基本初等函数图像与性质
最全高数基本初等函数概念图像及性质完整版

基本初等函数. 幂函数(a 为实数 )要记住最常见的几个幂函数的定义域及图形..指数函数定义域:,值域:,图形过( 0, 1)点, a>1 时,单调增加; a 时,单调减少。
今后用的较多。
.对数函数定义域:,值域:,与指数函数互为反函数,图形过(1, 0)点, a>1 时,单调增加;a<1 时,单调减少。
.三角函数,奇函数、有界函数、周期函数;,偶函数、有界函数、周期函数;,的一切实数,奇函数、周期函数,的一切实数,奇函数、周期函数;,.反三角函数;;;。
以上是五种基本初等函数,关于它们的常用运算公式都应掌握注:( 1)指数式与对数式的性质由此可知,今后常用关系式,如:( 2)常用三角公式积化和差sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)赠送以下资料《二次函数的应用》中考题集锦10 题已知抛物线y x2mx 2m 2 (m 0).( 1)求证:该抛物线与x 轴有两个不同的交点;( 2)过点P(0,n)作y 轴的垂线交该抛物线于点 A 和点 B (点 A 在点 P 的左边),是否存在实数 m,n ,使得 AP2PB ?若存在,则求出m,n 满足的条件;若不存在,请说明理由.答案:解:( 1)证法 1:29 m2,y x2mx 2m2x m24当 m0 时,抛物线顶点的纵坐标为9 m20 ,4顶点总在 x 轴的下方.而该抛物线的开口向上,该抛物线与x 轴有两个不同的交点.(或者,当 m 0 时,抛物线与y 轴的交点(0,2m2)在x轴下方,而该抛物线的开口向上,该抛物线与 x 轴有两个不同的交点.)证法 2:m2 4 1 ( 2m2 ) 9m2,当 m0时, 9m20 ,该抛物线与 x 轴有两个不同的交点.( 2)存在实数m,n,使得AP2PB .设点 B 的坐标为(t,n),由 AP2PB 知,y①当点 B 在点 P 的右边时, t0,点 A 的坐标为(2t, n) ,A PBx 且 t, 2t是关于 x 的方程 x2mx2m2n 的两个实数根.O m24( 2m2n) 9m24n 0 ,即 n9 m2.4且 t ( 2t )m (I), t ( 2)t2(II)m n由( I)得,t m,即m 0.将 t m代入(II)得, n0 .y 当 m0且 n0 时,有 AP2PB .②当点 B 在点 P 的左边时, t0,点 A 的坐标为(2 t,n),且 t,2t 是关于x的方程 x 2mx2m2n 的两个实数根.xOm24( 2m2n) 9m24n 0 ,即 n9 m2.4AB P且 t 2t m (I),t 2t2m2n (II)由( I)得,t m0 .3,即m将 t m代入( II )得,n20 m2且满足 n9 m2.32094当 m0 且n m2时,有AP2PB9第 11 题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为S 10t t 2,若滑到坡底的时间为 2 秒,则此人下滑的高度为()A.24米B.12米C. 12 3 米D.6米答案:B第 12 题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月 25日起的 180 天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图( 1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.y (天)z(元 )16060140( 180, 92)5012040100858036020401020140160100120O20 40 6080 100 120150 180t(天)O204060 80110140160 180t(天 )( 1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(t0)的函数关图 (1)图 (2)系式;( 2)求出图( 2)中表示的种植成本单价z(元)与上市时间t (天)(t 0)的函数关系式;( 3 )认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明: 市场销售单价和种植成本单价的单位:元/500 克.)答案:解:( 1)依题意,可建立的函数关系式为:2 t 160 (0t,3 120)y 80 (120 ≤ t,150)2 20 (150 ≤t ≤ .5( 2)由题目已知条件可设za(t 110) 220 .85图象过点 (60, ) ,385 a(60 110) 2 20. a1 . 3300z1(t 110) 2 20 (t 0 ). 300( 3)设纯收益单价为W 元,则 W =销售单价 成本单价.2 1601110) 220 (0 t,t(t120)3300故W 801 (t 220(120 ≤t,300 110)150)2 201 220 (150 ≤ t≤.5300化简得1 2100(0,300W1(t 110)2 60 (120≤ t 150), 30012 56 (150 ≤ t ≤.300①当 W1 (t 10)2 100(0 t 120) 时,有 t 10时, W 最大,最大值为 100;300②当 W1 (t 110)2 60(120 ≤ t 150) 时,由图象知,有 t 120 时, W 最大,最大300值为 59 2 ;3③当 W1 (t 170)2 56(150 ≤ t ≤ 180) 时,有 t 170 时, W 最大,最大值为 56.300综上所述,在 t 10 时,纯收益单价有最大值,最大值为100 元.第 13 题如图,足球场上守门员在O 处开出一高球,球从离地面1 米的 A 处飞出( A 在 y 轴上),运动员乙在距O 点6 米的B 处发现球在自己头的正上方达到最高点M,距地面约 4 米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.( 1)求足球开始飞出到第一次落地时,该抛物线的表达式.( 2)足球第一次落地点 C 距守门员多少米?(取 43 7)( 3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取26 5)y4 M2 1 AOBCDx答案:解:( 1)( 3 分)如图,设第一次落地时,抛物线的表达式为ya(x6) 2 4.y由已知:当 x 0 时 y 1.即 1 36a 4, a1 . 4M12E FN表达式为 y124. 2 ( x 6)1 A1 x2 12OBCDx(或 yx 1 )12 1( 2)(3 分)令 y0, ( x6)2 4 0.12(x6)2 48. x 4 3 6 ≈ 13,x4 3 6 0 (舍去).12足球第一次落地距守门员约 13 米.( 3)(4 分)解法一:如图,第二次足球弹出后的距离为CD根据题意: CDEF (即相当于将抛物线 AEMFC 向下平移了 2 个单位)21( x 6) 24解得 x6 2 6,x2 6 26.121CD x 1 x 2 4 6 ≈10.BD 13 6 1017 (米).解法二: 令1( x 6) 2 4 0.12解得x 1 6 4 3 (舍), x 26 4 3 ≈13.点 C 坐标为( 13, 0).设抛物线 CND 为 y1( x k) 2 2.12将 C 点坐标代入得:1(13 k) 2 2 0.12解得:k 1 13 2 613 (舍去),k 2 6 4 3 2 6 ≈ 6 7 5 18.y1( x 18)2 212 令 y0, 01( x 18)2 2.12x 118 2 6 (舍去), x 2 18 2 6≈23.BD 23 6 17 (米).解法三:由解法二知, k 18,所以 CD 2(18 13) 10, 所以 BD(136) 10 17.答:他应再向前跑17 米.第 14 题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费 2.7 万元;购置滴灌 设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为 0.9 ;另外每公顷种植蔬菜需种子、化肥、农药等开支 0.3 万元.每公顷蔬菜年均可卖7.5 万元.y (万元),( 1)基地的菜农共修建大棚 x (公顷),当年收益(扣除修建和种植成本后)为写出 y 关于 x 的函数关系式.( 2)若某菜农期望通过种植大棚蔬菜当年获得 5 万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)( 3)除种子、化肥、农药投资只能当年受益外, 其它设施 3 年内不需增加投资仍可继续使用. 如果按 3 年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:( 1) y 7.5x2.7x 0.9x 20.3x0.9x 2 4.5x .( 2)当 0.9x 24.5x5 时,即 9x 245x 50 0 , x 15 , x 2 1033从投入、占地与当年收益三方面权衡,应建议修建5公顷大棚.(3)设3Z (万元)3年内每年的平均收益为Z 7.5x0.9x 0.3x20.3x0.3x2 6.3x20.3 x 10.5 33.075(10分)不是面积越大收益越大.当大棚面积为10.5 公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益.②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当 0.3x2 6.3x0时, x10 , x2 21.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第 15 题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18 元,按定价 40元出售,每月可销售 20 万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价 1元,月销售量可增加 2 万件.(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写x的取值范围);(2)求出月销售利润z(万元)(利润=售价-成本价)与销售单价x(元)之间的函数关系式(不必写 x 的取值范围);(3)请你通过( 2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于 480 万元.答案:略.第 16 题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为 2m ,隧道最高点P 位于 AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?yPA BO Cx答案:( 1)由题意可知抛物线经过点A0,2 ,P 4,6 ,B 8,2设抛物线的方程为y ax2bx c将 A,P,D 三点的坐标代入抛物线方程.解得抛物线方程为y1x22x 24( 2)令 y4 ,则有 1 x 2 2x2 44解得x 14 2 2, x 2 4 2 2x 2 x 14 2 2货车可以通过.( 3)由( 2)可知1x 2 x 1 2 2 22 货车可以通过.第 17 题如图,在矩形ABCD 中, AB 2 AD ,线段 EF 10 .在 EF 上取一点 M ,分别以EM , MF 为一边作矩形 EMNH 、矩形 MFGN ,使矩形 MFGN ∽ 矩形 ABCD .令 MN x ,当 x 为何值时,矩形 EMNH 的面积 S 有最大值?最大 D C值是多少?ABHN GEMF答案:解:矩形 MFGN ∽ 矩形 ABCD ,MN MF .AD ABAB2 AD , MN x ,MF 2x .EMEFMF 10 2x .Sx(10 2x) 2 x 2 10x22 52 x52.2当 x5时, S 有最大值为25.22第 18 题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润 y A (万元)与投资金额 x (万元)之间存在正比例函数关系: y A kx ,并且当投资 5 万元时,可获利润 2 万元.信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额 x (万元)之间存在二次函数关系:y B ax 2 bx ,并且当投资2 万元时,可获利润 2.4 万元;当投资4 万元时,可获利润 3.2 万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资 10 万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当x 5 时,y1,,0.4 ,2 25k ky A0.4x ,当x 2 时,y B 2.4 ;当x 4 时,y B 3.2.2.44a2b3.216a4ba0.2解得1.6by B0.2x2 1.6 x .( 2)设投资B种商品x万元,则投资 A 种商品(10x) 万元,获得利润W万元,根据题意可得W0.2x2 1.6 x0.4(10 x)0.2 x2 1.2x4W0.2( x3)2 5.8当投资 B 种商品 3 万元时,可以获得最大利润 5.8 万元,所以投资A种商品7万元, B种商品 3 万元,这样投资可以获得最大利润 5.8 万元.第 19 题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱 A3 B3 50m , 5 根支柱 A1 B1, A2 B2, A3 B3, A4 B4,A5 B5之间的距离均为15m ,B1B5∥ A1 A5,将抛物线放在图( 2)所示的直角坐标系中.(1)直接写出图( 2)中点 B1, B3, B5的坐标;(2)求图( 2)中抛物线的函数表达式;( 3)求图( 1)中支柱 A2 B2, A4 B4的长度.B3yB2B430m B3B1B5B1B5A1A2 A3 A4 A5O l图 (1)图(2)答案:B1 ( 30, 0) , B3 (0,30) , B5 (30,0) ;(1)( 2)设抛物线的表达式为y a(x 30)( x30) ,把 B3 (0,30) 代入得 y a(030)(030)30 .∴ a 1.301( x∵ 所求抛物线的表达式为:y30)( x30) .30( 3)∵B4点的横坐标为15,∴ B4的纵坐标 y41(1530)(1530)45.302∵ A3B350 ,拱高为30,∴立柱 A4B4 204585(m) .2285(m) 。
基本初等函数的图像与性质

在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。
一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。
它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。
二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。
幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。
3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。
② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。
③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。
2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。
九种基本初等函数图像及性质

九种基本初等函数图像及性质基本初等函数包括一次函数、平方函数、立方函数、根号函数、指数函数、对数函数、正弦函数、余弦函数和正切函数等9种函数。
下面简单介绍它们的图像及性质。
一次函数的图像是一条直线,表达函数的形式为:y=ax+b(a≠0),其中a表示斜率,b表示函数的截距,函数的性质是其增减性由斜率a决定。
平方函数的图像为一条凹凸不平的抛物线,表达函数的形式为:y=ax2+bx+c,其中a、b、c为实数,a≠0,此函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
立方函数的图像是一条弯曲的曲线,表达函数的形式为:y=ax3+bx2+cx+d,其中a、b、c、d为实数,a≠0,函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
根号函数的图像是一条弯曲的曲线,表达函数的形式为:y=a√x+b,其中a、b为实数,a>0,此函数的性质是常数变动,函数的解析式在a变动时它的单调性也由正负变化。
指数函数的图像是一条右倾的曲线,表达函数的形式为:y=axb,其中a、b为实数,a>0、b≠0,函数的性质是其单调性由a、b的正负决定,是增函数当a>0且b>0时,是减函数当a>0且b<0时。
对数函数的图像是一个右倾的曲线,表达函数的形式为:y=alogx + b,其中a、b为实数,a>0,此函数的性质是变数变动,函数的解析式在x变动时它的单调性也由正负变化。
正弦函数的图像是一个周期性的曲线,表达函数的形式为:y=Asin(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质是其单调性由A的正负决定,是增函数当A>0时,是减函数当A<0时。
余弦函数的图像同正弦函数,表达函数的形式为:y=Acos(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质同正弦函数一样。
正切函数的图像为一个弯曲的曲线,表达函数的形式为:y=tanx,其中x代表,函数的性质是函数的单调性变化于π/2,函数的解析式在x变动到π。
高数总结:基本初等函数图像及其性质

⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。
三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。
五大基本初等函数性质及其图像

五、基原初等函数及其本量战图形之阳早格格创做1.幂函数函数称为幂函数.如,,,皆是幂函数.不统一的定义域,定义域由值决定.如,.但是正在内经常有定义的,且皆通过(1,1)面.当时,函数正在上是单调减少的,当时,函数正在内是单调缩小的.底下给出几个时常使用的幂函数:的图形,如图1-1-2、图1-1-3.图1-1-2图1-1-3函数称为指数函数,定义域,值域;当时函数为单调减少的;当时为单调缩小的,直线过面.下等数教中时常使用的指数函数是时,即.以取为例画出图形,如图1-1-4.图1-1-43.对于数函数函数称为对于数函数,其定义域,值域.当时单调减少,当时单调缩小,直线过(1,0)面,皆正在左半仄里内.取互为反函数.当时的对于数函数称为自然对于数,当时,称为时常使用对于数.以为例画出图形,如图1-1-5.图1-1-54.三角函数有,它们皆是周期函数.对于三角函数做简要的道述:(1)正弦函数取余弦函数:取定义域皆是,值域皆是.它们皆是有界函数,周期皆是,为奇函数,为奇函数.图形为图1-1-6、图1-1-7.图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为.周期,正在其定义域内单调减少的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期.正在定义域内是单调缩小的奇函数,图形如图1-1-9.图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的奇函数,图形如图1-1-10.图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期正在定义域为奇函数,图形如图1-1-11.图1-1-11反正弦函数,定义域,值域,为有界函数,正在其定义域内是单调减少的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,正在其定义域内为单调缩小的非奇非奇函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,正在定义域内是单调减少的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,正在其定义域内单调缩小的非奇非奇函数.图形如图1-1-15.图1-1-15。
(完整版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
基本初等函数性质与图像

基本初等函数性质与图像(1)2.17.1,6.17.1(2)3.1log4.2,1.1log4.2(3)4.23.0,4.24.0 (4)3.07.1,1.28.0解:(1)函数x y 7.1=在R 上是增函数 ∵ 6.12.1< ∴ 6.12.17.17.1<(2)函数x y 4.2log =在 上是 函数 ∵ ∴(3)作函数x y 3.0=和函数x y 4.0=的图像 令4.2=x如图(4)∵ 17.17.103.0=> 18.08.001.2=< ∴ 3.07.1 1.28.0变式训练1 比较大小:(1)2.07.0-,4.07.0- (2)2.1log 2.0,3.1log 2.0 (3)2.1log 2.0,2.1log 4.0 (4)9.0log 2.0,3.0log 1.21.设312.0212,)31(,3log ===c b a ,则(A )c b a <<(B )a b c <<(C )b a c <<(D )c a b <<2. 22113333333422y x ;y x ;y x y x y x y x x ;,;;y ---=======①②③④⑤⑥⑦如图所示一组函数图象.图象对应的解析式号码顺序正确的是()A.⑥③④②⑦①⑤B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤D.⑥④③②⑦⑤①3.下图给出4个幂函数的图像,则图像与函数的大致对应是( )A.112132y x y x y x y x -====①,②,③,④ B.13212y x y x y x yx -====①,②,③,④C.12312y x y x y x yx -====①,②,③,④ D.112132y x yx yx y x -====①,②,③,④B4、已知10a -<<,则( )A1(0.2)()(2)2aa a >> B1(2)(0.2)()2a aa >>C1()(0.2)(2)2aa a >> D1(2)()(0.2)2aaa >>5. 若2log 0a <,1()12b>,则 ( ) A .1a >,0b > B .1a >,0b < C. 01a <<,0b > D. 01a <<,0b <【答案】D6、幂函数的图像过点,则它的单调递增区间是( )A[)1,-+∞ B[)0,+∞ C(),-∞+∞ D(),0-∞7.(2011·山东高考)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为:(A )0 (B )3(C )1 (D 8.下列四个函数中,在区间(0,1)上是减函数的是( )A .2log y x =B . 1y x =C .1()2x y =- D .13y x =9. 下列函数中,在其定义域内既是奇函数又是增函数的是 ( )A.2+5()y x x R =-∈B.3-()y x x x R =+∈C.)(3R x x y ∈= D. )0,(1≠∈-=x R x xy 【答案】C10. 设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A.312y y y >> B. 213y y y >> C. 132y y y >> D. 123y y y >>【C11.下列函数中,在其定义域内既是奇函数又是减函数的是( )A.)0(1≠∈=x R x xy 且 B.)()21(R x y x ∈= C.)(R x x y ∈= D.)(3R x x y ∈-=12、已知ƒ(x )在R 上是奇函数,且满足ƒ(x +4)=ƒ(x ),当x ∈(0,2)时,ƒ(x )=2x 2,则ƒ(7)等于 ( )A -2 B 2 C -98 D 98 A10.设函数)(x f 为定义在R 上的奇函数,当0≤x 时,b x x f x -+-=221)((b 为常数),则=)1(f ( )A .3B .1C .3-D .1-【答案】A例1、若231++<x x a a ()1,0≠>a a 且,求:x 的取值范围。
基本初等函数图形及特性

a是有理数q/p>0, p为偶数
[0,+∞) a<0且|a|为偶数
(-∞,0)∪(0,+∞)
(0,+∞) a是有理数q/p>0, p为偶数 (-∞,+∞) a是有理数q/p>0, q为偶数 [0,+∞) a是有理数q/p>0, p、q均为奇数 a是有理数q/p<0, p为偶数 (0,+∞) a是有理数q/p<0, p为偶数 (0,+∞) a是有理数q/p<0, q为偶数 a是有理数q/p<0, (-∞,0)∪(0,+∞) p为奇数 a是有理数q/p<0, p、q均为奇数 (-∞,0)∪(0,+∞) (0,+∞) (-∞,+∞) [0,+∞)
基本初等函数
项目 名称 公式 定义域 值域 图形 特性 备注
常值函数
y=c
为常数)
(c
c
与x轴平行
a是正整数或零时
(-∞,+∞)
a>0且a为奇数
(-∞,+∞)
a是负整数
(-∞,0)∪(0,+∞) a>0且a为偶数 a<0且|a|为奇数
[0,+∞) a是有理数q/p,当|q|为偶数时,xa偶 函数, a是有理数q/p,当|q|、|p|均为奇数 a 时,x 奇函数, a 当|a|为偶数时,x 偶函数, 当|a|为奇数时,xa奇函数, 当a>0时,在[0,+∞)上严格单 调增加;当a<0时,严格单调减少。 当a>0且a为偶数时,在(-∞,0] 上单调减少;当a>0且a为奇数时, 在(-∞,0]上单调增加; 当a<0且|a|为偶数时,在(-∞,0) 上单调增加;当a<0且|a|为奇数时, 在(-∞,0)上单调减少; 当 a是有理数q/p>0,在(-∞,0] 上单调增加;a是有理数q/p<0,在 (-∞,0)上单调减少.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 6
基本初等函数
. 幂函数 (a为实数)
要记住最常见的几个幂函数的定义域及图形
.
. 指数函数
2 / 6
定义域: ,
值域: ,
图形过(0,1)点,a>1时,单调增加;a<1时,单调减少。今后 用的较多。
. 对数函数
定义域: ,
值域:,
与指数函数互为反函数,图形过(1,0)点,a>1时,单调增加;a<1时,单调减少。
. 三角函数
3 / 6
,奇函数、有界函数、周期函数 ;
,偶函数、有界函数、周期函数 ;
, 的一切实数,奇函数、
周期函数
, 的一切实数,奇函数、
周期函数 ;
,
4 / 6
. 反三角函数
; ;
; 。
5 / 6
以上是五种基本初等函数,关于它们的常用运算公式都应掌握。
注:(1)指数式与对数式的性质
由此可知 ,今后常用关系式 ,
如:
(2)常用三角公式
6 / 6
积化和差
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化积
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)