常见的卫星通信多址接入技术主要包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和空分多址(SDMA)。
频分多址(FDMA)是最早被应用的多址接入技术之一。
它的工作原理就像是在一个宽敞的大厅里划分出不同的区域,每个区域分配给不同的用户使用。
在卫星通信中,就是将卫星的可用频段划分成若干个互不重叠的子频段,每个用户被分配到一个特定的子频段进行通信。
这种方式的优点是技术相对简单,容易实现。
但它也存在一些缺点,比如频谱利用率不高,因为为了防止相邻频段之间的干扰,需要在子频段之间留出一定的保护频带。
时分多址(TDMA)则像是在时间轴上进行划分。
将时间分割成周期性的帧,每一帧再分成若干个时隙,每个用户在指定的时隙内进行通信。
这样一来,不同用户按照时间顺序轮流使用卫星资源。
TDMA的优点是频谱利用率相对较高,因为不需要留出保护频带。
但它对系统的同步要求比较严格,如果同步出现偏差,就可能导致通信错误。
码分多址(CDMA)是一种基于扩频技术的多址接入方式。
每个用户被分配一个独特的码序列,通过扩频技术将用户的信号扩展到较宽的频带上。
在接收端,只有使用相同码序列的用户才能正确解调出自己的信号。
CDMA 的优点是抗干扰能力强,容量大,可以实现多个用户同时通信而相互之间的干扰较小。
但它的实现相对复杂,需要较高的处理能力。
卫星通信中的多址接入技术研究

卫星通信中的多址接入技术研究在当今高度信息化的时代,卫星通信作为一种重要的通信手段,发挥着不可或缺的作用。
无论是在偏远地区的通信覆盖,还是在应急通信、航空航天通信等领域,卫星通信都展现出了其独特的优势。
而在卫星通信系统中,多址接入技术是实现多个用户共享卫星通信资源的关键技术,它直接影响着卫星通信系统的性能和容量。
多址接入技术的基本概念,简单来说,就是如何在卫星通信中让多个用户能够同时有效地使用有限的通信资源,如频率、时隙、码序列等。
这就好比在一个繁忙的公路上,要让众多车辆有序地行驶,避免碰撞和拥堵,需要有一套合理的交通规则。
在卫星通信中,多址接入技术就是这样一套“规则”。
常见的卫星通信多址接入技术主要包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和空分多址(SDMA)。
频分多址技术是将卫星通信的可用频率资源划分成若干个互不重叠的频段,每个用户分配一个特定的频段进行通信。
这种方式就像是为不同的用户开辟了专属的“车道”,每个“车道”的宽度就是分配给用户的频段。
频分多址的优点是实现简单,技术成熟,但缺点是频谱利用率相对较低,容易受到频率选择性衰落的影响。
时分多址技术则是将时间分割成周期性的时隙,每个用户在指定的时隙内进行通信。
这类似于在公路上为不同的车辆安排特定的通行时间,在规定的时间内,该车辆独占道路资源。
时分多址的优点是频谱利用率较高,能够灵活分配时隙资源,但对定时和同步要求较高,否则容易产生时隙冲突。
码分多址技术是通过为每个用户分配不同的扩频码来实现多址接入。
多个用户可以在同一频段、同一时隙内同时通信,只要它们的扩频码相互正交。
这就好像给每个用户都赋予了一个独特的“密码”,只有拥有正确“密码”的接收端才能正确解调出相应的信号。
码分多址具有抗干扰能力强、频谱利用率高、保密性好等优点,但也存在着系统容量受限、远近效应等问题。
空分多址技术是利用卫星天线的方向性,将空间分割成不同的区域,每个区域对应一个用户。
多址技术及应用

多址通信技术及其应用摘要:新一代无线通信系统要求大容量、高速率、综合业务、适用于各种环境。
在大、中型通信网中,众多的通信台、站利用同一颗卫星(或几颗卫星)的一个(或几个)信道的转发器复用方式,实现相互之间的长距离、大范围的多址通信。
这种通信方式,既不受地域的限制,又不受气候的影响,十分方便、灵活,又便于通信保密。
关键词:频分多址时分多址码分多址空分多址多址通信,就是通信网中各个通信台、站利用同一指定射频信道,进行相互间的多址通信。
最典型的多址通信方式是卫星通信。
在卫星通信中,多址通信技术就是指通信网中每个地面站利用同一颗卫星的信道(譬如一个转发器的信道)进行多边通信。
所以多址通信实质上就是各地面站对一个转发器的复用方式。
多址通信,按分配方式分,粗分有预分配制多址(Preassigned Multiple Acces.简称PMA)和按需分配制多址(Demand assignment Multiple Access,简称DAMA)两种。
预分配制多址方式,是将有关两站间需要的线路,预先分配成固定的(也是相对的)专用线路,只供该两地面站间使用,又分为固定预分配多址和时间预分配多址等几种方式。
按需分配制多址方式,是有关地面站需要通信时,临时分配给线路进行通信,当通信结束,此线路立即撤销。
显然,按需分配制可以充分地发挥线路的利用率。
按需分配多址又分为接收站可变多址、发送站可变多址、全可变多址等多种方式。
多址通信,按复用方式分,主要有频分多址、时分多址、码分多址和空分多址等四种。
上述这些多址技术的实现都是基于对信号的某种参量(从广义上讲),例如频率、时间、波型(或码型)和空间,进行一定的分割和识别,以达到多址通信的目的,下面将上述四种多址方式分别进行介绍。
一、频分多址(Frequency Division Multiple Access.简称FDMA)各地面使用不同的载频(即将卫星转发器分成互不重叠的若干个频带)所构成的多址通信信道,称之为频分多址。
卫星通信的多址方式

图3-16 TDMA系统帧结构
(1)同步分帧
同步分帧中包括载波、位定时恢复(CR和BTR)、独特码(UW)、站址识别码(SIC)和指令信号(CW)。
(2)数据分帧
一个数据分帧包含了若干个业务分帧,并且每个业务分帧由分帧报头和多个PCM数据信道构成。
图3-11 SPADE终端设备组成图
公共信令信道的信令格式
03
为了实现按需分配,各地球站是按TDMA方式工作的,即按时分多址方式工作的。
04
按需分配方式下的信息传递过程
01
如图3-11所示,各地球站设置有按TDMA方式(在后面将详细介绍)工作的公用信令信道和话音传输信道。
02
公共信道工作特性
由上面的分析可知,SPADE系统可为48个地球站提供397条双向通路(如图4-10所示),这就是说,每个地球站可以每隔50ms向信道申请一次。
按需分配方式下的通信过程 在SPADE系统中,当某用户通过长途台将呼叫通信请求送至SPADE终端时,SPADE终端为其从397条卫星线路中选择任意一条空闲信道,并进行连通,同时通过此信道将呼叫请求帧送到对方用户所在的地球站,并由该站与对方局连通。
02
要求采用突发解调器(系统中各站在规定的时隙内以突发的形式发射其已调信号)。
03
模拟信号需转换成数字信号才能在网络中传输。
初期的投资较大,系统实现复杂。
05
3.3.2 TDMA地球站设备
01.
如图3-15所示为一个TDMA地球站设备组成示意图。
02.
图3-15 TDMA地球站设备
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
3.1 多址联接方式概述
2)频分多址(FDMA)
5
3.1 多址联接方式概述
2)频分多址(FDMA) 接收端的信号选择
制弱信号现象,因此,大站、小站不易兼容; (5)灵活性小,要重新分配频率比较困难; (6)需要设置保护频带,频带利用不充分; (7)转发器存在交调于扰。
24
3.3 时分多址(TDMA)
1) 基本原理
TDMA方式示意图
25
3.3 时分多址(TDMA)
2) 帧结构与帧长选择
帧结构示意图
26
3.3 时分多址(TDMA)
19
3.2 频分多址(FDMA)
1) 基本原理 地球站传输多路信号方式
① 每载波单路方式(SCPC,Single-Channel-PerCarrier )。
② 每载波多路(MCPC,Mutiple-Channel-PerCarrier )。
20
3.2 频分多址(FDMA)
2) FDMA方式的类型 (1) 频分复用/调频/频分多(FDM/FM/FDMA)
22
3.2 频分多址(FDMA)
2) FDMA方式的类型 (3)按申请分配/单路单载波/频分多址SPADE 按申请分配:分散控制。
23
3.2 频分多址(FDMA)
频分多址系统的特点
(1)设备简单,技术成熟; (2)系统工作时不需要网同步,且性能可靠; (3)在大容量线路工作时效率较高; (4)各站的发射功率要求基本一致,否则会引起强信号抑
8
3.1 多址联接方式概述
4)空分多址(SDMA)
9Hale Waihona Puke 3.1 多址联接方式概述4)空分多址(SDMA) 接收端的信号选择
1 i j
X
Si
i
(
s)
X
j
(
s)ds
0
i j
实现方法:空间选择(窄波束天线)。 保护空间
10
3.1 多址联接方式概述
5)码分多址(CDMA) 接收端的信号选择
1 i j
MCPC/FDMA
FDM-FM-FDMA方式
21
3.2 频分多址(FDMA)
2) FDMA方式的类型 (2) 单路单载波/频分多址(SCPC/FDMA)
话音激活技术:只在讲话时,才发射载波,否则不发。 优点:通话路数增加2.5倍;使整个卫星转发器内的载
波排列具有某种随意性,从而可以减少互调的影响。
27
3.3 时分多址(TDMA)
2)帧结构与帧长选择
(1) 消息突发 d) 指令信号(OW) 传送通道分配等指令。 e) 勤务联络(SC) 为各站间传送勤务联络信息。
(2) 基准突发 除没有勤务联络信外,其它与消息突发的报头的结构一 样,它的独特码是作为一帧开始的时间基准。
28
3.3 时分多址(TDMA)
2)帧结构与帧长选择
帧与分帧长度
29
3.3 时分多址(TDMA)
2)帧结构与帧长选择
系统传输的比特速率为
Rb
br mbp NL Tf (m 1)Tg
第i分帧的长度为
m
N ni
i
Tbi
Tg
(bp
ni
L)
1 Rb
n1 n2 n
Tb1 Tb2 Tb
Tb
T f Tr m
14
3.1 多址联接方式概述
多址联接方式的局限性
(1) 仅有有限的频带可利用。 (2) 时间的分割与占用频带有关。 (3) 窄波束空间分割有限。 (4) 能有效使用的地址码不是无限多的。
15
3.1 多址联接方式概述
选择多址联接方式主要考虑的因素
(1) 通信容量的要求 。 (2) 卫星频带、功率的有效利用 。 (3) 相互联接能力的要求 。 (4) 便于处理各种业务,并对业务量及网络的不断增长有灵
第3章 军事卫星通信中的多址 技术
1
主要内容
3.1 多址连接方式概述 3.2 频分多址 3.3 时分多址 3.4 空分多址 3.5 码分多址 3.6 多址分配制度
2
3.1 多址联接方式概述
1)多址联接方式的实现 信号设计 信号识别
3
3.1 多址联接方式概述
1)多址联接方式的实现 信号之间的差别可集中反映在无线电信号的最
1 i j
X i ( f ) X j ( f )df
f i
0
i j
实现方法:频率选择(滤波器)。 保护频带
6
3.1 多址联接方式概述
3)时分多址(TDMA)
7
3.1 多址联接方式概述
3)时分多址(TDMA) 接收端的信号选择
1 i j
Xi
Ti
(t)
X
j
(t )dt
0
i j
实现方法:时间选择(时间闸门)。 保护时隙
31
3.3 时分多址(TDMA)
2)帧结构与帧长选择
(1) 消息突发 a) 载波恢复(CR)和比特定时恢复(BTR)信号 传送收端同步检测所必需的载波同步和比特定时同 步信号。 b) 独特码(UW) 作为该突发的时间基准,从而可判断出数据部分开 始的时间。 c) 站址识别(SlC)信号 典型的SIC是8比特长,其中6比特表明什么站,另2 比特表明该突发基准站还是备分基准站,还是普通 站。
30
3.3 时分多址(TDMA)
2)帧结构与帧长选择
帧效率
f
帧长
-
基准分帧长
-
总的报头时间 帧长
-
总的保护时间
T f Tr mT p (m 1)Tg Tf
在Tr、Tp、Tg、m一定的条件下,Tf 越长效率就越高, 帧效率越高,缓冲存贮器的存贮量K越大,但这意味着
成本增加。帧结构决定了TDMA的基本特性。
活的自适应能力 。 (5) 成本和经济效益 。 (6) 技术的可实现性 。 (7) 其它的某些特殊要求,如军事上的保密、抗干扰等 。
16
3.2 频分多址(FDMA)
1) 基本原理
17
3.2 频分多址(FDMA)
1) 基本原理 建立连接方式:单址载波
18
3.2 频分多址(FDMA)
1) 基本原理 建立连接方式:多址载波
T Ci (t) C j (t)dt 0 i j
实现方法:地址识别(相关检测法)。
11
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/FDMA
12
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/SDMA
13
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/FDMA/SDMA