2017年重庆市高考文科数学试题与答案
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

C. A≤1000 和 n n 1
D. A≤1000 和 n n 2
11. △ ABC 的 内 角 A , B , C 的 对 边 分 别 为 a , b , c . 已 知
sin B sin A(sin C cos C) 0 , a 2 , c 2 ,则 C ( )
C. (1 i)2
D. i(1 i)
4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和
白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部
分的概率是( )
A.
1 4
B.
π 8
C.
1 2
D.
π 4
5.已知 F 是双曲线 C :x2 y 2 1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 3
A.
A
I
B
x|x
3 2
B. A I B
题
C.
AU
B
x|x
3
2
D. A U B R
2.为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位: kg )
分别为 x1 , x2 ,……, xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程
π
π
π
π
A.
B.
C.
D.
12
6
4
3
12. 设 A , B 是 椭 圆 C : x2 y2 1 长 轴 的 两 个 端 点 , 若 C 上 存 在 点 M 满 足 3m
AMB 120 ,则 m 的取值范围是( A. (0,1]U [9, )
2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
重庆市2017年秋高三(上)期末测试卷文科数学试卷(含答案)

2017年秋高三(上)期末测试卷文科数学文科数学测试卷共4页。
满分150分。
考试时间120分钟。
注意事项:1、本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号框。
写在本试卷上无效。
3、回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4、考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题共12小题每小题5分,共60分。
在每小题给出的四个备选项上,只有一项符合题目要求的。
1. 已知等差数列{}n a 中,163,13a a ==,则{}n a 的公差为A 、53B 、2C 、10D 、13 2.已知集合{|25},{1,2,3,4,5,6}A x R x B =∈〈〈=,则()A B ⋂=R ?A 、{1,2}B 、{5,6}C 、{1,2,5,6}D 、{3,4,5,6} 3、命题:P “若1x 〉,则21x 〉”,则命题:P 以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为A 、1B 、2C 、3D 、4 4、已知两非零复数12,z z ,若12z z R ∈,则一定成立的是A 、21z z R ∈B 、12zR z ∈ C 、12z z R +∈ D 、12z R z ∈5、如图是一个底面为矩形的四棱锥的正视图和侧视图,则该四棱锥的俯视图为6、根据如下样本数据:x3 5 7 9 y6a32得到回归方程$ 1.412.4y x =-+,则A 、变量x 与y 之间是函数产关系B 、变量x 与y 线性正相关C 、当x =11时,可以确定y =3D 、5a =7、执行如图所示的程序框图,若输入的k 值为9,则输出的结果是 A 、22-B 、0C 、2D 、1 8、函数2cos ()1x xf x x =-的图象大致为9、已知点(,)P x y 的坐标,x y 满足0034120x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则22(2)(2)x y -+-的最小值为A 、0B 、425C 、5D 、8 10、我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤”。
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
重庆市2017届高三第一次学业质量调研抽测文科数学试题(解析版)

重庆市2017届高三第一次学业质量调研抽测文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合错误!未找到引用源。
,若错误!未找到引用源。
,则错误!未找到引用源。
()A. 0或1B. 0或2C. 1或2D. 0或1或2【答案】C【解析】错误!未找到引用源。
或错误!未找到引用源。
故选C。
点睛:1、用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素元素的限制条件,明确集合的类型,是数集,是点集还是其它集合。
2、求集合的交、交、补时,一般先化简,再由交、并、补的定义求解。
3、在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍。
2. 设命题错误!未找到引用源。
,则错误!未找到引用源。
为()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】B【解析】命题错误!未找到引用源。
是全称命题,苦否定是特称命题:错误!未找到引用源。
故选B。
3. 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米2000石,验得米内夹谷,抽样取米一把,数得300粒内夹谷36粒,则这批米内夹谷约为()A. 1760石 B. 200石 C. 300石 D. 240石【答案】D【解析】可设这批米内夹谷约错误!未找到引用源。
石,则有错误!未找到引用源。
故选D。
4. 为了得到函数错误!未找到引用源。
的图象,只需把函数错误!未找到引用源。
的图象()A. 向左平行移动错误!未找到引用源。
个单位长度B. 向右平行移动错误!未找到引用源。
个单位长度C. 向左平行移动错误!未找到引用源。
个单位长度D. 向右平行移动错误!未找到引用源。
个单位长度【答案】C【解析】错误!未找到引用源。
重庆2017高考数学真题

重庆2017高考数学真题2017年高考数学真题是考生备战高考的重要资料之一,大家在备考期间都应该认真对待,熟悉真题,增加自信心。
下面就给大家分享一下2017年重庆高考数学真题的部分内容,希望对大家有所帮助。
2017年重庆高考数学真题一、单选题1. 在等腰直角三角形ABC中,∠CAB=∠ABC=45°,AC=BC=1,点D在AC上,点E在BC上,∠ADE=∠BEC=45°,则AB的边长是()A. 1B. 2C. \( \sqrt{2} \)D. 42. 已知正实数a、b满足a+b=1.设函数f(x)=a\(x^{2}\)+b|x|,x为实数,则f(x)的最小值为()A. -aB. -\(a^{2} \)C. \( \frac{-a}{2} \)D. \( \frac{-a^{2}}{2} \)二、填空题1. 若\( \frac{m-3}{3}= \frac{2n-3}{1} \),且\( m-2n=15 \),则方程组\(x-y=2017,mx-ny=4025\)的解x+y=()。
2. 方程\(x^{2}-4x-8=0\)的实数解为x1和x2,则 x1+ x2 =()。
三、解答题1. 设函数\( f(x)=ax^{2}+bx+c \)的图象与y轴交于点A(0,2),与x轴交于点B(3,0),与直线y=2x相交于C、D两点,则四边形ABDC的面积为多少?2. 已知集合A={1,2,3,4},集合B={1,2,5,6},集合C={3,4,5,6},集合D为满足条件:x∈D⟺x∈A与x∈B或x∈C。
求集合D的元素个数及所有元素。
以上仅为2017年重庆高考数学真题的部分内容,如果想获得完整的真题及解析,建议同学们及时向相关机构查询。
希望广大考生在备考期间认真对待每一份真题,不断提升自己的数学解题能力,取得优异的高考成绩。
祝各位同学都能考出理想的成绩,实现自己的高考梦想!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年重庆市高考文科数学试题与答案(考试时间:120分钟 试卷满分:150分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{}{}123234A B ==,,, ,,, 则=A BA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A. 1-iB. 1+3iC. 3+iD. 3+3i 3. 函数()fx =πsin (2x+)3的最小正周期为A. 4πB. 2πC. πD. 2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分后所得,则该几何体的体积为A. 90πB.63πC.42πD.36π7. 设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1D. 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a = -1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上 的数的概率为A.110 B. 15 C. 310D. 2512. 过抛物线C:y 2=4x 的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.B.二、填空题,本题共4小题,每小题5分,共20分. 13. 函数()cos sin =2+fx x x 的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x,则()2=f15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16. △ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)已知等差数列{a n }的前n 项和为Sn ,等比数列{b n }的前n 项和为Tn ,a 1=-1,b1=1,a3+b2=2. (1) 若a3+b2=5,求{b n }的通项公式; (2) 若T=21,求S 1 18.(12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角 形且垂直于底面ABCD ,AB=BC=12AD, ∠BAD=∠ABC=90°。
(1) 证明:直线BC ∥平面PAD;(2) 若△PAD 面积为P-ABCD 的体积。
19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。
附:)22()()()()()n ad bc K a b c d a c b d -=++++20.(12分)设O 为坐标原点,动点M 在椭圆C上,过M 作x 轴的垂线,垂足为N ,点P 满足(1) 求点P 的轨迹方程; (2) 设点 在直线x =-3上,且 .证明过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)设函数f(x)=(1-x 2)e x. (1)讨论f(x)的单调性;(2)当x ≥0时,f(x)≤ax +1,求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系。
曲线C 1的极坐标方程为(1)M 为曲线C 1的动点,点P 在线段OM 上,且满足16 OM OP =,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为π23(,),点B 在曲线C 2上,求△OAB 面积的最大值。
23. [选修4-5:不等式选讲](10分)已知=2。
证明: (1):(2)。
文科数学试题答案一、选择题1.A2.B3.C4.A5.C6.B7.A8.D9.D 10.B 11.D 12.C二、填空题13. 14. 12 15. 14π 16.三、解答题17.解:设的公差为d,的公比为q,则,.由得d+q=3. ①(1)由得②联立①和②解得(舍去),因此的通项公式(2)由得.解得当时,由①得,则.当时,由①得,则.18.解:(1)在平面ABCD内,因为∠BAD=∠ABC=90°,⊄平面,所以BC∥AD.又BC PAD⊂平面,故BC∥平面PAD.AD PAD(2)去AD的中点M,连结PM,CM,由12AB BC AD==及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=,PM=,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以因为△PCD的面积为,所以,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=,所以四棱锥P-ABCD的体积.19.解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表K2=20015.705 10010096104⨯⨯⨯⨯≈由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.(3)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.21. 解(1)f ’(x)=(1-2x-x2)e x令f’(x)=0得x,x当x∈(-∞,时,f’(x)<0;当x∈(时,f’(x)>0;当x∈(+∞)时,f’(x)<0所以f(x)在(-∞,,(+∞)单调递减,在((2) f (x)=(1+x)(1-x)e x当a≥1时,设函数h(x)=(1-x)e x,h’(x)= -xe x<0(x>0),因此h(x)在[0,+∞)单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1当0<a<1时,设函数g(x)=e x-x-1,g’(x)=e x-1>0(x>0),所以g(x)在在[0,+∞)单调递增,而g(0)=0,故e x≥x+1当0<x <1,2()(1)(1)f x x x =-+,22(1)(1)1(1)x x ax x a x x -+--=---,取01x =则2000000(0,1),(1)(1)0,()1x x x ax f x ax ∈-+-=〉+故当 000000()1-(1)211a x f x x x ax ≤=〉+=〉+时,取() 综上,a 的取值范围[1,+∞) 22.解:(1)设P 的极坐标为()(>0),M 的极坐标为()由题设知|OP|=,=.由|OP|=16得的极坐标方程因此的直角坐标方程为.(2)设点B 的极坐标为 ().由题设知|OA|=2,,于是△OAB 面积当时, S 取得最大值.所以△OAB 面积的最大值为.23. 解:++=+++336556(1)()()a b a b a ab a b b=+-++3323344()2()a b a b ab a b=+-2224()ab a b≥ 4.(2)因为+=+++33223()33a b a a b ab b=++23()ab a b+≤++23()2(a b)4a b +=+33()24a b所以 +≤3()8a b ,因此+≤2a b。