集成运算放大器的基本应用─模拟运算电路
集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
电子技术基础(恩施职业技术学院第4章 集成运算放大器的应用

- ui +
∞
+ uo
电压跟随器
Δ
,这时输出电压跟随输入电
压作相同的变化,称为电压跟随器。
例 在图示电路中,已知R1=100kΩ, Rf=200kΩ ,ui=1V,求输 出电压uo,并说明输入级的作用。
Rf - ui +
∞
+ R1 uo1 R2 - +
解 输入级为电压跟随器,由于是电压串联负反馈,因 而具有极高的输入电阻,起到减轻信号源负担的作用。且 u o1 u i 1 V ,作为第二级的输入。 第二级为反相输入比例运算电路,因而其输出电压为: Rf 200 uo u o1 1 2 (V) R1 100
学习要点
第4章 集成运算放大器的应用
模拟运算电路 4.2 信号处理电路 4.3 波形发生电路 4.4 使用运算放大器 应注意的几个问题
4.1
4.1 模拟运算电路
4.1.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条 分析依据可知:i1 i f ,u u 0 而
4.1.2 加法和减法运算电路
1、加法运算电路
根据运放工作在线性区的两条分析依据可知:
i f i1 i 2
i1
u i1 ui2 uo i i ,2 ,f R1 R2 RF RF RF u o ( u i1 ui2 ) R1 R2
- +
∞
+ uo
输入电阻为:
u i R1i1 ri R1 100 k i1 i1
平衡电阻为:
R 2 R1 // R f1 R f2 // R f3 100 //200 50 // 1 66.8 k
电工电子技术A2实验指导

实验一 常用电子仪器的使用一、 实验目的1.熟悉示波器,低频信号发生器和频率计等常用电子仪器面板,控制旋钮的名称,功能及使用方法。
2.学习使用低频信号发生器和频率计。
3.初步掌握用示波器观察波形和测量波形参数的方法。
二、实验原理在电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1—1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1—1 模拟电子电路中常用电子仪器布局图1. 低频信号发生器低频信号发生器按需要输出正弦波、方波、三角波三种信号波形。
输出电压最大可达20V (峰-峰值)。
通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。
低频信号发生器的输出信号频率可以通过频率分档开关进行调节。
低频信号发生器作为信号源,它的输出端不允许短路。
2.交流毫伏表交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。
为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。
3.示波器示波器是一种用途极为广泛的电子测量仪器,它能把电信号转换成可在荧光屏幕上直接观察的图象。
示波器的种类很多,通常可分通用、多踪多线、记忆存贮、逻辑专用等类。
双踪示波器可同时观测两个电信号,需要对两个信号的波形同时进行观察或比较时,选用双踪示波器比较合适。
本实验要测量正弦波和方波脉冲电压的波形参数,正弦信号的波形参数是幅值U m 、周期T (或频率f )和初相;脉冲信号的波形参数是幅值U m 、周期T 和脉宽T P 。
最新实验五集成运算放大器的基本应用

实验五集成运算放大器的基本应用实验五集成运算放大器的基本应用(I)─模拟运算电路─一、实验目的1、了解和掌握集成运算放大器的功能、引脚2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
3、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽 f BW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。
即U+≈U-,称为“虚短”。
(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1) 反相比例运算电路电路如图8-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1 //R F。
图8-1 反相比例运算电路图8-2 反相加法运算电路2) 反相加法电路电路如图8-2所示,输出电压与输入电压之间的关系为)URRURR(Ui22Fi11FO+-= R3=R1 //R2 //R Fi1FOURRU-=3) 同相比例运算电路图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图8-3(b)所示的电压跟随器。
模拟运算电路

模拟电子技术集成运算放大器的基本应用(Ⅰ)——模拟运算电路实验报告容包含:实验目的、实验仪器、实验原理,实验容、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验结果分析、实验思考题、实验心得。
【实验目的】1.研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
【实验仪器】1、±12V直流电源;2、函数信号发生器;3、交流毫伏表;4、直流电压表;5、集成运算放大器μA741×1片;6、电阻器、电容器若干。
【实验原理】集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
1、理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化。
满足下列条件的运算放大器称为理想运放:开环电压增益=∞输入阻抗=∞输出阻抗=0带宽=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性;(1)输出电压与输入电压之间满足关系式:=()由于=∞,而为有限值,因此,≈0。
即,称为“虚短”。
(2)由于=∞,故流进运放两个输入端的电流可视为零,即=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
2、基本运算电路(1)反相比例运算电路电路如图7-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为:=-为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。
(2)反相加法电路电路如图7-2所示,输出电压与输入电压之间的关系为:=-()=////图7-1反相比例运算电路图7-2反相加法运算电路(3)同相比例运算电路图7-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为:=1+=//当→∞时,=,即得到如图7-3(b)所示的电压跟随器。
集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。
实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。
实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。
在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。
常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。
各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。
实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。
实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。
反相积分电路实验报告

反相积分电路实验报告实验十实验报告电工学中山大学电工原理及其应用实验报告SUN YAT-SEN UNIVERSITY院(系):移动信息工程学号:审批专业:软件工程实验人:实验题目:实验十:集成运放基本应用之一--- 模拟运算电路一、实验目的1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大电路在实际应用时应考虑的一些问题。
二、预习思考题1、复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理值。
2、在反相加法器中,如Vi1 和Vi2 均采用直流信号,并选定Vi2=-1V,当考虑到运算放大器的最大输出幅度(±12V)时,|Vi1|的大小不应超过多少伏?答:首先是因为反相加法运算器,它放大倍数是10倍所以|Ui1+Ui2| =1.2 又因为Ui2=-1 所以|Ui1|=0.23、为了不损坏集成块,实验中应注意什么问题?答:不要接错电源的极性!输入信号的幅值要在运算放大器允许的范围之内,不能输入大于其限定的信号三、原理说明集成运算放大电路是一种具有高电压增益的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大电路特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大电路称为理想运放电路。
开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0 带宽fBW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压VO 与输入电压之间满足关系式VO=Aud(V+-V-)由于Aud=∞,而VO为有限值,因此,V+-V-≈0。
即V+≈V -,称为“虚短”。
(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIB=0,称为“虚断”。
这说明运放对其前级索取的电流极小。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、62
计算值
11
表3—20 反相加法运算电路得测量
Ui1(V)
0、15
0、20
0、40
0、20
Ui2(V)
0、31
0、31
0、41
0、45
理论值
-0、30
-3、55
-6、10
-4、20
实测值
-3、08
-3、59
-6、03
-4、11
表3—20 减法运算电路得测试
Ui1(V)
0、45
0、38
0、31
画出实验所需要得各种记录表格
表3—17反相比例运算电路得测量
Ui(V)
U0(V)
ui波形
uO波形
Au
实测值
计算值
表3—18 同相比例运算电路得测量
Ui(V)
U0(V)
ui波形
uO波形
AV
实测值
计算值
表3-20 反相加法运算电路得测量
Ui1(V)
Ui2(V)
实际值
理论值
表3—20 减法运算电路得测试
Ui1(V)
(2)断开信号输入接地端,调节TFG6930A函数信号发生器,将输出f=100Hz,ui=0、5V峰峰值得正弦交流信号接到反相比例电路得输入端,用交流毫伏表测量出Ui与UO,并用示波器观察uO与ui得相位关系,记入表3—17。
2、 同相比例运算电路
(1) 按图3-9(a)连接实验电路,同样输入ui=0、5V,f=100Hz得交流信号,实验步骤同内容1,将结果记入表3—18.
(1) 按图3-11连接实验电路,先进行调零。
(2) 采用直流输入信号(使用图3-12得直流信号源),实验步骤同内容3,将测量数据记入
表3-20。
3、所用仪器设备
模拟运算电路实验所需仪器设备见表3-16。
表3-16实验仪器设备
序号
名称
型号规格
数量
1
模拟电路实验箱
THM-3
1
2
函数信号发生器
TFG6930A
实验题目:集成运算放大器得基本应用─模拟运算电路
实验时间:_2016年11月14号________
班级:___14物本2班____学号:_2014294222_____姓名:_梁国烈___
一、实验预习
1、实验目得
(1)熟悉集成运放得正确使用方法。
(2)研究由集成运算放大器组成得比例、加法、减法等基本运算电路得功能。
3、 反相加法运算电路
(1)按图3-10连接实验电路,先进行调零。
(2)输入信号采用直流信号,图3-12所示电路为简易直流信号源Ui1、Ui2,实验时用万用表直流电压档测量输入电压Ui1、Ui2(且要求均大于零小于0、5V)及输出电压UO,记入表3-20.
图3-12 简易可调直流信号源
4。减法运算电路
同相比例运算电路原理如图3-9(a),它得输出电压与输入电压之间得关系为
, R2=R1//RF
当R1→∞时,UO=Ui,即得到如图3-9(b)所示得电压跟随器。图中R2=RF,用以减小漂移与起保护作用。一般RF取10KΩ, RF太小起不到保护作用,太大则影响跟随性。
(a) 同相比例运算电路 (b) 电压跟随器
Ui2(V)
理论值
实测值
三、实验报告
1、数据处理(数据表格、计算结果、误差、结果表达、曲线图等)
表3—17反相比例运算电路得测量
Ui(V)
U0(V)
ui波形
uO波形
Au
0、51
4、92
实测值
-9、61
计算值
-10
表3—18 同相比例运算电路得测量
Ui(V)
U0(V)
ui波形
uO波形
AV
0、516
5、48
实验前要瞧清运放组件各管脚得位置,切忌正、负电源极性接反与输出端短路,否则将会损坏集成块。
1.反相比例运算电路
(1) 将μA741芯片插入THM-3实验箱上8P圆针插座中,(芯片方向与圆针插座方向应一致);按图3-8连接实验电路,接通±12V电源,将信号输入端对地短接(即使Ui=0),调节调零电位器RW,用万用表得直流电压档测量芯片得6脚输出端,使Uo=0,完成运放调零.
2、实验原理及内容(简明扼要,主要就是实验接线图)
(一)实验原理
(1)反相比例运算电路。
反相比例运算电路原理如图3-8所示。对于理想运放, 该电路得输出电压与输入电压之间得关系为
为了减小输入级偏置电流引起得运算误差,在同相输入端应接入平衡电阻R2=R1//RF。
图3-8反相比例运算电路
(2)同相比例运算电路.
图3-9 同相比例运算电路
(3)反相加法电路。
反相加法电路原理如图3-10所示,输出电压与输入电压之间得关系为:
其中R3=R1//R2//RF
图3-10反相加法运算电路
(4)差动放大电路(减法器)
差动放大电路原理如图3-11所示,当R1=R2,R3=RF时, 有如下关系式
图3-11 减法运算电路
(二)实验内容与步骤
1
3
双踪示波器
V-252,20MHZ
1
4
交流毫伏表
DF2170C
1
5
数字万用表
VC9801A+
1
4、预习思考题
(1)复习教材中有关OTL放大电路部分内容,理解其工作原理。
(2)利用仿真软件仿真本实验得实验内容。
(3)电路中C2与R构成什么电路?有什么作用?
二、实验原始记录(实验完成后必须要经过实验指导教师签名认可)
Hale Waihona Puke 3、讨论(1)实验前要瞧清运放组件各管脚得位置,切忌正、负电源极性接反与输出端短路,否则将会损坏集成块。
(2)输入信号就是先按实验所给得值调好信号源再加入运放端,另外做实验前先对运放调零,若失调电压对输出影响不大,可以不用调零。
年 月 日
0、26
Ui2(V)
0、39
0、43
0、29
0、24
理论值
-0、56
0、35
-0、30
-0、24
实测值
-0、66
0、42
-0、34
-0、27
2、结论
对实验内容1与2波形,会发现U0方向正好相反,正就是同相与反相得差别,我在做实验6就是,发现直流电源不通电源就是会得到完全不同得输出波形,只有接通就是得到正确波形,因为在不通时,电路已经变了.