截面上的应力

合集下载

拉压杆斜截面上的应力

拉压杆斜截面上的应力

应力计算公式
σ=F/A,其中σ为横截面 上的应力,F为轴向拉伸 力,A为横截面面积。
压杆
定义
压杆是受到压缩作用的杆 件,其轴向压力垂直于杆 轴线。
受力特点
压杆在轴向压力作用下, 其横截面上的应力分布呈 现均匀性,且方向与压缩 力方向相反。
应力计算公式
σ=F/A,其中σ为横截面上 的应力,F为轴向压缩力, A为横截面面积。
常用的计算方法包括:截面法、能量法等,具体计算方法的选择取决于问题的具 体条件和要求。
04 斜截面上的应力对拉压杆 的影响
斜截面上的应力对拉杆的影响
拉杆在受到拉伸时,斜截面上的应力分布不均匀,表现为拉应力。拉应力的大小与拉杆的长度、截面 尺寸和材料有关。斜截面上的拉应力会导致拉杆发生伸长变形,影响其承载能力和稳定性。
拉压杆的设计原则与注意事项
设计原则
拉压杆的设计应遵循力学原理和相关标准规范,确保其具有足够的强度、刚度 和稳定性。
注意事项
在拉压杆的设计过程中,还需要考虑制造工艺、使用环境和维修保养等因素, 以确保其性能和安全可靠性。
感谢您的观看
THANKS
为了提高拉压杆的整体稳定性,可以通过优化设计、选择合 适的材料和加强结构措施等手段来改善斜截面上的应力分布 。例如,可以通过改变截面形状、增加加强筋或采用复合材 料等方法来提高拉压杆的承载能力和稳定性。
05 拉压杆的设计与优化
拉杆的设计与优化
拉杆的设计
拉杆的设计应考虑其承受的拉力 大小、方向和作用点,以及使用 环境和材料特性等因素。
表面。
斜截面上的应力方向与截面的 法线方向垂直,并垂直于杆件
的轴线。
在拉压杆的轴线方向上,斜截 面上的应力呈现对称分布,而 在垂直方向上呈现非对称分布 。

截面正应力

截面正应力

截面正应力截面正应力是指物体在截面上的正应力分布情况,也即截面上的应力沿着截面的方向变化规律。

正应力是指沿着所考虑截面的法向方向作用的应力,它是截面上单位面积上的力的大小。

截面正应力是材料力学中一个重要的概念,对于材料的强度和稳定性具有重要的影响。

了解截面正应力的分布情况可以帮助我们更好地设计和使用材料。

截面正应力的分布情况与所受力的作用方式和力的分布有关。

在受到均匀分布的轴向拉力作用时,截面正应力分布是均匀的,即截面上各点的正应力大小相等。

而在受到集中力的作用时,截面正应力分布则会出现不均匀的情况,即截面上各点的正应力大小不相等。

截面正应力的分布情况还与物体的几何形状有关。

在矩形截面上,正应力分布呈现出线性分布的特点,即正应力随距离的增加而线性增加或减小。

而在圆形截面上,正应力分布呈现出较为复杂的特点,需要通过数学模型进行分析和计算。

截面正应力的大小与材料的强度密切相关。

当截面正应力超过材料的屈服强度时,材料会发生塑性变形或破坏。

因此,在工程设计中需要根据截面正应力的大小合理选择材料和截面形状,以确保结构的安全可靠。

在实际工程中,我们常常需要对截面正应力进行分析和计算。

这需要借助于力学理论和工程数学方法,通过建立适当的数学模型,求解截面上的应力分布和应力大小。

通过对截面正应力的分析和计算,可以评估和优化结构的强度和稳定性,为工程设计提供科学依据。

截面正应力是材料力学中的重要概念,对于材料的强度和稳定性具有重要的影响。

了解截面正应力的分布情况可以帮助我们更好地设计和使用材料,提高结构的安全可靠性。

在实际工程中,对截面正应力的分析和计算是必不可少的,需要借助于力学理论和工程数学方法,通过建立适当的数学模型,求解截面上的应力分布和应力大小。

通过合理评估和优化截面正应力,可以为工程设计提供科学依据。

梁横截面上的应力

梁横截面上的应力

2)计算C截面上的最大拉应力和最大压应力。
C截面上的最大拉应力和最大压应力为
tC
M C y2 I
2.5103 N m 8.810-2 m 7.6410-6 m4
Z
28.8106 P a 28.8MP a
cC
M
B
y 1
Iz
2.5 103 N m 5.2 10-2 m 7.6410-6 m 4
17.0 106 P a 17.0MP a
3)计算B截面上的最大拉应力和最大压应力。
B截面上的最大拉应力和最大压应力为
tB
M
B
y 1
Iz
4 103 N m 5.2 10-2 m 7.6410-6 m 4
27.2 106 P a 27.2MP a
cB
M B y2 Iz
4 103 N m 8.810-2 m 7.6410-6 m4
【例4.17】 求图(a,b)所示T形截面梁的最大拉 应力和最大压应力。已知T形截面对中性轴的惯性矩 Iz=7.64106 mm4,且y1=52 mm。
【解】 1)绘制梁的弯矩图。
梁的弯矩图如图(c)所示。 由图可知,梁的最大正弯矩发 生在截面C上,MC=2.5kNm; 最 大负弯矩发生在截面B上,MB= -4kNm。
入,求得的大小,再根据弯曲变形判断应力的正(拉)
或负(压)。即以中性层为界,梁的凸出边的应力为拉 应力,凹入边的应力为压应力。
(2)横截面上正应力的分布规律和最大正应力 在同一横截面上,弯矩M 和惯性矩Iz 为定值,因此
由公式可以看出,梁横截面上某点处的正应力σ与该点到 中性轴的距离y成正比,当y=0时,σ=0,中性轴上各点处 的正应力为零。中性轴两侧,一侧受拉,另一侧受压。离 中性轴最远的上、下边缘y=ymax处正应力最大,一边为最 大拉应力σtmax,另一边为最大压应力σcmax。

杆件横截面上的应力

杆件横截面上的应力

F
F:横截面上的轴力 A:横截面的面积
拉压杆斜截面上的应力
横截面----是指垂直杆轴线方向的截面; 斜截面----是指任意方位的截面。
F
F
F
①全应力:
②正应力:
③切应力:
1) α=00时, σmax=σ 2)α=450时, τmax=σ/2
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
在上下边缘处:
y = 0,
b
h
max
图示矩形截面简支梁受均布荷载作用,分别求最大剪力所在的截面上a,b,c三点处的切应力。 作出剪力图 各点处的切应力
矩形截面简支梁,加载于梁中点C,如图示。 求σmax , τmax 。
二、工字形截面梁的切应力
横截面上的切应力(95--97)%由腹板承担,而翼缘仅承担了(3--5) %,且翼缘上的切应力情况又比较复杂.为了满足实际工程中计算和设计的需要仅分析腹板上的切应力.
主应力及最大切应力
①切应力等于零的截面称为主平面 由主平面定义,令tα =0
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
得:
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
④由s1、s3、0按代数值大小排序得出:s1≥0≥s3
极值切应力:
①令:

可求出两个相差90o 的a1,代表两个相互垂直的极值切应力方位。
C
A
B
40
yc
FS
_
+
M
0.25
0.5
+
_
平面应力状态的应力分析 主应力
一、公式推导:

梁横截面上的应力

梁横截面上的应力
可以看出, 该梁的承载能力将是原来的 2 倍。
• 二、梁的正应力强度条件(课本第三节)
设σmax是发生在梁最大处的工作应力,则:
m a x 工 作
最大工作 应力
材料的 许用应力
上式即为梁弯曲时的正应力强度条件。
对于等截面直梁,若材料的拉、压强 度相等( 塑性材料),则最大弯矩的所在面 称为危险面,危险面上距中性轴最远的点 称为危险点。此时强度条件可表达为:
m'
b
m n
h z
y
τ
τo
FQ
τ
x
m'
dx
y
m
n
一、矩形截面梁的剪应力

FQ S bI z
z
IZ : 整个截面对中性轴z轴的惯性矩;
b : 横截面在所求应力点处的宽度; SZ*: 横截面上距中性轴为 y 的横线以外部 分的面积 A*对中性轴的静矩。
max
τmax
FQ
FS
Q z,max
例5:图示铸铁梁,许用拉应力[σt ]=30MPa,
许用压应力[σc ]=60MPa,Iz=7.63×10-6m4,试
校核此梁的强度。
9 kN
A
1m
4 kN
C
1m
B
1m
52
D
88
C
z
CL8TU12
9 kN
A
1m
4 kN
C
1m
B
1m
52
D
88
C
z
25 . kN M (k Nm ) 25 .
105 . kN
20
3 2 0 1 0 M 15 max t 2 W 0 . 1 0 . 2 z 1 12 .5 6 3 0 M P a <[]

斜截面上的应力

斜截面上的应力
第十章 应力状态 分析
● 应力状态的概念 ● 平面应力状态分析的解析法
7- 1 应力状态的概念 一、问题的提出

杆件在基本变形时横截面上应力的 分布规律
轴向拉压:


N A
圆轴扭转:

M
n

p
I
平面弯曲:

My Iz
* QS z bI z
危险点处于单向应力状态或处于纯剪应
1、空间应力状态的概念
三个主应力均不为零
2、最大正应力和最大剪应力
max 1 1 - 3 max
2
3、广义虎克定律
单向应力状态下有
由 1引 起 的 应 变 1
1
E
纵向应变 E 横 向 应 变 - - E
- 由 2引 起 的 应 变 1
-
sin 2a - xy cos 2a
a + x + y C
结论:两个相互垂直的截面正应力之和为常数 2、比较a 、 : a = - 结论:在相互垂直的两截面上的剪应力数值相 等,它们的方向是共同指向或背离这个 平面的交线(剪应力互等定理)
二、主应力
力状态,相应强度条件为:
max max
实际问题:杆件的危险点处于更复杂的
受力状态


薄壁圆筒承受内压


x
破坏现象
脆性材料受压 和受扭破坏
钢筋混凝土梁
二、一点的应力状态
在受力构件内,在通过 同一点各个不同方位的 截面上,应力的大小和 方向是随截面的方位不 同而按照一定的规律变 化 通过构件内某一点的各 个不同方位的截面上的 应力及其相互关系,称 为点的应力状态

作用在零件截面上的应力类型

作用在零件截面上的应力类型

作用在零件截面上的应力类型
1. 正应力:垂直于截面的应力分量称为正应力或法向应力。

正应力表示零件内部相邻两截面间拉伸和压缩的作用。

2. 正应变:某一方向的截面上所分布的法向应力所产生的长度方向的应变称为正应变。

3. 切应力:相切于截面的应力分量称为剪应力或切应力。

切应力表示相互错动的作用。

4. 切应变:某一方向的截面上所分布的剪切力所产生的长度方向的应变称为切应变,也称为剪应变。

以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。

横截面上的应力知识点总结

横截面上的应力知识点总结

横截面上的应力知识点总结1. 横截面应力的定义横截面应力是指作用在材料截面上的内部力对单位面积的作用。

它是一个矢量,具有大小和方向。

在力学分析中,横截面应力通常用符号σ表示,单位是帕斯卡(Pa)。

横截面应力的大小和方向取决于截面上的受力情况,包括拉伸、压缩、弯曲和剪切等。

2. 横截面应力的计算方法计算横截面应力的方法有很多种,常用的包括静力学方法、弹性力学方法和有限元法等。

在静力学方法中,可以使用平衡方程和横截面的几何形状来计算应力。

在弹性力学方法中,可以利用材料的弹性性质和变形关系来计算应力。

有限元法是一种数值计算方法,通过离散化截面和应力场来求解应力分布。

3. 横截面应力的分布规律横截面应力的分布规律是指应力在截面上的分布情况。

在拉伸和压缩的情况下,横截面应力通常呈现线性分布,即在截面上的应力随着距离的增加而线性变化。

在弯曲和剪切的情况下,横截面应力则呈现非线性分布,即应力随着距离的增加而不断变化。

4. 横截面应力的影响因素横截面应力的大小和分布受到多种因素的影响,包括受力的形式、材料的性质和截面的几何形状。

在拉伸和压缩的情况下,应力的大小取决于受力材料的强度和刚度。

在弯曲和剪切的情况下,应力的分布受到截面几何形状和横截面惯性矩的影响。

5. 横截面应力的实际应用横截面应力的研究在工程设计和材料科学中有着广泛的应用。

比如,在结构设计中,需要通过计算横截面应力来确定构件的尺寸和材料的选择,以确保结构的安全性和稳定性。

在材料科学中,研究横截面应力可以帮助理解材料的力学性能和断裂行为。

总之,横截面应力是力学和材料科学领域中重要的研究内容,它涉及到材料的强度、稳定性和工程设计的安全性。

通过对横截面应力的研究,可以更好地理解材料的受力情况,并为工程设计和材料选择提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
F1
m O点
F微内力
A微面积
F2
m
当面积趋于零时,平均应力的大小和 一点的应力: 方向都将趋于一定极限(即全应力), 得到 F dF pm lim A0 A dA
F1 m p 全应力
m
O
F2
m
全应力pm通常分解成:
垂直于截面的分量σ--正应力 平行于截面的分量τ--切应力 应力的国际单位为Pa 1N/m2= 1Pa(帕斯卡) 1MPa = 106Pa 1GPa = 109Pa
拉伸时, ﹥0, ' ﹤0;压缩时, ﹤0, ' ﹥0; 3.泊松比μ(横向变形系数) 实验结果表明:一定范围内,杆件的横向线应变 与纵向线应变的比值为一常数。即
' =-
二、虎克定律
实验表明,当拉、压杆的正应力 不超过某 一限度时,其应力与应变 成正比。即 =E 上式称胡克定律。其中,比例常数 E 称为材料 的弹性模量。 虎克定律的另一种表达形式
教学内容:
§横截面和斜截面上的应力 §拉压杆的变形及虎克定律
教学要求:
1、理解正应力、切应力的概念,掌握拉压杆横截面
和斜截面上的应力计算公式。
2、理解应变、泊松比,掌握虎克定律及其应用方法。
第三节 横截面和斜截面上的应力
一、应力的概念
平均应力:横截面某范围内单位面积上微内力的平 F 均集度 p
A B C 30kN D
10kN
100
FN 20kN + O
100
100

10kN
x
由此可推断出:横截面上各点的变形程度相 同,受力相同;亦即内力——轴力在横截面上均 匀分布。由材料均匀性假设可的如下结论:
轴向拉压杆横截面上各点的应力大小相等, 方向垂直于横截面。
F

FN
FN A
即横截面上的正应力计算式为
例 一中段开槽的直杆,承受轴向载荷F=20kN作用, 已知h=25mm,h0=10mm,b=20mm。试求杆内的最大 正应力。 1 2 F 解: F ①计算轴力 FN =-20KN ②计算最大的正应力值 Amin= A2=n

k' k

F

k'
FN p
FN F p A A
所以截面上的正应力和
切应力为:
= cos2 = sin 2
F k

k'
p
讨论:
2
①当 =0 时,有σmax=σ=σ ,τ =0 。
②当 =45时,有τmax =τ =σ/2 。
FN l l EA
EA称为杆的抗拉(压)刚度 。
例 图示阶梯杆,已知横截面面积 AAB=ABC=500mm2 , ACD=300mm2,弹性模量E=200GPa。试求杆的总伸长。 解 ①作轴力图。 ②分段计算变形量。计算 △lAB = ?mm △lBC = ?mm △lCD = ?mm ③计算总变形量。 △l = △lAB + △lBC + △lCD =-0.015mm
F 1 2 2—2 A2 h0 h h b FN
A11—1
b

-10)×20mm2=
300mm2
σmax= FN/A 2=-20×103/300(MPa)=-66.7 MPa
三、拉压杆斜截面上的应力
轴向拉(压)杆的破 坏有时不沿着横截面, 因此有必要研究轴向拉 (压)杆斜截面上的应 力。如右图,斜截面上 的内力: FN = F 故其上的应力为:
FP1 m
切应力 全应力
p
K
正应力

FP2
m
二、拉压杆横截面上的正应力 1
轴向拉伸
F
1
2 2
F
1 1 1 1
2 2 2 2
轴向压缩
F
1 1
2 2
F
经观察可以发现:横向线11、22在变形后,仍 为直线且与轴线正交;只是横向和纵向线间距变化, 由此可对均质材料的轴向拉压杆作如下假设: 平面假设——变形前为平面的横截面,变形后仍为平 面,仅沿轴向产生了相对平移。
③当 =90 时,有σ =0,τ =0 。
第四节 拉压杆的变形及虎克定律
一、纵向线应变和横向线应变
l1
a1
F
l
F
a
F
l1
1. 纵向变形为 l=l1- l
F
a1
横向变形为 a = a 1- a
2.线应变——杆件单位长度内的变形量。
l l1 l 纵向线应变: l l a a1 a 横向线应变: a a
相关文档
最新文档