横截面上的最大正应力

合集下载

工程力学习题册第八章 - 答案

工程力学习题册第八章 - 答案

第八章 直梁弯曲一、填空题1.工程中 发生弯曲 或以 弯曲变形 为主的杆件称为梁。

2.常见梁的力学模型有 简支梁 、 外伸梁 和 悬臂梁 。

3.平面弯曲变形的受力特点是 外力垂直于杆件的轴线,且外力和力偶都作用在梁的纵向对称面内 ;平面弯曲变形的变形特点是 梁的轴线由直线变成了在外力作用面内的一条曲线 ;发生平面弯曲变形的构件特征是 具有一个以上对称面的等截面直梁 。

4.作用在梁上的载荷有 集中力 、 集中力偶 和 分布载荷 。

5.梁弯曲时,横截面上的内力一般包括 剪力 和 弯矩 两个分量,其中对梁的强度影响较大的是 弯矩 。

6.在计算梁的内力时,当梁的长度大于横截面尺寸 五 倍以上时,可将剪力略去不计。

7.梁弯曲时,某一截面上的弯矩,在数值上等于 该截面左侧或右侧梁上各外力对截面形心的力矩 的代数和。

其正负号规定为:当梁弯曲成 凹面向上 时,截面上弯矩为正;当梁弯曲成凸面向上 时,截面上弯矩为负。

8.在集中力偶作用处,弯矩发生突变,突变值等于 集中力偶矩 。

9.横截面上弯矩为 常数 而剪力为 零 的平面弯曲变形称为 纯弯曲变形 。

10.梁纯弯曲变形实验中,横向线仍为直线,且仍与 梁轴线 正交,但两线不再 平行 ,相对倾斜角度θ。

纵向线变为 弧线 ,轴线以上的纵向线缩短,称为 缩短 区,此区梁的宽度 增大 ;轴线以下的纵向线伸长,称为 伸长 区,此区梁的宽度 减小 。

情况与轴向拉伸、压缩时的变形相似。

11.中性层与横截面的交线称为 中性轴 ,变形时梁的 所有横截面 均绕此线相对旋转。

12.在中性层凸出一侧的梁内各点,其正应力均为 正 值,即为 拉 应力。

13.根据弯曲强度条件可以解决 强度校核 、 截面选取 和 确定许可载荷 等三类问题。

14.产生最大正应力的截面又称为 危险截面 ,最大正应力所在的点称为 危险点 。

15.在截面积A 相同的条件下, 抗弯截面系数 越大,则梁的承载能力就越高。

轴向拉伸与压缩时横截面上的应力

轴向拉伸与压缩时横截面上的应力
解1计算轴力由截面法可求得杆中各横截面上的轴力均为ffnf20knf20kn1212ffafnff图47nb2计算最大正应力图47bba1hha2h0cahh0b251020mm2300mm2则杆件内的最大正应力则杆件内的最大正应力为为maxmax由于整个杆件轴力相同故最大正应力发生在面积较小的横截面上即开槽部分的横截面上如图47c其面积为maxmpa667mpaa300fn10203?负号表示最大正应力为压应力
例 一正中开槽的直杆,承受轴向载荷F =20kN的作用, 如图4-7a所示。已知h = 25mm,h0 = 10mm,b = 20mm。试求 杆内的最大正应力。
1 2
F
1 2
F
解 (1) 计算轴力 由截面法可求得杆中 各横截面上的轴力均为
a)
FN F
b)
图4-7
FN = -F = -20kN
A1
图4-6
由材料的均匀性、连续性假设可以推断出轴力在横截面 上的分布是均匀的,而且都垂直于横截面,故横截面上的正 应力也是均匀分布的,如图4-6c所示。因此,轴向拉伸与压 缩时的横截面上的正应力计算公式为
FN σ= A
σ 式中, 为横截面上的正应力;FN 为横截面上的内力(轴
力);A 为横截面面积。 正应力的正负号与轴力的正负号一致。即拉应力正, 压应力为负。
h0 h
A2
h
b b
c)
(2)计算最大正应力 图4-7 由于整个杆件轴力相同,故最大正应力发生在面积较小 的横截面上,即开槽部分的横截面上如图4-7c,其面积为
A = (h-h0 )b = (25-10)
则杆件内的最大正应力 σ max 为
×20mm2 =
300mm2
σ max

材料力学A3习题

材料力学A3习题

拉伸与压缩1. 图示结构,AF为刚性杆,CD杆为钢制,其面积A=200mm2,弹性模量E=2.0×105MPa。

B处弹簧刚度k=3×103N/mm,l=1m。

若CD杆的许用应力[σ]=160MPa,试求荷载F的容许值。

(西南交大2003年)2. 图示结构C结点与滑块铰接,不计滑块与滑槽间摩擦力,滑块只可能沿滑槽上下自由移动,AC与BC两杆面积均为A=100mm2,材料的弹性模量均为E=2.0⨯105MPa,膨胀系数α=12⨯10-6(1/℃)。

求当BC杆升温50C0,而AC杆温度不变时C处的位移值。

(西南交大2002年)3. 图示杆系中AC、BC杆的直径分别为d1=10mm 、d2=20mm,两杆材料均为Q235钢,许用应力[σ] = 170MPa,试按强度条件确定容许F值。

(西南交大2001年)4.图示两端固定的杆件,在距左端x处作用一轴向力F,杆横截面面积为A,材料的许用拉应力为[σt],许用压应力为[σc],且[σc] =3[σt]。

求x为何值时F的许可值最大?其值[ F ]max 为多少?(西南交大1999年)5. 图示结构中①、②、③三杆的材料相同,弹性模量均为E,线膨胀系数均为α。

三杆的横截面面积分别为A1、A2、A3,各杆的长度如图所示。

横杆CD为钢杆。

受力如图所示,各杆温度同时上升t∆℃。

求①、②、③三杆的轴力。

(西南交大1998年)6. 图示结构中,BC为刚性梁,杆①、②、③的材料、横截面面积均相同,在横梁BC上作用一可沿横梁移动的载荷F,其活动范围为a≤。

计算各杆的最大轴力值。

(西南x20≤交大1997年)7、空心圆截面钢杆,其外径D=40mm,内径d=20mm,承受轴向拉力F=180kN,钢材的弹性常数E=2.0⨯105MPa及v=0.3。

求m—m横截面上a、b两点的相对位移和b、c两点的相对位移。

(西南交大1991年)m-m横截面8、AC及BC两钢杆的抗拉刚度为EA,在C点铰接处受一铅垂向下的力F作用。

材料力学习题解答[第三章]

材料力学习题解答[第三章]

3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。

解a):MPaMPa1004001040050400102033231=⨯==-=⨯-=σσσ 题3-1a)图 解b):MPa MPaMPa2540010105050400102032231=⨯=-=-=⨯-=右左σσσ MPa MPa 125400105025333=⨯==右左σσ 题3-1b)图3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。

解a ):MPaMPa MPa10040010407.663001020502001010333231=⨯=-=⨯-==⨯=σσσ题3-2a)图解b):MPaMPa 7540010303.333001010033321-=⨯-==⨯==σσσ题3-2b)图30kN3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。

试求各杆横截面上的应力。

解:(1)约束反力:kNF F kN F F kN F F AXAY Dy 2001504315043======(2)各杆轴力)(250150200)(150)(200)(1502222压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图(3)各杆的正应力)(3.8330010250,)(5030010150)(7.6630010200,)(50300101503333压压拉拉MPa MPa MPa MPa AC CDAC AB -=⨯-=-=⨯-==⨯==⨯=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。

已知F=10kN ,求钢杆横截面上的正应力。

解:)(7.112204104.3544.3545cos 1)5.11(232拉MPa d F kNF F NCD CD oNCD =⨯⨯===⨯+=ππσ 题3-4图3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

材力网络测试题

材力网络测试题

第一章绪论判断题1、根据均匀性假设,可认为构件的应力在各点处相同。

()2、根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

()3、固体材料在各个方向具有相同力学性能的假设,称为各向同性假设。

所有工程材料都可应用这一假设。

()4、在小变形条件下,研究构件的应力和变形时,可用构件的原始尺寸代替其变形后的尺寸。

()5、任何物体都是变形固体,在外力作用下,都将发生变形。

当物体变形很小时,就可视其为刚体。

填空题1、材料力学的任务是。

2、为保证机械或工程结构的正常工作,其中各构件一般应满足、和三方面的要求。

3、物体受力后产生的外效应是,内效应是;材料力学研究的是效应问题。

4、认为固体在其整个几何空间毫无空隙地充满了物质,这样的假设称为假设。

根据这一假设,构件的就可用坐标的连续函数表示。

5、受外力而发生变形的构件,在外力解除够后具有消除变形的这种性质称为;而外力除去后具有保留变形的这种性质为。

选择题1、根据均匀性假设,可认为构件的()在各点处相同。

A 应力B 应变C 材料的弹性常数D 位移2、根据各向同性假设,可认为构件的()在各方向都相同。

A 应力B 应变C 材料的弹性常数D 位移3、确定截面的内力的截面法,适用于()。

A 等截面直杆B 直杆承受基本变形C 直杆任意变形D 任意杆件4、构件的强度、刚度和稳定性( )。

A 只与材料的力学性质有关B 只与构件的形状尺寸有关C 与A、B都有关D 与A、B都无关5、各向同性假设认为,材料沿各个方向具有相同的( )。

A 外力B 变形C 位移D 力学性能6、材料力学主要研究( )。

A 各种材料的力学问题B 各种材料的力学性能C 杆件受力后变形与破坏的规律D 各类杆中力与材料的关系7、构件的外力包括( )。

A 集中载荷和分布载荷B 静载荷和动载荷C 载荷与约束反力D 作用在物体上的全部载荷第二章杆件的内力分析判断题1、材料力学中的内力是指由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量。

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算


FP a2
ww w
5
.k hd
b
m
上表面

σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP

ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6

后 答

FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。

材料力学--弯曲正应力及其强度条件

材料力学--弯曲正应力及其强度条件

C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为

第4章杆件横截面上的正应力分析

第4章杆件横截面上的正应力分析
3 N BC 4 10 6 N 12.7 10 2 m ABC π 202 106 4
=12.7MPa(拉)
σ AB N AB 3.46 10 6 N 6.4 10 2 6 m AAB 540 10
3
= 6.4MPa(压)
第4章
杆件横截面上的正应力分析
30
y1
Ay A
i
i
200
z y1
30 170 170 2 30 170 (139 ) 12 2
3
85 30 85 y
40.3106 (mm)4 40.3106 m4
第4章
杆件横截面上的正应力分析
(2) 画弯矩图
q =10kN/m
A 2m P=20kN C 3m 20kNm 1m D
§4-2 梁的弯曲正应力
一、概述
第4章
杆件横截面上的正应力分析
一般平面弯曲时,梁的横截面上将有剪力和弯矩两个 内力分量。如果梁的横截面上只有弯矩一个内力分量, 这种平面弯曲称为纯弯曲。此时由于梁的横截面上只 有弯矩,因而便只有垂直于横截面的正应力。
c
c
c
c
第4章
杆件横截面上的正应力分析
在垂直梁轴线的横力作用下,梁横截面 上将同时产生剪力和弯矩。这时,梁的横截面 上不仅有正应力,还有剪应力。这种弯曲称为 横向弯曲。
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
解:先确定危险截面
故取b=43mm
第4章
杆件横截面上的正应力分析
例 求图示梁的最大拉应力和最大压应力。 q =10kN/m A B P=20kN C 1m D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B max
4 88 Iz
46.1MPa
例8:简支梁AΒιβλιοθήκη ,在C截面下边缘贴一应变片,测得其应变ε= 6×10-4,材料的弹性 模量 E=200GPa,求载荷P的大小。
P
A
CD
B
40
0.5 m
0.4 m
20
1m
解:C点的应力 C E 200 103 6 104
120MPa
C截面的弯矩 MC C Wz 640 N m
第六章
圆环:
复 习
I y I z I z大 I z小
D4 d 4
64 64
D4 (1 4 )
64
其中 d
D
y
z
d D
bh3 I Z 12
d4
I Z 64
WZ
bh2 6
WZ
d 3
32
h
Z
b
d
Z
IZ
(D4
64
d4)
D4
64
(1 4 )
WZ
D3
32
(1 4 )
Z
d D
横截面上的最大正应力:
15 11.25
max
M max Wz
20 103 0.1 0.22
6
30MPa < [ ]
该梁满足强度条件,安全 20
例7:图示铸铁梁,许用拉应力[σ+ ]=30MPa,
许用压应力[σ- ]=60MPa,Iz=7.63×10-6m4,
试校核此梁的强度。
9 kN
4 kN
A
C
B
52
D
Cz
1m 1m 1m
例2:两矩形截面梁,尺寸和材料的许用应力
均相等,但放置如图(a)、(b)。按弯曲正应力
强度条件确定两者许可载荷之比 P1/P2=?
P1 P2
P
h
z
b
l
z
h b
(b) (a)
解:
max 1
M max 1 Wz 1
P1l bh2
6
max 2
M max 2 Wz 2
P2l hb2
6
由 max 1 max 2 [ ] 得: P1 h
(2)
y2 [ ]
例6:图示外伸梁,受均布载荷作用,材
料的许用应力[σ]=160 MPa,校核该梁 的强度。
10 kN / m
2m
4m
200 100
10 kN / m
200
2m
4m
Fs( kN) 25 45 kN
100
15kN 解:由弯矩图可见
Mmax 20 kN m
20 M (kN m)
支座位置直接影响支座截面和跨
中截面上的弯矩值。当中性轴为截
a
a
面的对称轴,最大拉、压应力相等
l
时,只有支座处截面与跨中截面之
弯矩的绝对值相等,才能使该梁的
ql2 qla
最大弯矩的绝对值为最小,从而使 其最大正应力为最小。
82

qa2
qa2
2
2
ql2 qla qa2
82 2
取有效值 a 0.207 l
由 MC 0.5RA 0.5 0.4P 0.2P 640 N m
得 P 3.2kN
P
A
CD
B
40
0.5 m
0.4 m
20
1m
例9:简支梁受均布荷载,在其C截面的下
边缘贴一应变片,已知材料的E=200GPa,试 问该应变片所测得的应变值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 ( x) d x l/2 M ( x) d x
0E
0 Wz E
l/2 P x
dx
Pl2
0 2Wz E
16Wz E
P
16Wz E AC l2
16 42
0.2 0.32 6
1010
5 103
150 kN
P
P2 b
例3:矩形截面梁当横截面的高度增加一倍,宽
度减小一半时,从正应力强度条件考虑,
该梁的承载能力将是原来的多少倍?
解: 由公式
max
M max Wz
M max bh 2
6
可以看出:该梁的承载能力将是原来的2倍。
例4:主梁AB,跨度为l,采用加副梁CD
的方法提高承载能力,若主梁和副梁材料 相同,截面尺寸相同,则副梁的最佳长度 a为多少?
88
9 kN
4 kN
A
C
B
52
D
Cz
1m 1m 1m
88
2.5kN
10.5kN
M ( kN m) 2.5
C截面:
C
max
2.5 88
Iz
28.8 MPa
满足强度要求
4
C max
2.5 52
I z 17.0 MPa
B截面:
B
max
4 52
Iz
27.3 MPa
本题
可不必计算
C max
为什么?
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力
C
MC Wz
15MPa
应变值
C
E
15 106 200 109
7.5 105=75με
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例10:图示木梁,已知下边缘纵向总伸长
为 10 mm,E=10GPa,求载荷 P 的大小。
P (l a) P a
4
4
得 a l 2
例5:图示梁的截面为T形,材料的许用拉应
力和许用压应力分别为[σ+]和[ σ-],则 y1 和 y2 的最佳比值为多少? (C为截面形心)
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
max
M max y2 Iz
[ ]
(1)
(2)
(1) 得: y1 [ ]
max
M y1 IZ
max
M y2 IZ
y2 y1
当中性轴是横截面的对称轴时:
y1 y2 ymax
max
max
max
max
M ymax IZ
M WZ
y
Wz
Iz y max
Wz: 抗弯截面模量
例1:图示工字形截面外伸梁受均布荷载作用,试
求当最大正应力为最小时的支座位置。
q
解:作弯矩图
A
x
dx C
2m
2m
300 B
200
例11:我国营造法中,对矩形截面梁给出的
尺寸比例是 h:b=3:2。试用弯曲正应力强度证明: 从圆木锯出的矩形截面梁,上述尺寸比例接近 最佳比值。
(使Wz最大)
dh b
解: b2 h2 d 2
bh2 b(d 2 b2 )
Wz 6
6
Wz d 2 b2 0 b 6 2
a Pa
C2 A
2D B
l
l
2
2
解:
主梁AB
P 2
A
P 2
B
La M2
M max AB
P (l a) 4
La 2
副梁CD
P
C
D
a
M
Pa M max CD 4
主梁AB的最大弯矩 副梁CD的最大弯矩
P M max AB 4 (l a)
Pa M max CD 4
由 M max AB M max CD
由此得 b d
3 h d2 b2 2 d
3
h 2 ≈3:2
b
dh b
例12:跨长l =2m的铸铁梁受力如图示,已知材料许用拉、
压应力分别为
30MPa 和 90MPa
试根据截面最为合理的要求,确定T形梁横截面的
相关文档
最新文档