横截面上的正应力分布

合集下载

横截面上切应力分布规律

横截面上切应力分布规律

F Fsmax 2
F
max

3 2
Fs A

32 2 bh
3 F 4 bh
h
Mmax

FL 4
FL
b
max

M max WZ

4 1 bh
2
6
max max
d z
t
b
工字形截面梁由腹板和翼缘组成(中间的矩形部分称 为腹板;上下两矩形称为翼缘)。翼缘和腹板上均存在 着竖向切应力,而翼缘上还存在着与翼缘长边平行的 水平切应力。 经理论分析和计算表明:横截面上剪力的(95~97) %由腹板分担,而翼缘仅承担了剪力的(3~5)%, 并且翼缘上的切应力情况又比较复杂。为了满足实际 工程计算和设计的需要,仅分析腹板上的切应力。
Iz1 Iz a2A
例1 长为l的矩形截面悬臂梁,在自由端作用一集中力F,已知
b=120mm,h=180mm、l=2m,F=1.6kN,试求B截面上a、b
、c各点的正应力。
A
F
h6
a
B
z
C
b
h
l2
l2
h2
FL
c
b
a

M B ya IZ

1 FL h
2 bh
3
3
1.65MP(a拉 )
b 0
简易的矩形竹结构桥
钢管混凝土拱桥中的混凝土小横梁
建筑阳台挑梁受力分析与破坏问题
1.挑梁属于悬臂结构。 2.挑梁工作环境:常常处于室外,面对雨水、二氧化碳等的 直接侵蚀,荷载存在不确定性。 3. 破坏形式:出现裂缝后极有可能进一步扩大,严重的将危 及建筑物的安全。
建筑阳台挑梁受力分析与破坏问题

杆件横截面上的应力

杆件横截面上的应力
* N1
* Sz dM τy = I zb dx
F = ∫ * σ2dA= ∫ *
* N2 A
A
(M + dM) y1 dA
Iz
Fs S τ = I zb
* z
FS S z τ= I zb
上式中符号意义: 式中符号意义: 截面上距中性轴y处的剪应力 τ:截面上距中性轴 处的剪应力 c
S :y以外面积对中性轴的静矩 以外面积对中性轴的静矩 I z :整个截面对中性轴的惯性矩
②正应力: 正应力:
p α
F
α
α
Fα N
σ α = pα cos α = σ cos 2 α
③切应力: 切应力:
α
σα α pα τα
τ α = pα sin α =
σ0
2
sin 2α
1) α=00时, σmax=σ ) 2)α=450时, τmax=σ/2 ) =
例题
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
2.计算截面惯性矩 .
0.12 × (0.02)3 2 I1 z = + (0.12 × 0.02 )(0.045 0.01) = 3.02 ×10 6 m 4 12 0.02 × (0.12) 3 2 I2z = + (0.02 × 0.12)(0.08 0.045) = 5.82 × 10 6 m 4 12
其中:拉应变为正, 其中:拉应变为正, 为正 压应变为负 为负。 压应变为负。
'
d1 d d = 横向应变: 横向应变: ε = d d
O
z
研究一点的线应变: 研究一点的线应变:
x
x

梁横截面上的应力

梁横截面上的应力

2)计算C截面上的最大拉应力和最大压应力。
C截面上的最大拉应力和最大压应力为
tC
M C y2 I
2.5103 N m 8.810-2 m 7.6410-6 m4
Z
28.8106 P a 28.8MP a
cC
M
B
y 1
Iz
2.5 103 N m 5.2 10-2 m 7.6410-6 m 4
17.0 106 P a 17.0MP a
3)计算B截面上的最大拉应力和最大压应力。
B截面上的最大拉应力和最大压应力为
tB
M
B
y 1
Iz
4 103 N m 5.2 10-2 m 7.6410-6 m 4
27.2 106 P a 27.2MP a
cB
M B y2 Iz
4 103 N m 8.810-2 m 7.6410-6 m4
【例4.17】 求图(a,b)所示T形截面梁的最大拉 应力和最大压应力。已知T形截面对中性轴的惯性矩 Iz=7.64106 mm4,且y1=52 mm。
【解】 1)绘制梁的弯矩图。
梁的弯矩图如图(c)所示。 由图可知,梁的最大正弯矩发 生在截面C上,MC=2.5kNm; 最 大负弯矩发生在截面B上,MB= -4kNm。
入,求得的大小,再根据弯曲变形判断应力的正(拉)
或负(压)。即以中性层为界,梁的凸出边的应力为拉 应力,凹入边的应力为压应力。
(2)横截面上正应力的分布规律和最大正应力 在同一横截面上,弯矩M 和惯性矩Iz 为定值,因此
由公式可以看出,梁横截面上某点处的正应力σ与该点到 中性轴的距离y成正比,当y=0时,σ=0,中性轴上各点处 的正应力为零。中性轴两侧,一侧受拉,另一侧受压。离 中性轴最远的上、下边缘y=ymax处正应力最大,一边为最 大拉应力σtmax,另一边为最大压应力σcmax。

5-3拉伸(压缩)时横截面上的应力-正应力

5-3拉伸(压缩)时横截面上的应力-正应力
AB杆的受力为压力,大 小等于 F2 最后可以计算的应力:
B
F1
F2
Q
N F 20 KN 1 1 200 MPa BC杆: 1 2 A A mm 1 1 100
N F 17 . 32 KN 2 2 86 . 6 MPa 2 2 AB杆: A A 200 mm 2 2
2 p cos cos
为横截面正应力
p sin sin cos sin 2
2
第三节 拉伸(压缩)时横截面 上的应力——正应力
第三 节 拉伸或压缩杆横截面上的应力
1、应力的概念
为了描写内力的分布规律,我们将单位面积的内力 称为应力。 在某个截面上,
与该截面垂直的应力称为正应力。 记为:
与该截面平行的应力称为剪应力。 记为:
应力的单位:Pa
2 1Pa 1N/ m
2 6 1 MPa 1 N /mm 10 Pa
P P cos 这是斜截面上与 p cos A A 轴线平行的应力
P

n pα
τα

t 下面我们将该斜截面上的应力分解为正应力和剪应力
斜截面的外法线仍然为 n, 斜截面的切线设为 t 。
根据定义,沿法线方向的应力为正应力
利用投影关系,

沿切线方向的应力为剪应力
(2)、计算机各段的正应力
AB段:
3 F 50 10 1 MPa 125 MPa AB A 400 1
3 F 30 10 2 MPa 100 MPa BC段: BC A 300 2
3 F 10 10 3 MPa 33 . 3 MPa CD段: CD A 300 2

材料力学第四章平面弯曲

材料力学第四章平面弯曲


∫ A ydA =0
M
dA
z
y z ζdA
My
横截面对中性轴 zdA 的面积矩为零, A 中性轴过形心。 E yzdA 0

A
y
Iyz =0——梁发生平面弯曲的条件
E I E 2 ∫ AσdA· z ∫ A y dA = Mz= y = ρ ρ 1 Mz = EIz —— 梁的弯曲刚度 中性层曲率公式 EI ρ z
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4

梁横截面上的应力

梁横截面上的应力
可以看出, 该梁的承载能力将是原来的 2 倍。
• 二、梁的正应力强度条件(课本第三节)
设σmax是发生在梁最大处的工作应力,则:
m a x 工 作
最大工作 应力
材料的 许用应力
上式即为梁弯曲时的正应力强度条件。
对于等截面直梁,若材料的拉、压强 度相等( 塑性材料),则最大弯矩的所在面 称为危险面,危险面上距中性轴最远的点 称为危险点。此时强度条件可表达为:
m'
b
m n
h z
y
τ
τo
FQ
τ
x
m'
dx
y
m
n
一、矩形截面梁的剪应力

FQ S bI z
z
IZ : 整个截面对中性轴z轴的惯性矩;
b : 横截面在所求应力点处的宽度; SZ*: 横截面上距中性轴为 y 的横线以外部 分的面积 A*对中性轴的静矩。
max
τmax
FQ
FS
Q z,max
例5:图示铸铁梁,许用拉应力[σt ]=30MPa,
许用压应力[σc ]=60MPa,Iz=7.63×10-6m4,试
校核此梁的强度。
9 kN
A
1m
4 kN
C
1m
B
1m
52
D
88
C
z
CL8TU12
9 kN
A
1m
4 kN
C
1m
B
1m
52
D
88
C
z
25 . kN M (k Nm ) 25 .
105 . kN
20
3 2 0 1 0 M 15 max t 2 W 0 . 1 0 . 2 z 1 12 .5 6 3 0 M P a <[]

(完整版)材料力学课后习题答案

(完整版)材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。

(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。

解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。

解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

解:(1) 对节点A (2) 84 mm 。

8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。

8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。

纯弯曲梁横截面上的正应力课件

纯弯曲梁横截面上的正应力课件
正应力的定义
正应力指的是在受力物体的单位面积 上所承受的垂直作用力,也称为法向 应力。
正应力的计算
正应力的大小可以通过公式σ=F/A来 计算,其中σ为正应力,F为作用力, A为受力物体的横截面积。
横截面上的正应力分布
均匀分布
在纯弯曲梁的横截面上,正应力呈现出均匀分布的特点。即在整个析法
通过数学公式推导,求解梁横截面上的应力分布和最大应力 值。
有限元法
利用有限元分析软件,建立梁的有限元模型,通过计算求解 梁横截面上的应力分布和最大应力值。
05
纯弯曲梁的实例分析
实例一:简单梁的弯曲分析
简单梁是指长度远大于高度和宽 度的梁,其弯曲变形可以简化为
纯弯曲变形。
纯弯曲梁的受力分析
01
02
03
受力特点
纯弯曲梁在弯曲过程中, 只受到弯矩的作用,没有 剪力和扭矩。
弯矩分析
弯矩是使梁产生弯曲变形 的力矩,其大小取决于外 力的大小和作用点位置。
应力分布
由于弯矩的作用,梁的横 截面上会产生正应力和剪 应力,其中正应力是本节 重点讨论的内容。
纯弯曲梁的位移分析
位移特点
横截面上的正应力分布不再呈现对称性,需要采用更精确的分析方法进行计算。
实例三:实际工程中的纯弯曲梁分析
在实际工程中,纯弯曲梁的应 用非常广泛,如桥梁、建筑结 构等。
对于实际工程中的纯弯曲梁, 需要考虑材料特性、载荷大小 和分布、支撑条件等因素对正 应力的影响。
实际工程中的纯弯曲梁分析需 要采用有限元分析、实验测试 等方法进行验证和优化。
脆性断裂失效
当梁受到的应力超过材料的强度极限 时,会发生脆性断裂失效,导致梁断 裂。
强度条件的建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档