lammps实例(3)
lammps实例(3)

Project #1硅的晶格常数和体弹模量的计算一、平衡晶格常数和内聚能自然条件下硅为金刚石结构(dc )。
计算模拟时,我们可以假定它为各种结构,f cc, bcc, sc, dc. 可以预测,模拟的dc 结构的硅的体系能量最低,也即最稳定。
下面我们将运用LAMMPS 来对硅的各种结构进行模拟。
定义晶格能量为Φ, 数密度为 ρ:potE N Φ=N Vρ= 其中E pot 为势能,N 为体系总原子数,V 为体系的体积。
选取 Stillinger-Weber (SW),以下面命令执行 lammps 运算:其中,lmp_serial 为 lammps 命令;”<” 符号为读取符;in.Silicon 为输入文件,里面包含运算所需要的各种数据和命令;-log 指定输出文件的名称。
可以看到屏幕上显示出lammps 运行的信息。
这个计算量很小,所以很快就结束。
接下来以如下命令来查看计算得到的数据:grep 是linux 中一个很重要的命令,用来搜索文本,读取匹配的行并打印出来。
这里是搜索 dc.log 文件,将 @ 开头的行打印出来。
如下:晶格参数为5.4305埃,数密度为0.0499540303,每个原子的能量为-4.336599609eV.下面具体来看刚才给的输入文件,in.Silicon .dc.log 文件中有原子总数的信息,每个金刚石晶胞中有8个原子,383216⨯=,所以是216个原子。
如下给出各种结构下的体系的原子数:晶体结构类型晶胞中的原子数 总原子数 简单立方SC1 27 体心立方BCC2 54 面心立方FCC4 108 金刚石DC 8 216表1.不同晶体结构中的原子数下图是计算模拟得出的各种结构下的数密度与每个原子能量的关系图。
横坐标为数密度, 以金刚石为例,ρ= 8/5.4315^3=0.049926,也即我们直接通过 grep 命令得到的第二项值;纵坐标为每个原子的能量,为第三项值。
lammps实例

原子在不同温度下的运动
T=10K
T=500K
T=1000K
T=2000K
均方根位移:
模拟体系中的均方根位移可以通过如下公式求得:
lammps实例

熔化与凝固:氩,铜,铝
铜和铝的熔化转变:
对于铜和铝,LAMMPS 建立 8×8×5 的 FCC 晶格体系;充分弛豫后利用 Nose-Hover 方法,保 持压强为零,使体系从 T=2.5K 开始加热,直至发生熔化转变。 下面是铜熔化的输入文件: # LAMMPS Melt_Cu or Al units boundary atom_style variable lattice #lattice region create_box create_atoms timestep thermo pair_style pair_coeff #pair_style #pair_coeff neighbor neigh_modify #velocity fix #compute metal ppp atomic x equal 2.5 fcc 3.61 fcc 4.05 box block 0 8 0 8 0 5 1 box 1 box 0.01 1000
如下图所示,在分子动力学模拟下,氩在 T=0.44 附近发生一级相变,单位原子体积突然下 降:相对与其平衡凝固温度 Tm=0.44,约有 30%左右的过冷。
特定温度下的性质:
利用 LAMMPS 建立 8×8×8 的 FCC 格子,分别在 T=0.1,0.4,0.6,0.8 下保持零外压弛豫, 得到在不同温度下原子运动的情况, 以及不同径向分布函数和速度自相关函数。 下面是 LAMMPS 的输入文件 in.melt_Ar_temp
氩的熔化转变:
对于氩,LAMMPS 建立 8×8×5 的 FCC 晶格体系;充分弛豫后利用 Nose-Hover 方法,保持压 强为零,使体系从 T=0.01 开始加热,直至发生熔化转变。 如下是输入文件 in.melt_Ar
lammps切削案例

lammps切削案例LAMMPS(大型原子/分子模拟程序)是一款开源的分子动力学模拟软件,用于模拟原子和分子系统的行为。
它广泛应用于研究材料科学、生物物理学、化学、凝聚态物理学等领域。
在材料科学领域,LAMMPS被广泛用于研究切削过程。
切削是一种常见的制造加工过程,用于将材料从工件上去除,通常通过在材料表面施加剪切力来实现。
在切削过程中,材料受到高应力和高温的作用,会产生各种力学和热学效应,如塑性变形、热膨胀、摩擦和磨损等。
通过使用LAMMPS模拟切削过程,研究者可以更好地理解切削中材料的行为及其与切削参数的关系。
下面以钨为例,介绍如何使用LAMMPS模拟钨的切削过程。
需要定义钨的原子模型。
钨的晶体结构属于体心立方(BCC),因此可以使用合适的原子间相互作用势函数来模拟钨的行为。
例如,可以使用EAM(Embedded Atom Method)势函数,它可以描述原子间的相互作用和电子-原子之间的相互作用。
然后,在模拟中需要定义切削力和切削速度等参数。
切削力可以通过施加一个与刀具相互作用的力来实现,切削速度可以通过改变原子的运动速度来实现。
还需要设置切削的方向和切削深度等参数。
接下来,使用LAMMPS进行切削模拟。
在模拟过程中,可以通过输出各种物理量,如原子的位移、速度和能量等,来分析材料的行为。
例如,可以研究材料的应力分布、塑性变形的产生和表面的磨损等。
通过分析模拟结果,可以得到切削过程中材料的行为规律和切削参数对材料性能的影响。
例如,可以研究切削速度对材料塑性变形的影响、切削力对材料表面损伤的影响等。
LAMMPS是一个强大的分子动力学模拟软件,可以用于模拟和研究各种材料的切削过程。
通过合理设置参数并进行模拟分析,可以从原子尺度上深入理解切削过程中材料的行为规律,为实际切削操作和材料设计提供科学依据。
lammps的in文件案例

lammps的in文件案例一、LAMMPS简介LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一款面向大规模原子和分子系统的并行模拟软件。
LAMMPS具有丰富的功能,可以应用于多种领域,如材料科学、生物物理、化学反应等。
在LAMMPS中,IN文件是控制模拟的关键文件,用于设置模拟参数、定义系统结构和初始化条件等。
二、IN文件概述IN文件是LAMMPS的输入文件,采用ASCII格式,用户可以自由编辑。
文件主要包括以下几个部分:1.模拟设置:包括模拟类型、计算精度、时间步长等。
2.系统定义:包括原子类型、原子数、晶格结构等。
3.相互作用参数:包括势能函数、截断半径等。
4.边界条件:包括周期性边界、固定温度/固定体积等。
5.初始化条件:包括原子位置、速度、温度等。
6.输出控制:包括输出文件格式、频率等。
7.计算任务:包括平衡、动力学、热力学等。
三、IN文件案例解析以下为一个简单的IN文件案例:```# Simulation settingsdimension = 3boundary_style = "periodic"timestep = 0.001# System definitionatoms = Atoms(numbers = 2, positions = [[0, 0, 0], [1, 1, 1]])# Interaction parameterspotential = "pair_harmonic"cutoff = 2.5# Output controloutput_style = "custom"custom = "lammps_output.txt"# Calculation tasksequilibrate(temperature = 300, time = 100)run(time = 10)```该案例设置了一个2原子系统,采用周期性边界条件,模拟时间为100时间步长,温度为300K。
voronoi lammps 例子

voronoi lammps 例子Voronoi是一种在计算几何学中常用的算法,用于将平面划分为多个不重叠的区域。
这些区域由一组点集合定义,每个区域都包含一个点,并且距离最近的其他点最远。
在LAMMPS(大型原子/分子松弛模拟器)中,Voronoi算法常用于计算原子结构的晶体形态信息,如局部密度、结晶度、晶界等。
下面将通过一个例子来演示如何在LAMMPS中使用Voronoi算法。
假设我们有一个由1000个氩原子组成的体系,我们想要计算每个氩原子的晶体形态参数。
首先,我们需要在LAMMPS输入脚本中设置相关的参数和命令。
```# Define the simulation boxdimension 2boundary p p punits lj# Create the atomslattice square 0.5region box block 0 10 0 10 -0.5 0.5create_box 1 boxcreate_atoms 1 boxmass 1 1.0# Define the potentialpair_style lj/cut 2.5pair_coeff 1 1 1.0 1.0 2.5# Run the simulationvelocity all create 2.0 87287# Define the thermodynamic outputthermo 10000thermo_style custom step etotal pe press lx ly xy xlo xhi ylo yhi ```上述输入脚本创建了一个2D模拟盒子,其中包含1000个氩原子,使用Lennard-Jones势进行相互作用计算,并定义了一些其他的模拟参数。
接下来,我们需要计算每个原子的Voronoi体积和晶体形态参数。
为此,我们需要添加一段自定义的计算代码,并将其放在LAMMPS输入脚本的末尾。
lammps的in文件案例

lammps的in文件案例摘要:MMPS简介2.IN文件概述3.IN文件案例解析4.案例一:二维晶胞模型5.案例二:三维晶胞模型6.案例三:纳米线生长模拟7.案例四:颗粒填充模拟8.案例五:原子间相互作用力分析9.总结与展望正文:一、LAMMPS简介LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一款开源的分子动力学模拟软件,广泛应用于材料科学、生物科学、化学等领域。
LAMMPS具有强大的计算能力和丰富的原子/分子模拟方法,可以满足多种研究需求。
二、IN文件概述IN文件是LAMMPS中的输入文件,用于定义模拟的参数、体系和计算方法。
IN文件采用自定义的脚本语言编写,具有良好的可读性和可扩展性。
通过编写不同的IN文件,用户可以实现对LAMMPS模拟过程的精确控制。
三、IN文件案例解析以下我们将详细解析五个具有代表性的IN文件案例,以展示LAMMPS在各种领域的应用。
1.案例一:二维晶胞模型本案例模拟一个二维晶胞体系,包括原子类型、晶格常数、温度、时间步长等参数。
通过编写IN文件,实现对晶胞中原子间相互作用力的计算和分析。
2.案例二:三维晶胞模型与案例一类似,本案例扩展到三维空间,模拟一个三维晶胞体系。
IN文件中需定义原子类型、晶格常数、温度、时间步长等参数,并设置相应的相互作用力类型。
3.案例三:纳米线生长模拟本案例旨在模拟纳米线在生长过程中的形态变化。
IN文件中需要定义纳米线的初始条件,如种子原子、生长速率、温度等,并通过实时调整相互作用力参数,实现对纳米线生长过程的追踪。
4.案例四:颗粒填充模拟本案例研究颗粒在二维空间内的填充过程。
IN文件中需定义颗粒的形状、大小、密度等参数,以及模拟过程中的相互作用力。
通过观察颗粒在空间内的分布,分析填充过程的规律。
5.案例五:原子间相互作用力分析本案例针对原子间相互作用力进行详细分析。
lammps elastic案例

lammps elastic案例LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 是一款用于分子动力学模拟的开源软件,广泛应用于材料科学、生物物理学、地质学等领域。
在材料科学领域,LAMMPS 可以用来模拟材料的弹性性质,例如弹性模量、泊松比等参数。
在本文中,我们将介绍一个使用LAMMPS 来模拟材料弹性性质的案例。
在这个案例中,我们将以固体铝为例,介绍如何使用 LAMMPS 来计算铝的弹性模量。
铝是一种常见的金属材料,具有良好的弹性性能,因此非常适合用来作为弹性模量计算的样本。
首先,我们需要准备铝的原子结构模型。
在 LAMMPS 中,我们可以通过输入铝的原子坐标、原子种类、晶格参数等信息来构建铝的模型。
接下来,我们需要定义铝的弹性势函数,通常采用的是经典的 Lennard-Jones 势函数或者金属间的 EAM 势函数。
这些势函数将用来描述铝原子之间的相互作用力,从而计算材料的弹性性质。
然后,我们可以通过在 LAMMPS 中设置拉伸或压缩应变,来计算铝材料的应力-应变曲线。
通过在不同的应变下计算材料的应力,我们可以得到铝的弹性模量。
弹性模量是材料的一种重要的力学性质,它描述了材料在受力时的变形程度,是材料设计和应用的重要参考参数。
最后,我们可以通过 LAMMPS 的计算结果来得到铝的弹性模量,进而分析材料的弹性性质。
通过这个案例,我们可以深入了解材料的弹性性质是如何通过分子动力学模拟来计算的,为材料科学研究提供了重要的方法和工具。
总的来说,通过 LAMMPS 的弹性模量案例,我们可以了解到如何使用分子动力学模拟来计算材料的弹性性质,为材料科学研究提供了一种全新的方法和思路。
希望这个案例能够帮助读者更好地理解材料的弹性性质,为材料的设计和性能优化提供有益的参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Project #1
硅的晶格常数和体弹模量的计算
一、平衡晶格常数和内聚能
自然条件下硅为金刚石结构(dc )。
计算模拟时,我们可以假定它为各种结构,f cc, bcc, sc, dc. 可以预测,模拟的dc 结构的硅的体系能量最低,也即最稳定。
下面我们将运用LAMMPS 来对硅的各种结构进行模拟。
定义晶格能量为Φ, 数密度为 ρ:
pot
E N Φ=
N V
ρ= 其中E pot 为势能,
N 为体系总原子数,V 为体系的体积。
选取 Stillinger-Weber (SW),以下面命令执行 lammps 运算:
其中,lmp_serial 为 lammps 命令;”<” 符号为读取符;in.Silicon 为输入文件,里面包含运算所需要的各种数据和命令;-log 指定输出文件的名称。
可以看到屏幕上显示出lammps 运行的信息。
这个计算量很小,所以很快就结束。
接下来以如下命令来查看计算得到的数据:
grep 是linux 中一个很重要的命令,用来搜索文本,读取匹配的行并打印出来。
这里是搜索 dc.log 文件,将 @ 开头的行打印出来。
如下:
晶格参数为5.4305埃,数密度为0.0499540303,每个原子的能量为-4.336599609eV.
下面具体来看刚才给的输入文件,in.Silicon .
dc.log 文件中有原子总数的信息,
每个金刚石晶胞中有8个原子,383216⨯=,所以是216个原子。
如下给出各种结构下的体系的原子数:
晶体结构类型
晶胞中的原子数 总原子数 简单立方SC
1 27 体心立方BCC
2 54 面心立方FCC
4 108 金刚石DC 8 216
表1.
不同晶体结构中的原子数
下图是计算模拟得出的各种结构下的数密度与每个原子能量的关系图。
横坐标为数密度, 以金刚石为例,ρ= 8/5.4315^3=0.049926,也即我们直接通过 grep 命令得到的第二项值;纵坐标为每个原子的能量,为第三项值。
金刚石之外,还需计算其他结构。
只需对 in.Silicon 做稍微改动:
首先,将in.Silicon 复制成in.fcc :
然后编辑 in. fcc
改动如下几项:
然后如下命令执行:
相应的,如下命令查看log 文件中的数据:
以同样方法编辑in.bcc, in.sc,计算不同晶格参数时的体系能量值,并绘制下图:
图1. 不同结构下的硅的晶格能。
可以看出金刚石结构对应最低能量,最为稳定
下图更为细致地画出金刚石结构中,不同晶格参数所对应的内聚能。
内聚能(cohesive energy E coh)的定义是,最小的晶格能。
由图可以得到,平衡晶格常数为a0 = 5.431 Å,内聚能为E coh = −4.3365 eV.
图2. 金刚石结构中的晶格能 VS 晶格参数。
五阶拟合得到平衡晶格常数5.43095(Å).
2345E 104799.5791127112.82866a 15604.99601a 7592.99351a 1134.25198a 57.82091a =-++-+-
二、体弹模量
我们同时可以从晶格能曲线在最低处得到体弹模量的信息。
体弹模量定义为:
/≡-dP B dV V
V 和 P 分别为晶胞的体积和体系的压强。
我们已经得到了内聚能与晶格参数的函数关系,对于立方晶胞而言,
23ε=-
=-d M dE P dV
a da 由此, 022
09=a M d E B a da
其中 a 0 为平衡晶格常数,M 为体积为3=V a 的晶胞中的原子数目。
从多项式拟合,可以得到 0
22a d E da , 此例中为 3.87081 eV/ Å2 (a 0 =5.431 Å). 由上面
公式,计算得到硅的体弹模量为 B = 101.366 GPa. 文献中的实验数据为 99 GPa.
可视化
每一次 lammps 运行后,会生成一个 dump.atom 文件。
可以通过如下命令转换为 Atomeye 可读取的 .cfg 文件:
这时当前目录中就会生成 001.cfg 之类的 .cfg 文件,然后通过 Atomeye 查看: Tab 键可以改变观察方位
上下左右箭头键可以转动原子
PgUp 和 PgDn 改变原子大小
Alt + 1 和 Alt + 2 以及 Alt + 3 改变原子颜色
先按一次9这个键,转动时就是每次以90度转动。