第四章 基于Xilinx芯片的Verilog进阶设计

合集下载

EDA技术与Verilog_HDL(潘松)第四章课后习题答案

EDA技术与Verilog_HDL(潘松)第四章课后习题答案

图4-27
1位全减器


x为被减数, y为减数, sub_in为 低位的借 位, diff r为差,su b_out为向 高位的借 位。
x 0 0 0 y 0 0 1 sub_in diffr sub_out 0 1 0 0 1 1 0 1 1
//一个二进制半减器设计进行了阐述
module h_suber(x,y,diff,s_out); input x,y; output diff, s_out; assign diff=x^y; assign s_out=(~x)&y; endmodule
reg [2:0]A ;
wire[7:0]Y ; reg G1 ,G2 ,G3;
decoder3_8 DUT ( G1 ,Y ,G2 ,A ,G3 );
initialቤተ መጻሕፍቲ ባይዱbegin $monitor($time,"A=%d,G1=%b,G2=%b, G3=%b,Y= %d\n",A, G1, G2, G3, Y); end


4-3 阻塞赋值和非阻塞赋值有何区别? 答:Verilog中,用普通等号“=”作为阻塞式赋值语句的赋值符号,如y=b。 Verilog中,用普通等号“<=”作为非阻塞式赋值语句的赋值符号,如y<=b。 阻塞式赋值的特点是,一旦执行完当前的赋值语句,赋值目标变量y即刻 获得来自等号右侧表达式的计算值。如果在一个块语句中含有多条阻塞式赋值 语句,则当执行到其中某条赋值语句时,其他语句将禁止执行,即如同被阻塞 了一样。 非阻塞式赋值的特点是必须在块语句执行结束时才整体完成赋值操作。非 阻塞的含义可以理解为在执行当前语句时,对于块中的其他语句的执行情况一 律不加限制,不加阻塞。这也可以理解为,在begin_end块中的所有赋值语句都 可以并行运行。

verilog教程

verilog教程

verilog教程Verilog是一种硬件描述语言(HDL),用于描述数字系统的行为和结构。

它是一种流行的HDL,广泛用于硬件设计和验证领域。

本教程将介绍Verilog的基本概念和语法,以帮助初学者入门。

一、Verilog的基本概念1.1 什么是VerilogVerilog是一种描述数字系统的语言,它可以用来描述硬件电路、验证设计的正确性以及进行电路仿真。

1.2 Verilog的应用领域Verilog广泛应用于硬件设计和验证领域,包括用于开发ASIC(应用特定集成电路)、FPGA(现场可编程门阵列)以及其他数字系统的设计。

1.3 Verilog的版本Verilog有多个版本,包括Verilog-1995、Verilog-2001以及最新的Verilog-2005、这些版本之间有一些语法和功能上的差异。

二、Verilog的语法结构2.1模块和端口在Verilog中,所有的电路描述都是由模块(module)组成的。

模块是电路的基本组成单元,可以看作是一个黑盒子,它接受一些输入,产生一些输出。

2.2信号声明在Verilog中,我们需要声明所有的输入和输出信号。

可以使用`input`和`output`关键字来声明这些信号。

2.3电路实现Verilog允许使用多种语句和结构来描述电路的行为和结构。

这些语句包括顺序语句、条件语句、循环语句以及层次结构。

2.4实例化模块在一个模块中,我们可以实例化其他的模块。

这样可以将一个大的电路拆分成多个小的模块,方便编写和测试。

三、Verilog的仿真和验证3.1静态验证Verilog语言本身提供了很多语法和语义层面的验证功能,对于语法和类型错误会有相应的提示。

3.2激励设计在进行电路验证时,我们需要为输入信号提供激励。

Verilog提供了一种称为`testbench`的特殊模块,用于生成输入信号并将其应用到待验证的电路中。

3.3波形仿真在Verilog中,我们可以使用仿真器来模拟电路的行为,并生成波形图来验证电路是否按预期工作。

vivado工具与verilog语言的使用实验总结

vivado工具与verilog语言的使用实验总结

vivado工具与verilog语言的使用实验总结文章标题:深入探讨vivado工具与verilog语言的使用实验总结导言:在数字电路设计与实现的过程中,vivado工具与verilog语言的使用至关重要。

通过一系列的实验,我们能够全面地了解这两者在数字电路设计中的应用,并掌握它们的使用技巧。

本文将以从简到繁、由浅入深的方式,深入探讨vivado工具与verilog语言的使用实验总结,帮助读者全面理解这一主题。

一、vivado工具的基本介绍在数字电路设计中,vivado工具是一款由Xilinx公司推出的集成化开发环境。

它拥有丰富的功能和强大的性能,能够帮助设计者完成从设计到验证的全流程。

在实验中,我们首先对vivado工具的基本操作进行了学习,包括创建工程、添加设计文件、进行综合与实现等一系列步骤。

通过实践,我们能更加熟练地运用vivado工具进行数字电路设计。

二、verilog语言的基础知识verilog语言是一种硬件描述语言,广泛应用于数字电路的设计与验证。

在实验中,我们深入学习了verilog语言的基础知识,包括模块化的设计思想、信号的赋值与传输、行为级建模和结构级建模等内容。

通过对verilog语言的学习,我们能够更好地理解数字电路的工作原理,提高设计的效率和准确性。

三、vivado工具与verilog语言的综合应用在实验的进阶阶段,我们将vivado工具与verilog语言相结合,进行了一系列的综合应用实验。

通过实际的案例学习,我们掌握了如何利用vivado工具进行综合、仿真和验证,并通过verilog语言实现各种功能模块。

这些实验不仅加深了我们对vivado工具和verilog语言的理解,同时也提高了我们的综合应用能力。

总结与回顾:通过以上的实验学习,我们对vivado工具与verilog语言的使用有了更深入的了解。

vivado工具作为一款集成化开发环境,能够为数字电路设计者提供全方位的支持;而verilog语言则作为一种硬件描述语言,能够帮助设计者更加灵活地进行数字电路设计与验证。

verilog概述

verilog概述

verilog概述Verilog是一种硬件描述语言,用于描述数字电路和系统的行为和结构。

它被广泛应用于数字电路设计、集成电路验证、嵌入式系统开发等领域。

本文将从Verilog的基本语法、模块化设计、时序建模以及仿真和综合等方面进行概述。

Verilog的基本语法包括模块定义、端口声明、内部信号定义、赋值语句等。

模块是Verilog设计的基本单元,每个模块包含输入端口、输出端口和内部信号。

端口声明用于指定模块的输入输出接口,内部信号定义用于存储和传递模块内部的中间结果。

赋值语句用于对信号进行赋值,可以采用阻塞和非阻塞赋值两种方式。

Verilog的模块化设计是其重要特点之一。

通过将复杂的电路和系统划分为多个模块,可以提高设计的可读性和可维护性。

模块间的连接通过端口进行,可以通过实例化、连接和层次化等方式实现。

模块化设计可以大大提高设计的复用性和灵活性。

Verilog中的时序建模是对数字电路和系统中时序行为的描述。

通过使用时钟、时钟边沿和延迟等概念,可以准确地描述电路和系统中的时序关系。

时钟信号用于同步电路的操作,时钟边沿用于触发时序逻辑的运算,延迟用于模拟电路中的传播延迟。

仿真是Verilog设计中的重要环节,用于验证设计的正确性和功能。

通过编写测试文件和仿真脚本,可以对设计进行功能验证、时序验证和性能验证等。

仿真还可以用于验证设计的可靠性和容错性,对于复杂系统的设计尤为重要。

综合是将Verilog代码转换为可实现的硬件电路的过程。

通过综合工具,可以将Verilog代码转换为逻辑门、寄存器和连线等硬件元件的组合。

综合的结果可以用于后续的布局布线和物理设计,最终生成可用于生产的芯片。

Verilog是一种用于描述数字电路和系统的硬件描述语言。

通过Verilog的基本语法、模块化设计、时序建模、仿真和综合等技术,可以实现复杂的数字电路和系统设计。

Verilog的应用领域广泛,包括数字电路设计、集成电路验证和嵌入式系统开发等。

华为FPGA设计高级技巧(Xilinx篇)

华为FPGA设计高级技巧(Xilinx篇)

共62页产品名称Xilinx 篇yyyy/mm/dd日期2001/09/15日期深圳市华为技术有限公司版权所有 不得复制修订记录内部公开请输入文档编号FPGA 设计高级技巧目 录414.3 减少关键路径的逻辑级数.............................................404.2IF 语句和Case 语句揭开逻辑级数未变速度更快SRLVirtexIIXilinx篇626.3.3 专有资源的利用................................................616.3.2 Distributed RAM 代替通道计数器...................................616.3.1 Distributed RAM 代替BlockRAM ....................................616.3 如何降低芯片面积..................................................616.2.9 迂回策略为关键路径腾挪空间进行位置约束.....................................616.2.7 关键路径单独综合.......................................616.2.5 专有资源的利用................................................616.2.4 基本设计技巧..................................................616.2.3 采用BUFGS ...................................................616.2.2 对线延时比较大的netTIG 和Multi-Cycle-Path ...................606.2 如何提高芯片速度..................................................606.1 可能成为关键路径的电路.............................................606 综合运用..............................................................605.4 TimingAnalyzer 的作用...............................................595.3 FloorPlanner 的作用..................................................595.2 FPGA Editor 的作用..................................................595.1.3 正确看待map 之后的资源占用报告..................................585.1.2 布局布线策略设计方案阶段对关键电路的处理.......................585.1 布局布线..........................................................585 如何使用后端工具.......................................................574.16 LFSR 加1计数器...................................................574.15 SRL 的使用.......................................................574.14 Block SelectRAM 的使用.............................................564.13 Distributed RAM 的使用.............................................554.12 高效利用IOB ......................................................544.11 利用LUT 四输入特点减少扇出巧妙地延时................................494.7 组合逻辑和时序逻辑分离.............................................474.6流水线................................................464.5.4 综合工具与资源共享............................................464.5.3 子表达式共享..................................................454.5.2 loop 语句......................................................444.5.1 if 语句........................................................444.5 资源共享..........................................................434.4 合并if 语句赋予关键路径最高优先级............................内部公开请输入文档编号FPGA设计高级技巧627 感谢 (62)6.3.4 基本设计技巧..................................................表目录33表5 VirtexII 的DCM 分布表.................................................27表4 VirtexII乘法器速度表.......................................25表3 带奇偶校验位的Block RAM 配置表........................................24表2 VirtexII 的BlockRAM 分布表顶部上半部分58图65 15位基本型LFSR 计数器在VIRTEX 器件中的实现...........................57图64 采用Distributed RAM 实现多路加1计数器..................................55图63 输入输出寄存器移入IOB 中............................................55图62 VirtexE IOB 结构示意图...............................................54图61 采用三态电路实现电路选择............................................54图60 多路选择..........................................................53图59 扇出较小..........................................................53图58 扇出较大..........................................................52图57 组合逻辑在前..............................................52图56 组合逻辑在后..............................................49图55 Mealy 状态机的基本结构...............................................49图54 采用流水线之后的电路结构............................................48图53 采用流水线之前电路结构..............................................46图52 资源共享后一个加法器................................................45图51 资源共享前4个加法器................................................45图50 资源共享后2个加法器...............................................42图48 critical 信号只经过一级逻辑............................................42图47 critical 信号经过2级逻辑...............................................41图46 case 语句完成电路选择................................................40图45 if-else 完成多路选择..................................................39图44 并行加法电路.......................................................39图43 串行加法电路.......................................................39图42 超前进位..........................................................38图41 串行进位..........................................................37图40 No-read-on-write mode ................................................37图39 Write first mode ......................................................36图38 Read first mode ......................................................36图37 完整的单端口Block Select RAM .........................................35图36 门数增加但资源占用减少FPGA设计高级技巧关键词速度与面积压缩线延时腾挪空间摘 要以速度和面积为主题缩略语清单:ASICConfigurable Logic Block DCIDigital Clock ManagerDDRDelay-Locked Loop FPGAGeneral Routing MatrixIOBLinear Feedbak Shift RegisterLUTSum of Product SRLCustom Constraints File 参考资料清单:内部公开请输入文档编号FPGA 设计高级技巧时钟资源1 前言随着HDL 硬件描述语言综合工具及其它相关工具的推广连线等工作解脱开来极大地提高了工作效率有利就有弊现在越来越多的工程师不关心自己的电路实现形式我只要将功能描述正确工程师在用HDL 语言描述电路时或者非常模糊映射到芯片中又会是什么样子遇到问题容量更大的FPGA 器件更为要命的是更不了解与器件结构紧密相关的设计技巧工具不行导致问题迟迟不能解决导致开发成本急剧上升我们的设计规模越来越庞大几百万门的电路屡见不鲜我们所采用的器件工艺越来越先进而在对待深亚微米的器件上要更多地关注以前很少关注的线延时ASIC 设计以后也会如此此时设计技巧上有所提高而且从节约公司成本角度出发本文从澄清一些错误认识开始以速度和面积为主题本文对读者的技能基本要求是如加法器RAM 等熟悉基本的同步电路设计方法对FPGA 的结构有所了解2 综合工具与代码风格硬件描述语言和综合工具的产生然而一种不好的现象也在逐步蔓延只关注功能是否实现很少考虑电路到底是如何实现的如速度如果将设计看成是一个化学变化我们所掌握的背景知识才是参加化学反应的分子因此不能完全指望工具只有我们才是决定设计成败的关键一般包括如下两个过程前者是把行为级的描述通过一定的算法转化成门级的描述与用户约束无关通过算法映射到相应的工艺库中的器件上是映射到厂商的Gate 库中是映射到FPGA器件的单元结构中当设计代码的的风格不一样时对ASIC来说器件库一般也是GateÎÒÃDz»ÄÑÀí½âCode Style 对FPGA设计的重要性如下的16选1MUXÈçcase语句后者使用BUFT的描述图2 使用内部三态线描述的Mux2.2不同综合工具的性能不同综合工具的针对目标不一致和各综合工具的不同性能目前Design CompilerFC2Leonardo 其中DC主要是用于ASIC的综合工具其中Leonardo 是做FPGA 综合工具的先驱Synplicity公司出品但无论哪家综合工具都必须紧密结合各FPGA厂家的FPGA结构从目前来看优选Synplify 或Leonardo 综合工具到目前为止如Virtex 系列的进位链目前是这样因为综合工具一直在升级因此无法得到更好的性能则可综合出来Synplicity公司的综合工具比较优秀一点不过价格太贵导致设计性能变差若想得到更好的性能但这种基于FPGA器件的代码设计FPGA设计与ASIC设计的兼容性因此要采取恰当的风格对FPGA设计而言1. 资源共享的应用限制在同一个module里综合工具才能最大限度地发挥其资源共享综合作用这样3. Critical path所在的module与其它module分别综合对其它module采用面积优先的综合策略4. 尽可能Register所有的Output¶Ô¼ÓÔ¼Êø±È½Ï·½±ãÕâ¶Ô×ۺϷdz£ÓÐÀûËÙ¶È˫ӮµÄÄ¿µÄ¾ßÌå´óС6. 一个module尽量只有一个时钟更多的代码风格verilog代码书写规范3 FPGA器件结构许多工程师在做设计时不关心自己的电路是怎么实现的并且认为至于它是如何实现的这实际是轻实现其结果是在我们的设计中人为地制造了一大堆第一个设计有20~30µ±È»Èç¹û´ó¼ÒÔÚÒ»¸ö¸ßÊÖÈëÔÆµÄ»·¾³Ï½øÐÐѬÌÕÎÒÃÇÔÚÇ°ÃæÌáµ½¶øÇÒ¹¤¾ß±¾ÉíÒ²²»Ò»¶¨·Ç³£ÖÇÄÜÏëÒ»ÏëÄÇôËü»¹ÓÐÓÅ»¯µÄÓàµØÂðÎÊÌâ×Ü»áÔ½À´Ô½¶àÔÚÕâÖÖÇé¿öÏÂÁ˽âÎÒÃǵÄÉè¼ÆÊÇÈçºÎʵÏÖµÄÈç½øÎ»Á´IOB中的register等如果没有如修改代码或者是一个非常行之有效的手段只有工具与大脑完美结合主要目的是想让读者知道了解FPGA器件结构对做好FPGA设计有多么重要可参见一书3.1器件结构对Coding Style的影响3.1.1 FPGA结构Altera 的FPGA一般的结构都是由一些CLB 的宏单元组成LUT时序单元如Altera 的FPGA和Xilinx的FPGA都采用4输入的查找表Component的延时是固定的我们知道对FPGAÈçÀûÓÃÁ˶àÉÙ¼¶µÄ²éÕÒ±íÏßÑÓʱÔò·´Ó³ÔÚCLB与CLB的互连上就需要越长的互连线在FPGA中如进位链等目的是减少对CLB数目的使用如Virtex 系列中但不占用LUT的资源可以用来实现快速进位的加法器或宽输入的函数因此就应该考虑如何更好地利用FPGA器件中的这些特点或标准单元其线延时不象FPGA那样因此深亚微米级时但更多的是与门因此3.1.3 Coding Style的对比由于器件结构的不同针对ASIC和FPGAFPGA器件的设计性能很大程度依赖于Coding ¶ÔGate Array或shandard cellÉè¼ÆÒ²²»±ØÒªÇóºÜ¸ßµÄCoding 技术66M 就很容易实现我们很少看见几十层逻辑级的设计8 级逻辑级一般只能实现到50M左右因此要达到高速和好的性能则需要好的代码风格和好的设计策略那就是提到Code Style 时往往忽略了对器件结构的了解对FPGA而言是以减少LUT的个数为主要手段不一定能提高速度和降低面积注意门数和面积不一定成正比至于为什么自然会明白可提供如下功能提供更高密度的FPGA资源xc2v40xc2v10000最高支持420M内部时钟频率和840Mb/s 的I/O支持19 种 single-ended 标准的IO 和 9种差分IO 标准VirtexII 具有XCITE 功能IOB中集成了DDR 寄存器支持可编程的sink current在RAM上 对外RAM接口性能提高400M b/s DDR-SDRAM 接口400Mb/s FCRAM 接口333Mb/sQDR-SRAM 接口600Mb/s Sigma RAM 接口567ÔöÇ¿ÁËÒÔÍùDLL 功能16个全局时钟8.15um 技术3.3 结构概述VirtexII 器件结构示意图如下3 VirtexII 结构示意图VirtexII 器件在结构上与Virtex 和VirtexE 是相似的但增加了一个专有乘法器结构在IOB 和CLB 中也有点不同3.3.1 CLBVirtexII 的CLB 与Virtex Family 和VirtexE Family 结构有点不一样在结构的安排上如下示意图Xilinx篇图4 VirtexII 的CLB结构示意图与以往不同的是4个Slice 按照如上图的阵列排布GRM在CLB中保证4个slice 之间快速的互联每列两个slice µ«Á½Áй²ÓÃÒ»¸öÒÆÎ»Á´3.3.2 SliceSlice基本元件包括G函数FFX一般用做D触发器另外Slice中还集成了carry logicmultiplexers等元件高性能电路图5 SLICE结构示意图内部公开请输入文档编号FPGA设计高级技巧值得大家注意的是由于设计者没有注意利用Slice中的一些高速特性或者FPGA资源实际利用率不高图6 VirtexII 的Slice 结构图VirtexII 的Slice 增加了不少的结构3.3.3 LUT每个Slice 包含两个4输入的LUT4000系列的功能也就是当做组合逻辑电路这两个功能在随后的章节会详细介绍它的4个输入G1F函数F4通过对RAM中各存储单元进行配置4输入任意组合逻辑这本身就是它原来的特点也可配置成双端口RAM1与此有关详情参见本章部分要提醒大家注意的是不管你是几输入的函数还可参见本章补充说明部分SRL从而大大节省线延时和面积如下图所示CLB的4个Slice的的SRL16移位输出可串成一个大的移位链LUT的MC15就是移位的输出作为F函数移存器的shiftin图7 SRL的移位链在使用SRL时请注意一个Shift Registers LUT只能有一个数据输出和一个数据输入VirtexII 的Slice 增加了MUXF7MUXF5F的输出可在一个CLB中实现4选一的MUXMUXFX MUXF7ÊäÈëΪFXINA输出为FX F7或F8要看Slice 具体位置用于MUX相邻两个Slice 的MUXF5的输出X1Y0两个Slice 的MUXFX可例化成MUXF6两个Slice¼´¿ÉÔÚÒ»¸öCLB中实现8选1的MUXMUXF7Òò´ËÖ»ÄÜÊÇX0Y1 这个Slice 的MUXFX可例化成MUXF7ʵÏÖ´óÓÚ8选1的MUX般工具无法直接利用该功能但通过F7可在一个CLB 中的4个Slice 实现一个16选1 的MUX用于MUX 相邻两个Slice 的F7通过MUXF8实现更宽的函数MUXF5FFF F 图8 VirtexII 的MUXFX 连接图3.3.6 Carry Logic 和Arithmetic Logic GatesArithmetic Logic Gates 包括一个XOR 和一个MULTIAND VirtexII 的Slice 结构图与基本Slice 中的进位链结构一样数据流从下往上进位链结构如下图所示图9 进位链结构示意图下图是一个采用进位链实现3bit全加器示意图图10 使用进位链实现加法器采用进位链如下图所示图11 使用进位链级联实现高速宽函数运算由于乘法器可看成累加器使用专有进位链还可实现乘法器与以往的器件不同的是如下图所示图12 VirtexII 的两个独立进位链注意3.3.7 SOPVirtexII 的每个Slice 中有一个OR 用于把Slice 中的进位链在水平方向上级联起来灵活的SOP链内部公开请输入文档编号FPGA设计高级技巧图13 VirtexII 的SOP 链上图中横向的ORCY连接成4输入的或门只是提供了4个attribute SRLOW前两者用于描述SR¿ØÖƵĸ´Î»ÊôÐÔ后两者用于描述在没有外部复位信号时configuration 或通过全局的GSR网络复位为0或为1´æ´¢µ¥Ôª½á¹¹ÈçÏÂʾÒâ14 FFX/FFY结构示意图上图的DY是G函数发生器输出信号Y在Slice 外部直接反馈进来的信号VirtexII 的Slice 结构示意图当配置成单端RAM时当配置成双端RAM时且是一端口可读可写一个VirtexII的CLB含4个Slice下面两图是Distributed RAM的应用例子图15 单端口32x1 RAM图16 双端口16x1 RAM3.4.2 Block RAMVirtexII 的Block RAM资源比以往的增加很多在整个VirtexII 系列中4列或6列的规律进行分布图17 VirtexII 的Block RAM 分布规律其中的N 等于该器件CLB的列数除以4±í2 VirtexII 的BlockRAM 分布表由于块RAM有18bit ÿ¸ö¶Ë¿Ú¿ÉÅä³ÉÈçϽṹ表3 带奇偶校验位的Block RAM 配置表VirtexII 的block RAM支持三种写模式new data is written 图18 Write first 模式Read first图19 Read first 模式NO CHANGE图20 No Change 模式关于Block RAM 更多的内容sp_block_mem.pdf3.5 乘法器资源VirtexII 系列提供有专门的乘法器结构VirtexII 的乘法器资源分布图与Block RAM 的分布图一样共用4个 开关矩阵内部公开请输入文档编号FPGA 设计高级技巧图21 乘法器与Block RAM器件中乘法器位置如下图图23 乘法器块乘法器可实现高速的低工耗的乘法器速度如下表Xilinx篇表4 VirtexII 乘法器速度表3.6 IOB一般的IOB I/Obuf存储单元包括输出寄存输入三态控制线也可以不经过寄存IOB中提供5中I/O Buf IBUF输出buf OBUFT双向buf IBUFGVirtex II 的IOB 基本结构与基本的IOB一样增加了一些IO标准和DCI功能IOB的位置有较大的改变VirtexII的所有用户IO 可配成差分信号因此5个IOB共用一个开关矩阵如下示意图图24 VirtexII的IOBVirtexII的IOB与基本的IOB结构相似I/Obuf 和输入延时线DELAY构成用于实现DDRÁ½¸ö´æ´¢µ¥ÔªÍ¨¹ýDDR MUX来实现DDRÒªÇóͨ¹ýDCM来产生DDR的正反沿时钟信号图25 VirtexII 的IOB中的DDR具体的结构如下26 VirtexII 的IOB 实际结构3.6.2 Select I/OVirtexII 的Select I/O 支持的标准有所增加每个banks 提供VRN和VRP参考电压VirtexII 提供19 种signal-ended IO 标准--LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)--PCI-X at 133MHz, PCI (3.3V at 33MHz and 66MHz)--GTL, GTLP--HSTL (Class I, II, III, and IV)--SSTL (3.3V and 2.5V, Class I and II)--AGP-2X提供如下的差分标准VirtexII 集成了DCI功能在芯片内部提供IO管脚的特定匹配电阻简化单板设计3.7 Clock ResourceVirtexII 的时钟资源比以往增加了很多如果想要了解更多的信息Virtex³õ¸å8个分布在芯片的顶部这些时钟管脚还可以当作普通管脚使用以顶部时钟为例由开关矩阵切换出16个时钟信号线16根时钟信号线通过8个时钟MUXÓëµ×²¿µÄ8个全局时钟信号组成全芯片的16个全局时钟信号图27 VirtexII 的Clock Pads具体的结构如下图各有一个开关矩阵8个时钟信号连到顶部的开关矩阵切换出16个时钟信号连到下面的8个时钟MUX 上28 VirtexII 的时钟在VirtexII 的器件中可以保证芯片的4个区域内最多都可以获得8个全局时钟信号在安排时钟管脚时必须考虑一下图29 VirtexII 的时钟资源分布原理3.7.2 CLK MUX在VirtexII 的器件中因此全局时钟资源可由时钟管脚BUFGMUX 的结构如下顶部Xilinx篇图30 VirtexII 的BUFGMUX该BUFGMUX 可有如下几种配置即普通的全局时钟BUFͼ31 VirtexII 的BUFGBUFGCE如下结构图图32 VirtexII 的BUFGCEBUFGMUX如下结构图内部公开请输入文档编号FPGA设计高级技巧图33 VirtexII 的BUFGCE3.7.3 DCMVirtexII 器件结构对Virtex 的DLL做了增强Digital Clock Manager DCM一般分布在芯片的底部和顶部如下画出V2250芯片的8个DCM4个在底部图34 VirtexII 250 的DCM 位置VirtexII 系列器件的DCM分布表如下表5 VirtexII 的DCM分布表VirtexII 的DCM 的符号如下35 VirtexII 的DCMDCM是对DLL的增强DLL延时锁相环通过该延时锁相环可保证DCM的输入DPS数字相移器DFS数字频率合成器DSS数字扩频本节所有内容来自个人推测3.8.1 LUT 如何配置成组合逻辑电路门数增加但资源占用减少之谜前面本文提到它的4个输入其实是RAM 的地址线它是怎么实现组合电路的呢以LUT 中的F函数为例F3F= F4F2F4F2表示非运算.or时1其它的值都是F4与门F4LUTÎÒÃÇÖ»Òª½«µØÖ·Îª和的存储单元置为则该RAM 的功能实际就是F3与门在实际实现时111111101ͬʱF1固定接或我们可以得出结论在实际实现时都会变成4输入的组合电路对于在一个LUT 内可以实现的组合电路对LUT 而言3. 只要是在一个LUT 内实现的逻辑逻辑延时基本一样面积优化对Xilinx 而言根据上述结论如果想速度更快而不是逻辑级数则应当努力减少LUT 的个数这一点与ASIC 设计完全不一样内部公开请输入文档编号FPGA设计高级技巧图36 门数增加但资源占用减少我们知道一个LUT 只有一个输出后面的2个三输入或门要各占用一个LUTLUT 级数是2级虽然增加了一个2输入与门也是2级它只占用2个LUTÏÔÈ»ÃÅÊýÔö¼Óµ«×ÊÔ´Õ¼ÓüõÉÙµäÐͰ¸ÀýÎÒÃÇÖ»ÒªÕÆÎÕÁ˵¥¶Ë¿ÚRAM本节以单端口RAM 为例进行说明Xilinx篇图37 完整的单端口Block Select RAM上图是一个完整的单端口RAM结构我们这里准备讲的单端口RAM是上图中的核心部分Block MemoryËüµÄдÓÐÈýÖÖ²Ù×÷ģʽRead FirstNo Change根据其输入输出信号相位关系图38 Read first mode图39 Write first mode图40 No-read-on-write mode图中可以等价看成Distributed RAM¾-³£Óöµ½ËÙ¶È»òÃæ»ýÎÊÌâÉè¼ÆÒªÃ´ËٶȲ»Âú×ãÒªÇó»òÕßÁ½Õß¶¼²»Âú×ãÉè¼ÆÒªÇó±¾ÕÂ×ÅÖØ´ÓËٶȺÍÃæ»ý½Ç¶È³ö·¢ÒÔ»ñµÃ×î¼ÑµÄЧ¹ûÓÐЩ·½·¨ÊÇÒÔÎþÉüÃæ»ýÀ´»»È¡ËÙ¶ÈÒ²ÓÐЩ·½·¨¿Éͬʱ»ñµÃËٶȺÍÃæ»ýµÄºÃ´¦Ó¦µ±ÒÀ¾Ýʵ¼ÊÇé¿ö¶ø¶¨向关键路径要时间部分为了获得更高的速度尽量压缩线延时在非关键路径上尽量优化电路结构特别提醒本文提到的一些设计技巧可能在绝大部分情况下已经失效在一些复杂电路因此是为了让大家在遇到困难时可以尝试本文所提供的设计技巧注意本章节所举的代码都采用的是VHDL语言我们认为语言是次要的另外可参见每一个VHDL信号赋值每个信号代表一条信号线能将不同的实体连接起来下面的VHDL实例为加法器的进位链电路的两种可能的描述串行进位链-- A is the addend-- B is the augend-- C is the carry-- Cin is the carry inC0 <= (A0 and B0) or((A0 or B0) and Cin);C1 <= (A1 and B1) or((A1 or B1) and C0);图41 串行进位例并行结构c1 <= g1 or (p1 and g0) or(p1 and p0 and cin);图42 超前进位显然但面积大但面积小从其实现结构来看由于进位链是FPGA的专有资源4.1.2使用圆括号处理多个加法器控制设计结构的另一种方法是使用圆括号来定义逻辑分组例图43 串行加法电路用圆括号重新构造的加法器分组如下所示Z <= (A + B) + (C + D);图44 并行加法电路上述两种方法的在速度和面积上的区别是第一种方法但整体速度慢如果信号D 是关键路径或者BD无关第二种方法但整体速度快BD的时序要求都比较苛刻4.2IF 语句和Case 语句而Case 语句生成的逻辑是并行的IF 语句可以包含一套不同的表达式通常但占用面积较大IF-Else 结构速度较慢如果对速度没有特殊要求则可用IF-Else 语句完成编解码为了避免较大的路径延时用IF 语句实现对延时要求苛刻的路径时Critical Signal有时可以将IF 和Case 语句合用用IF-Then-Else 完成8选1多路选择器MUX6to1:process(sel,in)beginif(sel= "000") then out <= in(0); elseif(sel = "001") then out <= in(1); elseif(sel = "010") then out <= in(2); elseif(sel = "011") then out <= in(3); elseif(sel = "100") thenout <= in(4);else out <= in(5); end if;end process;内部公开请输入文档编号FPGA设计高级技巧图45 if-else 完成多路选择下面的例子是用Case 语句完成8选1多路选择器的VHDL 实例Virtex 可以在单个CLB 中完成一个8选1的多路选择器因此例process( C, D, E, F, G, H, I, J, S )begin case S iswhen 000 => Z <= C;when 001 => Z <= D;when 010 => Z <= E;when 011 => Z <= F;when 100 => Z <= G;when 101 => Z <= H;when 110 => Z <= I;when others => Z <= J; end case;end process;图46 case 语句完成电路选择4.3 减少关键路径的逻辑级数在FPGA 中critical pathΪÁ˱£Ö¤ÄÜÂú×ãʱ¼äÔ¼Êø¼õÉٹؼü·¾¶ÑÓʱµÄ³£Ó÷½·¨ÊǸø×î³Ùµ½´ïµÄÐźÅ×î¸ßµÄÓÅÏȼ¶ÏÂÃæµÄʵÀýÃèÊöÁËÈçºÎ¼õÉٹؼü·¾¶ÉϵÄÂß¼-¼¶ÊýÇ°ÃæÌáµ½µÄ´®Ðмӷ¨Æ÷Ò²ÊÇÒ»¸ö°¸Àý4.3.1 通过等效电路此例中critical 信号经过了2级逻辑if (clk'event and clk ='1') then内部公开请输入文档编号FPGA设计高级技巧if (non_critical='1' and critical='1') thenout1 <= in1;elseout1 <= in2;end if;end if;图47 critical信号经过2级逻辑为了减少critical路径的逻辑级数critical信号只经过了一级逻辑图48 critical信号只经过一级逻辑注意4输入LUT特点但对ASIC而言4.3.2调整if语句中条件的先后次序设计者习惯用if语句来描述电路功能也采用有优先级概念的if语句来描述If 条件1 thenDo action1Else if 条件2 thenDo action2Else if 条件3 thenDo action3在实际情况中条件2ÔòÉÏÊöif语句无所谓谁优先是关键路径应当改成提高设计速度前面提到即便是在没有优先级的电路中例如信号置1Else if 条件2 then信号置0Else if 条件3 then信号置1Else if 条件4 then信号置0如果上述条件没有优先级我们建议合并if语句中各条件否则下面的VHDL实例说明如何使用资源共享来减少逻辑模块的数量没有资源共享时用了4个加法器完成if (...(siz = "0001")...) thencount <= count + "0001";else if (...((siz = "0010")...) thencount <= count + "0010";else if (...(siz = "0011")...) thencount <= count + "0011";else if (...(siz == "0000")...)thencount <= count + "0100";end if;利用资源共享可以节省2个加法器if (...(siz = "0000")...) thencount <= count + "0100";else if (...) thencount <= count + siz;end if;例if (select = '1') thensum<=A +B;elsesum<=C +D;end if;图49 资源共享前利用资源共享只用2个选择器和1个加法器实现if (sel ='1') thentemp1 <=A;temp2 <=B;elsetemp1 <=C;temp2 <=D;end if;sum <= temp1 + temp2;图50 资源共享后运算符占用更多的资源综合工具必须对所有的条件求值综合工具用4个加法器和一个选择器实现req²Å½¨Òé²ÉÓÃÕâÖÖ·½·¨end if;end loop;图51 资源共享前4个加法器如果信号不是关键信号这样在执行加法运算前修改代码如下for i in 0 to 3 loopif (req(i)='1') thenoffset_1 <= offset(i);end if;end loop;sum <= vsum + offset_1;图52 资源共享后一个加法器4.5.3子表达式共享一个表达式中子表达式包含2个或更多的变量应共享这些运算通过声明一个临时变量存储子表达式下面的VHDL实例描述了用相同的子表达式完成一组简单的加法运算4.5.4 综合工具与资源共享通过设置FPGA CompilerII/FPGA Express的相应选项而不需声明一个临时变量存储子表达式如下sum1 <= A + B + C;sum2 <= D + A +B;sum3 <= E + (A +B);则sum1和sum3 可共享(A +B),但与sum2不共享3. 必须在同一block中如下但与S1不可共享最好尽量自行编写共享资源代码所采用的综合工具在FPGA 阶段和转ASIC 阶段可能不同PipeliningËüµÄ»ù±¾Ë¼ÏëÊǰÑÔ-À´±ØÐëÔÚÒ»¸öʱÖÓÖÜÆÚÄÚÍê³ÉµÄ²Ù×÷·Ö³É¶à¸öÖÜÆÚÍê³ÉÒò´ËÌá¸ßÁËÊý¾ÝÍÌÍÂÁ¿ËùÒÔ¶ÔFPGA 设计而言而又不耗费过多的器件资源采用流水线后必须特别考虑设计的其余部分在定义这些路径的延时约束时必须特别小心其延时为源触发器的clock-to-out 时间多级逻辑的走线延时和目的寄存器的建立时间之和采用流水线最终的结果是系统的工作频率提高了采用流水线前的电路内部公开请输入文档编号FPGA设计高级技巧process(clk, a, b, c) begin if(clk'event and clk = '1') thena_temp <= a;b_temp <= b;c_temp <= c;end if;end process;Process(clk, a_temp, b_temp, c_temp)beginif(clk'event and clk = '1') thenout <= (a_temp * b_temp) + c_temp;end if;end process;图53 采用流水线之前电路结构例Xilinx篇c_temp2 <= c_temp1;end if;end process;process(clk, mult_temp, c_temp2)beginif(clk'event and clk = '1') thenout <= mult_temp + c_temp2;end if;end process;图54 采用流水线之后的电路结构4.7组合逻辑和时序逻辑分离包含寄存器的同步存储电路和异步组合逻辑应分别在独立的进程中完成这样在综合后面积和速度指标较高Mealy状态机的基本结构如下图所示图55 Mealy状态机的基本结构内部公开请输入文档编号FPGA设计高级技巧由图可看出当前状态寄存器和输出逻辑三部分组成当前状态寄存器为时序逻辑Mealy 机可由三个进程实现例Xilinx篇。

Verilog HDL简明教程中文版

Verilog HDL简明教程中文版

中文版Verilog HDL简明教程Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。

被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。

数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。

Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。

所有这些都使用同一种建模语言。

此外,Verilog HDL语言提供了编程语言接口PLI,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。

Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。

因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。

语言从C编程语言中继承了多种操作符和结构。

Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。

但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。

当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。

第1章简介Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。

被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。

数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。

Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。

所有这些都使用同一种建模语言。

此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。

Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。

verilog数字系统设计教程

verilog数字系统设计教程

verilog数字系统设计教程Verilog数字系统设计教程作者:XXX引言:数字系统设计是现代电子工程中非常重要的一部分。

Verilog作为一种硬件描述语言,提供了一种方便且专业的方法来设计和描述数字系统。

本教程旨在为初学者提供关于Verilog数字系统设计的详细介绍和指导。

1. Verilog简介Verilog作为一种硬件描述语言,用于描述数字系统的功能、结构和时序行为。

它类似于C语言,但更专注于硬件级别。

Verilog可以用于设计各种数字系统,例如处理器、嵌入式系统、通信设备等。

2. Verilog基本语法2.1 模块定义Verilog的基本单位是模块。

模块是数字系统的基本组成部分,可以看作是一个独立的功能单元。

模块可以包含输入、输出、内部信号以及其它子模块等。

2.2 信号声明在Verilog中,可以声明各种类型的信号,包括输入信号、输出信号和内部信号等。

信号声明定义了信号的类型、宽度和方向。

3. Verilog建模3.1 组合逻辑建模组合逻辑是数字系统中最基本的部分。

Verilog提供了各种组合逻辑建模的方法,包括逻辑运算、选择结构和多路复用器等。

3.2 时序逻辑建模时序逻辑是数字系统中需要考虑时序关系的部分。

Verilog提供了时序逻辑建模的方法,包括触发器、计数器和时序控制等。

4. Verilog仿真4.1 仿真器介绍仿真器是用于验证数字系统设计的工具。

Verilog可以与各种仿真器配合使用,用于验证设计的正确性和性能。

4.2 仿真流程仿真流程包括编写测试平台和测试用例、编译和仿真等步骤。

本节将介绍基本的仿真流程和相关技巧。

5. Verilog综合5.1 综合概述综合是将Verilog代码转换为逻辑门级描述的过程。

综合器通过将Verilog代码映射到实际的硬件库中,生成能够实现指定功能的逻辑电路。

5.2 综合流程综合流程包括综合前的优化和综合本身两个阶段。

本节将介绍综合的基本流程和主要考虑因素。

FPGA入门教程_ALTERA_Quartus_II__和_XILINX___ISE_CPLD入门教程_教案_VHDL_Verilog_例程讲解

FPGA入门教程_ALTERA_Quartus_II__和_XILINX___ISE_CPLD入门教程_教案_VHDL_Verilog_例程讲解
广州邦讯信息系统有限公司 FPGA培训教程
2011-8
FPGA介绍
何为FPGA?

FPGA(Field-Programmable Gate Array),即现 场可编程门阵列,它是在PAL、GAL、CPLD等可编 程器件的基础上进一步发展的产物。它是作为专用 集成电路(ASIC)领域中的一种半定制电路而出现 的,既解决了定制电路的不足,又克服了原有可编 程器件门电路数有限的缺点
Verilog HDL 的抽象级别
语言本身提供了各种层次抽象的表述,可以用详细 程度有很大差别的的多层次模块组合来描述一个 电路系统。 行为级:技术指标和算法的Verilog描述 RTL关级:具体的晶体管物理器件的描述
Verilog HDL 的抽象级别
设计复杂数字系统的工具 和手段
两种硬件描述语言 : Verilog VHDL
有哪几种硬件描述语言? 各有什么特点?

Verilog HDL - 较多的第三方工具的支持 - 语法结构比VHDL简单 - 学习起来比VHDL容易 - 仿真工具比较好使 - 测试激励模块容易编写
Verilog HDL 的发展历史
两者建模能力的比较
行为级 的抽象
系统级
SystemVerilo g
算法级
VHDL Verilog
寄存器传输级
逻辑门级 VITAL
开关电路级
VerilogHDL 与 VHDL 建 模 能 力 的 比 较
Verilog HDL有什么用处?
在各种抽象层次上描述数字电路
测试各种层次数字电路的行为 设计出正确有效的复杂电路结构

数字信号处理系统的实现

非实时系统: 通用的计算机和利用通用计算机改装的设备,主要 工作量是编写 “C” 程序。输入/输出数据大多为文 本 。 实时系统: 信号处理专用的微处理器为核心的设备,主要工作 量是编写汇编程序。输入/输出数据大多为数据流, 直接用于控制 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嵌入式系统工程系
代码风格与可综合设计
同步电路设计
优点 • 容易使用寄存器的异步复位/置位端,以使整个电路有一个确 定的初始状态; • 有效避免毛刺,提高可靠性; • 简化时序分析过程; • 减少对工作环境的依赖性,提高可移植性; 原则 • 尽可能使用单时钟(全局时钟) • 尽可能使用单时钟沿触发(posedge clk) • 避免使用门控时钟(组合逻辑驱动的时钟) • 若使用分频时钟应当统一管理
嵌入式系统工程系
企业代码风格
2.Module
顶层模块应只是内部模块间的互连,除了内部的互连 和模块的调用外尽量避免再做逻辑(如不能再出现对 reg变量的always赋值,不能再用assign语句完成复 杂逻辑); 每一个模块应在开始处注明文件名功能描述引用模块 设计者设计时间及版权信息(ISE生成模板); 不要对input进行驱动, 在module 内不要存在没有驱动 的信号,更不能在模块端口中出现没有驱动的输出信 号,避免在仿真或综合时产生warning,干扰错误定位; (避免由于未驱动产生的x,z)
目标:功能正确,性能最优
嵌入式系统工程系
通用代码风格
逻辑复用
Synplify提供逻辑复用选项,但若要获得最佳的复用 效果,在源代码设计中应采用显式的复用控制逻辑; 节约面积。
逻辑复制
Synplify提供最大扇出选项,如果扇出过大(驱动过 多后续逻辑),需增加缓冲器提高驱动能力,但信号 延迟增大; 增加面积。
嵌入式系统工程系
代码风格与可综合设计
Verilog HDL语言本身的规范只面向仿真
不使用综合工具不支持的Verilog结构
• 除了wire、reg的多数数据类型 • 开关级原语 • deassign、wait等行为语句 • UDP和specify模块 ……
遵循可综合设计原则
代码综合出预想的逻辑 行为描述的完整性
嵌入式系统工程系
企业代码风格
2.Module
严格芯片级模块的划分,只有顶层包括IO引脚; 模块输出寄存器化,对所有模块的输出加以寄存,输 出的驱动强度和输入的延迟可以预测,从而使得模块 的综合过程更简单; 将关键路径逻辑和非关键路径逻辑放在不同模块,实 施不同的优化策略。
嵌入式系统工程系
企业代码风格
3.线网与寄存器
一个reg变量只能在一个always语句中赋值; 向量有效位顺序的定义一般是从大数到小数; 模块输出端口,对线网和寄存器类型的要做声明; 使用克综合的的线网和寄存器类型。
嵌入式系统工程系
企业代码风格
4.表达式
用括号来表示执行的优先级,使优先级阅读更清晰; (注意不要造成额外的延迟) 用一个函数(function)来代替表达式的多次重复,仿真 中经常使用的一组描述可以写到一个任务(task)中;
反向信号
尽量使用符号~,而不使用not原语; 不要尝试用多个反向器级联来增加需要的信号延迟; 反向信号驱动多个负载可采用分散反向。 (综合工具可自动优化)
嵌入式系统工程系
企业代码风格
1.基本书写规则
用有意义而有效的名字; 用连贯的缩写;
Clk Rst
用最右边(左边)的字符下划线表示低电平有效,高 电平有效的信号不得以下划线表示;
最常见的HDL行为描述建模错误之一
避免assign不确定语句
assign signal_a = #4 ~signal_a; #4被综合工具忽略掉
嵌入式系统工程系
专用代码风格
时钟信号分配原则
使用全局时钟,通过BUFG驱动,时钟信号到达各个寄 存器的延迟相同。 减少时钟信号种类 避免时钟毛刺信号(不使用门控时钟)
嵌入式系统工程系
企业代码风格
8.赋值
force/release 仅用于debug,对寄存器和线网均有用; 避免使用Disable assign/deassign 仅用于仿真加速仅对寄存器有用; (可综合设计问题) 对任何reg赋值用非阻塞赋值代替阻塞赋值, reg 的非 阻塞赋值要加单位延迟,但异步复位可加可不加。 (reg赋值问题,仿真赋值延迟问题)
嵌入式系统工程系
代码风格与可综合设计
同步电路设计
嵌入式系统工程系
代码风格与可综合设计
同步电路设计的模块划分
信息隐蔽、抽象: • 避免跨模块控制,边界清晰; 端口明确: • 禁制多重功能和无用接口; 时钟域区分: • 异步FIFO或双端口RAM实现多时钟域隔离; • 低频时钟域尽可能划分到一个模块中; 资源优化: • 尽量使用厂商提供的原语 寄存器划分: • 模块的输出尽可能采用寄存器输出(reg型)
嵌入式系统工程系
企ቤተ መጻሕፍቲ ባይዱ代码风格
6. case语句
case语句通常综合成一级多路复用器,if-then-else则 综合成优先编码的串接的多个多路复用器; 所有的Case 应该有一个default case 允许空语句 Default : ;
嵌入式系统工程系
企业代码风格
7.函数
在function的最后给function赋值; 函数中避免使用全局变量,否则容易引起HDL行为级 仿真和门级仿真的差异。 注意:函数与任务的调用均为静态调用
基于FPGA实现的Verilog设计特点
并行化
同步控制 实现代价
嵌入式系统工程系
面向硬件电路的设计方法
硬件实现的并行化
从电路上来看:
• 只要芯片上电,所有逻辑就开始工作。
从代码上来看:
• 所有的描述语句之间是并行执行的; • always语句在边沿触发条件下的行为描述均采用非阻塞 赋值,并行执行; • 面向RTL级电路的电路设计易于实现流水操作; • 与一般高级语言的顺序代码为主的设计方法有本质的区 别。
Rst_ Trdy_
名 字 一 般 首 字 符 大 写 , 其 余 小 写 ( 但 parameter, integer 定义的数值名可全部用大写),两个词之间要 用下划线连接
Packet_addr Data_in
嵌入式系统工程系
企业代码风格
1.基本书写规则
全局信号名字中应包含信号来源的一些信息; 同一信号在不同层次应保持一致性; 自己定义的常数类型等用大写标识 parameter CYCLE = 100; 避免使用保留字作为信号、模块名称; 添加有意义的后缀使信号名更加明确。
嵌入式系统工程系
通用代码风格
if和case不完整分支造成的意外锁存器
当always语句使用电平触发时有可能产生锁存器。 参见P106例3-12和例3-13 当always语句使用时钟沿触发时不会产生,此时只产 生寄存器。
嵌入式系统工程系
通用代码风格
reg型信号只能在一个always语句中赋值
嵌入式系统工程系
面向硬件电路的设计方法
时序延迟信号
reg a, a_d1, a_d2; always @ (posedge clk or negedge rst) begin if (~rst) begin a_d1 <= #TP 0; a_d2 <= #TP 0; end else begin a_d1 <= #TP a; a_d2 <= #TP a_d1; end end
嵌入式系统工程系
通用代码风格
逻辑结构
树状结构优于链式结构,缩短延迟级数。
if语句和case语句使用原则
if语句面积小,延迟大;case语句面积大,速度快。 if适合对速度无特殊要求的场合;case适合高速编解码 电路。 if分支具有优先级,case分支无优先级。 if不可嵌套技术过多,一般不超过3-4层。 兼顾面积和速度,if和case混合使用。
嵌入式系统工程系
专用代码风格
SRL16的使用
SRL16是一种基于LUT的移位寄存器; 可生成任意位宽和深度的移位寄存器; srl16_based_ram my_shift_ram ( .clk ( ), .d ( ), .q ( ) );
嵌入式系统工程系
专用代码风格
触发器资源分配
尽量使用库中的触发器资源; 状态机编码尽可能采用“独热码”(one-hot)。 (synplify综合工具可提供相关功能)
实现代价
“面积”和“速度”的综合考虑:
• “面积”指所占用的FPGA资源(FF和LUT); • “速度”指芯片稳定运行所达到的最高频率。
“面积”和“速度”是一对矛盾,可相互转化:
• “面积”优先:资源复用; • “速度”优先:冗余同构部件。 ISE 的Map选项: 优化策略可选择Area和Speed的优化策略
嵌入式系统工程系
面向硬件电路的设计方法
基于全局时钟的同步设计
数据存储在FPGA的寄存器或存储器中,时钟可看作执 行控制器; 串行算法的执行可以按照时钟节拍的顺序进行控制, 寄存器输出以及组合逻辑通常作为控制条件。 例如:采用计数器控制状态变化或数据处理过程。
嵌入式系统工程系
面向硬件电路的设计方法
嵌入式系统工程系
企业代码风格
5. if语句
向量比较时比较的向量宽度要相等,不相等时建议采 用显示扩展; 每一个if 都应有一个else 和它相对应; 应注意if ..else if ...else if ...else 的优先级; 如果变量在if-else 或case 语句中做非完全赋值则应给 变量一个缺省值。 (always语句的自身要求)
嵌入式系统工程系
通用代码风格
关键路径信号处理
引起电路建立时间不足的信号路径成为关键路径 组合电路关键路径提取采用逻辑拆分方式,降低关键 信号的组合延迟级数。 分析下面语句中b所经过的LUT级数。 assign y = a & b & c | d & e & b; assign t = a & c | d & e; assign y = b & t;
相关文档
最新文档