《煤化工工艺学》煤的直接液化

合集下载

煤的直接液化综述

煤的直接液化综述

1文献综述引言煤炭液化作为洁净煤技术重要组成部分正在我国实现产业化。

综述介绍了我国能源的供需形势和今后的发展的趋势,阐明了煤炭液化的战略意义;从煤炭的化学结构以及与石油结构的区别出发,论述直接加氢液化的基本原理、化学反应、催化剂、工艺过程、产物的结构表征和重点的工程问题。

因煤炭的直接液化需要氢气,也介绍了合成氢气的技术。

1.1 我国的能源结构及煤液化的必要性1.1.1我国的石化能源结构1)煤炭资源我国的能源就目前来说主要是依靠石化能源,其中以煤炭、石油、天然气为主。

根据资料[1]对有关储量/资源数据的归类统计结果表明:全国垂深2000m以浅的煤炭资源的总量为55697.49亿t;垂深1000-2000m预测资源为27080.56亿,t占48%;全国已经发现的垂深1000m以浅的煤炭资源为28167亿t;其中可开采为7300多亿吨[2]。

而且中国的煤炭资源丰富,分布较广,资源潜力大;煤种齐全,特别是低变质、中变质的煤占有较大的比例,这对煤炭的液化、特别是直接液化是非常重要的资源保障[3]。

2)石油资源[1]根据全国第二次油气资源评价对我国150多个盆地或地区的油气资源评价结果,1994年公布的石油总量为940亿吨。

其中陆地资源量694亿吨,占总资源的73.8%;海域资源246亿吨。

陆地资源主要分布在东部和西部,分别占陆上资源的53.0%和37.3%;海域资源主要在南海和东海,分别占海域资源的26.2%和54.6%。

由上可知我国的石油资源相对的短缺,已成为近年来石油产量徘徊不上的主要原因,因此以煤或其它资源代替石油是立足国内资源、解决石油供需矛盾的重要途径。

3)天然气根据“八五”期间开展的全国第二次油气资源评价提供的数据,天然气资源的总量为38000亿立方米,其中陆地资源占78.4%,主要分布在中部和西部[4]。

而且我国的天然气资源探明和开发比较低,天然气在能源提供中还有一定的潜力,天然气在未来改变一次能源结构、实现能源多元化供应方面具有发展前景。

煤直接液化工艺流程

煤直接液化工艺流程

煤直接液化工艺流程煤直接液化是一种将煤转化为液态燃料的工艺,它可以将煤储量丰富的国家利用起来,减少对传统石油资源的依赖。

下面我将介绍一下煤直接液化的工艺流程。

首先,原料煤经过预处理后进入气化炉。

预处理主要包括煤的破碎、干燥和脱硫等工序,以确保煤的质量和适应气化反应的要求。

在气化炉中,煤与氧气或气化剂在高温和高压的条件下进行反应,产生一氧化碳和氢气等合成气体。

气化反应一般使用固定床气化炉或流化床气化炉。

接下来,合成气通过除尘和净化设备去除其中的灰分、硫化物等杂质,以保证后续反应的正常进行。

然后,合成气进入催化剂床层,在催化剂的作用下,气体中的一氧化碳和氢气进行合成反应,生成一系列的液态燃料。

在液化工艺中,通常采用多段式催化反应器,以提高反应的效率和产物的品质。

每个催化反应器都有自己的催化剂床层,通过恰当的控制温度、压力和催化剂的投料速度等参数,可以使合成气充分转化为液态燃料。

生成的液态燃料主要包括石脑油、汽车汽油、柴油和重油等。

在液化的过程中,会产生一些气态副产品,如氮气、二氧化碳等,这些副产品可以进行回收利用,降低环境污染。

最后,通过分离和精制,把液态燃料中的杂质、重油等分离出来,得到纯净的燃料产品。

精制过程中,常用的方法包括蒸馏、萃取和脱硫等,以提高燃料的质量和满足市场需求。

总结一下,煤直接液化工艺流程主要包括煤的预处理、气化反应、合成气净化、催化反应、分离和精制等环节。

通过合理的操作参数和催化剂的选择,可以高效地将煤转化为液态燃料,为国家能源发展提供了一种可行且可持续的路径。

同时,煤直接液化工艺也需要进一步的研究和改进,以提高工艺的经济性和环境友好性。

煤的直接液化

煤的直接液化

4、操作条件 温度和压力是影响煤直接液化反应进行的 两个因素,也是直接液化工艺两个最重要 的操作条件。 煤的液化反应是在一定温度下进行的,不 同工艺的所采用的温度大体相同,一般为 440~460º C。当温度超过450º C时,煤转化 率和油产率增加较少,而气产率增多,因 此会增加氢气的消耗量,不利于液化。
2、直接液化的溶剂 在煤液化过程中,溶剂起着溶解煤、溶 解气相氢向煤或催化剂表面扩散、供氢或 传递氢、防止煤热解的自由基碎片缩聚等 作用。 煤的直接液化必须有溶剂存在,这也是 与加氢热解的根本区别。 通常认为在煤的直接液化过程中,溶 剂能起到如下作用:
a)将煤与溶剂制成浆液的形式便于工艺过程 的输送。同时溶剂可以有效地分散煤粒、 催化剂和液化反应生成的热产物,有利于 改善多相催化液化反应体系的动力学过程。 b)依靠溶剂能力使煤颗粒发生溶胀和软化, 使其有机质中的键发生断裂。 c) 溶解部分氢气,作为反应体系中活性氢的 传递介质;或者通过供氢溶剂的脱氢反应 过程,可以提供煤液化需要的活性氢原子。
d)在有催化剂时,促使催化剂分散和萃取出 在催化剂表面上强吸附的毒物。 在煤液化工艺中,通常采用煤直接液化后 的重质油作为溶剂,且循环使用,因此又 称为循环溶剂。
3、催化剂 选用合适的催化剂对煤的直接液化至关重要, 一直是技术开发的热点之一,也是控制工艺成 本的重要因素。 催化剂的作用机理,有两种观点:(1)催化剂 的作用是吸附气体中的氢分子,并将其活化成 为易被煤的自由基团接受的活性氢;(2)催化 剂是使煤中的桥键断裂和芳环加氢的活性提高, 或是使溶剂加氢生成可向煤转移氢的供氢体等。
对压力而言,理论上压力越高对反应越有 利,但这样会增加系统的技术难度和危 险性,降低生产的经济性,因此,新的 生产工艺都在努力降低压力条件。 早期液化反应(如德国工艺)压力 高达 30~70MPa ,目前常用的反应压力 已经降到了 17~25MPa ,大大减少了设 备投资和操作费用。

煤的直接液化

煤的直接液化

煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。

煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H 2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。

通过煤炭液化,不仅可以生产汽油、柴油、LPG (液化石油气)、喷气燃料,还可以提取BTX (苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。

煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S 再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913 年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。

煤炭直接加氢液化一般是在较高温度(400 C以上),高压(10MPa以上),氢气(或CO+H 2,C0+H20)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。

煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。

煤与石油主要都是由C、H、O 等元素组成。

煤和石油的根本区别就在于:煤的氢含量和H/C原子比比石油低,氧含量比石油高I 煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。

煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。

通过加氢,改变煤的分子结构和H/C 原子比,同时脱除杂原子,煤就可以液化变成油。

煤直接液化工艺流程

煤直接液化工艺流程

煤直接液化工艺流程煤直接液化,煤液化方法之一。

将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。

因过程主要采用加氢手段,故又称煤的加氢液化法。

详情如下:一、埃克森供氢溶剂法简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。

原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体燃料。

建有日处理250t煤的半工业试验装置。

其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。

首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。

反应温度425~450℃,压力10~14MPa,停留时间30~100min。

反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。

溶剂和煤浆分别在两个反应器加氢是EDS法的特点。

在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。

气态烃和油品中C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。

石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。

中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。

减压残油通过加氢裂化可得到中油和轻油。

埃克森供氢溶剂法流程图二、溶剂精炼煤法简称SRC法,是将煤用溶剂制成浆液送入反应器,在高温和氢压下,裂解或解聚成较小的分子。

此法首先由美国斯潘塞化学公司于60年代开发,继而由海湾石油公司的子公司匹兹堡-米德韦煤矿公司进行研究试验,建有日处理煤50t的半工业试验装置。

按加氢深度的不同,分为SRC-Ⅰ和SRC-Ⅱ两种。

SRC-Ⅰ法(图2)以生产固体、低硫、无灰的溶剂精炼煤为主,用作锅炉燃料,也可作为炼焦配煤的黏合剂、炼铝工业的阳极焦、生产碳素材料的原料或进一步加氢裂化生产液体燃料。

近年来,此法较受产业界重视。

SRC-Ⅱ法用于生产液体燃料,但因当今石油价格下降以及财政困难,开发工作处于停顿状态。

煤的直接液化

煤的直接液化

煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。

煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。

通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。

煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。

煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。

煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。

煤与石油主要都是由C、H、O等元素组成。

煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。

煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。

通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。

1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。

煤直接液化工艺

煤直接液化工艺

煤直接液化工艺
煤直接液化工艺是一种能够将煤转变为石油的革命性技术。

这项技术可以将煤以有利的经济效益转变为石油,以替代传统石油和其他替代能源,从而节省日益稀少的石油资源。

煤直接液化工艺的发展使得科学家们利用煤更加有效地开发石油,且减少了煤炭污染。

煤直接液化工艺的制备主要分为三个步骤:煤热解、石油生产和石油精制。

煤热解的过程,煤被加热高达2000℃,利用高温高压的状态下,改变煤的化学结构,从而将煤转换为气态物质。

石油生产则是将气态物质进一步合成为液态物质,最终得到原油;最后,精制工艺使原油精制得到合成汽油、柴油及其他含烃,如苯、乙烷等等,这就是煤直接液化工艺的完整过程。

煤直接液化工艺的应用,使得煤焦转换为液体燃料更容易、更快捷,从而消减了大量的碳排放量。

这种工艺可以从概念到实施的过程中,实现有效地利用煤炭资源,同时也减少了空气污染,形成一种绿色低碳的能源经济。

此外,煤直接液化工艺可以有效地利用煤炭资源,提高整体的煤焦炭液燃料性能,并且改善居民生活水平。

综上所述,煤直接液化工艺对于保护石油资源,环境保护和能源节约具有重要意义。

煤直接液化工艺可以有效地减少煤炭消耗,实现节能减排;另外,煤直接液化工艺可以分解、合成更多的石油和燃料,从而获得更多的可再生能源。

此外,在实现经济社会发展的同时,煤直接液化工艺也可以作为一种有效的能源节约技术,有助于改善能源利用结构,促进绿色低碳的发展。

随着人们日益重视环境保护,开发煤直接液化工艺也变得越来越重要。

为了促进能源节约,应提升煤直接液化工艺的社会应用水平,并倡导利用煤直接液化工艺维护环境的理念,以促进各方努力实施煤直接液化工艺,节省能源,保护环境。

煤直接液化工艺流程

煤直接液化工艺流程

煤直接液化工艺流程
《煤直接液化工艺流程》
煤直接液化是一种将煤直接转化成液体燃料的技术,被广泛应用于煤炭资源的高效利用和清洁能源的生产。

其工艺流程是一个复杂的化工过程,需要多种设备和技术的配合,下面将对其工艺流程进行说明。

首先,煤炭的预处理是整个工艺流程的第一步。

煤炭首先经过破碎、磨矿和筛分等步骤,使得煤炭颗粒的大小和形状更适合后续的反应和转化过程。

然后,煤质的选煤是非常关键的一步,通过密度分离、气浮和湿选等技术,将煤中的灰分和硫分等杂质进行分离,提高煤质的纯度。

接下来是煤的干馏。

将经过预处理的煤炭送入干馏炉中,利用高温和缺氧环境进行反应,将煤转化成气体和液体产物。

在此过程中,煤中的碳、氢、氧、氮等元素都将发生化学变化,产生气化气体和焦油等产品。

然后,气化气体进一步处理。

气化气体中含有一定量的一氧化碳和氢气,在进一步利用前,需要经过净化和变换等步骤,去除其中的杂质并转化成合成气,以便后续的加氢和合成反应。

最后是合成。

通过控制合成气的压力和温度,利用催化剂将合成气经过合成反应,生成液体燃料和化工产品。

整个煤直接液化工艺流程中,合成反应是决定产物品质的关键步骤。

总的来说,煤直接液化是一个复杂而又高效的技术,通过一系列工艺流程将煤炭转化成清洁高效的液体燃料。

随着技术的不断进步和设备的不断完善,相信煤直接液化技术将会在未来发挥更加重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT文档演模板
《煤化工工艺学》煤的直接液化
•2. 对自由基“碎片”供氢
•煤热解自由基“碎片”的加氢以及再缩聚反应可用 如下方程示意表示:
•R-CH2-CH2-R'→RCH2·+R'CH2· RCH2·+R'CH2·+2H→RCH3+R'CH3
•或
RCH2·+R'CH2·→RCH2-CH2R'
2RCH2·→RCH2-CH2R 2R'CH2·→R'CH2-CH2R'
PPT文档演模板
《煤化工工艺学》煤的直接液化
三、煤直接液化工艺分类
•煤直接液化是在溶剂油存在下通过高压加氢使煤液化的方法; 根据溶剂油和催化剂的不同、热解方式和加氢方式的不同以 及工艺条件的不同,可以分为以下几种工艺: •(1)溶解热解液化法(不用氢气)
利用重质溶剂对煤热解抽提可制得低灰分的抽提物 (日本称膨润炭)——产率虽高但产品仍为固体;
1927年,I.G.Farben公司在德国 Leuna建成了第一 座 10 104 t/a褐煤液化厂。
1935年,英国 I.C.I.公司在 Bilingham建成烟煤加氢 液化厂。
1973年,世界发生石油危机,各国又重新开始重视 煤液化制液体燃料的技术研究工作,开发了许多煤 直接液化制油新工艺。主要有美国开发的溶剂精炼 煤工艺(SRC)、供氢溶剂工艺(EDS)等。
PPT文档演模板
《煤化工工艺学》煤的直接液化
•2. 对自由基“碎片”供氢
(1) 反应中氢的来源: ① 溶解于溶剂中的氢在催化剂作用下变为活性氢; ② 溶剂油提供的或传递的氢; ③ 煤本身可供应的氢。
(2)当溶剂无供氢能力时,则液化消耗的氢来自煤及气相氢。 (3)溶剂供氢能力对液化有重要影响,随溶剂中供氢能力的
当液化反应温度提高,裂解反应加剧时,需注意有相应的供 氢速度配合,否则会有结焦的危险。
PPT文档演模板
《煤化工工艺学》煤的直接液化
•3. 脱杂原子的反应
(1) 脱氧反应: ① 氧的存在形式; ② 各基团脱除的难易程度; ③ 随氧脱除率的增加,油品产率增加,同时煤中总是 有40%的氧稳定存在。(图7-1)
增加,由煤与氢气供氢量下降。 (4)系统中供给CO+H2O或CO+H2时,液化效果比单纯供氢
效果好。(这因为(CO+H2O)的变换反应放出的氢更 容易和自由基碎片结合。)
PPT文档演模板
《煤化工工艺学》煤的直接液化
(3)对供氢可采取的有利措施: ① 使用有供氢性能的溶剂; ② 提高系统氢气压力; ③ 提高催化剂的活性; ④ 保持一定的H2S浓度等。
于石油。
煤的主体是高分子聚合物,故不挥发、不熔化、不溶解(可溶胀) 并有粘弹性,而石油的主体是低分子化合物。
煤中有较多的矿物质。 总之,要将煤转化为油需要加氢、裂解和脱灰。
PPT文档演模板
《煤化工工艺学》煤的直接液化
二、煤直接液化的基本原理
高温下,煤的大分子裂解成分子量较小的自 由基碎片;——煤的热解
自由基碎片在供氢溶剂及催化剂的作用下在 氢气气氛中加氢稳定,变成小分子的油、气、 沥“碎片”供 氢、结焦反应
在加氢过程中,同时还脱除N、S、O等杂原 子,生产分子量低的油品和化学品。——脱 杂原子的反应
PPT文档演模板
《煤化工工艺学》煤的直接液化
虽可实现煤就地液化,不必建井采煤,但还存在许多 技术和经济问题,近期内不可能工业化 。
PPT文档演模板
《煤化工工艺学》煤的直接液化
§7.2 煤加氢液化原理
PPT文档演模板
《煤化工工艺学》煤的直接液化
一、煤和石油的比较
煤和石油同是可燃矿物;有机质都由碳.氢、氧、氮和硫元素构 成,但它们在结构、组成和性质上又有很大差别: 化学组成上,石油的H/C原子比高于煤,而煤中的氧含量显著高
(2)脱硫反应:含硫化合物转化为H2S。 (3)脱氮反应:比脱硫困难,含氮化合物转化为NH3。
PPT文档演模板
《煤化工工艺学》煤的直接液化
•4. 结焦反应
热解生成的自由基碎片,加果没有机会与氢反应,它们
就会彼此结合,这样就达不到降低分子量的目的。多环芳
烃在高温下有自发缩聚成焦的倾向。
在煤加氢液化中结焦反应是不希望发生的。一旦发生,
1. 煤的热解
煤在隔绝空气的条件下加热到一定温度,就会发生一 系列复杂反应,析出煤气、热解水和焦油等产物,剩 下煤焦。
煤的热解温度范围较大 ,热解速度随温度的升高而加 快。
对褐煤和烟煤讲,煤裂解速度最快或胶质体生成量最 大的温度范围约在400~450℃,这与煤加氢液化的适 宜温度区间基本一致,这也说明热解是煤加氢的前提。
利用轻质溶剂在超临界条件下抽提可得到以重质油为 主的油类——抽提率不太高。
• (2)浴剂加氢抽提液化法
使用氢气,但压力不太高,溶剂油有明显的作用,如: 溶剂精炼煤工艺(SRC)和供氢溶剂工艺(EDS)等 。
PPT文档演模板
《煤化工工艺学》煤的直接液化
(3)高压催化加氢法
如:德国的新老液化工艺和美国的氢煤法。
直接液化热效率比间接液化高,对原料煤的要求 高,较适合于生产汽油和芳烃;
间接液化允许采用高灰分的劣质煤,较适合于生 产柴油、含氧的有机化工原料和烯烃等。
PPT文档演模板
《煤化工工艺学》煤的直接液化
二、煤直接液化技术发展概况
1913年德国Berguis首先研究了煤高温高压加氢技术, 并从中获得了液体燃料。
《煤化工工艺学》__煤 的直接液化
PPT文档演模板
2020/11/6
《煤化工工艺学》煤的直接液化
§7.1 煤直接液化的意义和发展概况
PPT文档演模板
《煤化工工艺学》煤的直接液化
一、煤直接液化的意义
煤直接液化:
是把煤在较温度和压力下与氢气反应(加氢), 使煤降解和加氢,从而转化成液体油品的工艺, 故又称加氢液化。
(4)煤和渣油联合加工法
以渣油为溶剂油与煤一起一次通过反应器,不用循环 油。渣油同时发生加氢裂解转化为轻质油。美国、加 拿大、德国和苏联等各有不同的工艺。
(5)干馏液化法
煤先热解得到焦油,然后对焦油进行加氢裂解和提质。
(6)地下液化法
将溶剂注入地下煤层,使煤解聚和溶解,加上流体的 冲击力使煤崩散,未完全溶解的煤则悬浮于溶剂中, 用泵将溶液抽出并分离加工。
相关文档
最新文档