2016年中考数学第一轮复习资料(超全)
2016年中考数学总复习资料

人教版2016年杭州中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
[精品]中考数学第一轮复习资料
![[精品]中考数学第一轮复习资料](https://img.taocdn.com/s3/m/4a23097fa8114431b90dd890.png)
中考数学第一轮复习资料第一章 实数课时1.实数的有关概念【课前热身】1. 2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .3.2的相反数是 .4. 3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个例2 ⑴2--的倒数是( )A .2 B.12 C.12- D.-2 ⑵若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .4⑶如图,数轴上点P 表示的数可能是( ) A.7B. 7-C. 3.2-D. 10-例3 德州市2009年实现生产总值(GDP )1545.35亿元,用科学记数法表示应是(结果保留3个有效数字)(A)81054.1⨯ 元(B)1110545.1⨯元(C)101055.1⨯元(D)111055.1⨯元 【中考演练】1. -3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该P零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,14,0,32,364,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.若0)3(12=++-+y y x ,则y x -的值为 .6.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字7. 51-的倒数是 ( )A .51- B .51C .5-D .58.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( ) A .3 B .-1 C .5 D .-1或39.如果()222+=a +b 2(a ,b 为有理数),那么a +b 等于(A )2 (B )3(C )8 (D )10 10.下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11. 16的算术平方根是( ) A.4 B.-4 C.±4 D.16 12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断 13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数ABO课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .2.计算:=-13_______. 3.比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9 B. 9 C.-6 D.6 5.下列各式正确的是( )A .33--= B .326-=- C .(3)3--= D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )A. 5049B. 99!C. 9900D. 2! 【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5. 【典例精析】 例1 计算:⑴084sin 45(3)4-︒+-π+- ⑵ 232(2)2sin 60---+.输入x 输出y平方 乘以2 减去4若结果大于0否则例2 计算:1301()20.1252009|1|2--⨯++-. ﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2、观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.3. 计算:(1) |2-|o2o 12sin30(3)(tan 45)-+--+(2)(π-3.14)0-|-3|+121-⎪⎭⎫⎝⎛-(-1)2010(3)1201002(60)(1)|28|(301)21cos tan -÷-+--⨯-- ﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】 1. 31-x 2y 的系数是 ,次数是 . 2.计算:2(2)a a -÷= .3.下列计算正确的是( )A .5510x x x += B .5510·x x x = C .5510()x x = D .20210x x x ÷=4. 计算23()x x -所得的结果是( )A .5x B .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b + 6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数. (2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m·a n= ; (a m )n= ; a m÷a n=_____; (ab)n= .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= .7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 . 【典例精析】例1 若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23 D .32例2 按下列程序计算,把答案写在表格内:⑴ 填写表格:输入n 3 —2—3 … 输出答案11…⑵ 请将题中计算程序用代数式表达出来,并给予化简. 例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21;(2) 22(3)(2)(2)2x x x x +++--,其中13x =-. 【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) n 平方 +n ÷n -n 答案A .18B .12C .9D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中2a =,1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解 【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则.4. 简便计算:2200820092008-⨯ = . 5. 下列式子中是完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a 【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,⑶=+-222b ab a .1 1 1 12 1 1 3311 4 6 4 1Ⅱ1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 【典例精析】 例1 分解因式:(1)33222ax y axy ax y +-=__________________. ⑵3y 2-27=___________________.⑶244x x ++=_________________. ⑷ 221218x x -+= . 例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________.3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.分解因式2232ab a b a -+= . 6.将3214x x x +-分解因式的结果是 . 7.分解因式am an bm bn +++=_____ _____; 8. 下列多项式中,能用公式法分解因式的是( ) A .x 2-xy B .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值. 11.计算:(1)299; (2)2222211111(1)(1)(1)(1)(1)234910-----. ﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③ ∴△ABC 为Rt △。
初三中考数学第一轮复习资料

3、 ,则 的值为________
4、已知 ,且 ,则 的值等于________
5、 实数 在数轴上对应点的位置如图2所示,下列式子中正确的有( )
① ② ③ ④
A.1个B.2个C.3个D.4个
6、①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
3、用小数表示: =_____________
考点5实数大小的比较
【知识要点】
1、正数>0>负数;
2、两个负数绝对值大的反而小;
3、在数轴上,右边的题】
1、比较大小: 。
2、应用计算器比较 的大小是____________
3、比较 的大小关系:__________________
2、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
3、一个数的绝对值就是数轴上表示这个数的点与______的距离。
【典型考题】
1、___________的倒数是 ;0.28的相反数是_________。
2、如图1,数轴上的点M所表示的数的相反数为_________
3、如果 是实数,且满足 ,则有
【典型考题】
1、下列说法中,正确的是()
A.3的平方根是 B.7的算术平方根是
C. 的平方根是 D. 的算术平方根是
2、9的算术平方根是______
3、 等于_____
4、 ,则
考点4近似数和科学计数法
【知识要点】
1、精确位:四舍五入到哪一位。
2、有效数字:从左起_______________到最后的所有数字。
A. B. C. D
2016年中考数学知识点总结(修改版)

中考数学复习资料(修改版)第一章实数考点一、实数的概念及分类 (5)考点二、实数的倒数、相反数和绝对值 (5)考点三、平方根、算数平方根和立方根 (6)考点四、科学记数法和近似数 (6)考点五、实数大小的比较 (6)考点六、实数的运算 (7)第二章代数式考点一、整式的有关概念 (8)考点二、多项式 (8)考点三、因式分解 (9)考点四、分式 (10)考点五、二次根式 (10)第三章方程(组)考点一、一元一次方程的概念 (12)考点二、一元二次方程 (12)考点三、一元二次方程的解法 (12)考点四、一元二次方程根的判别式 (13)考点五、一元二次方程根与系数的关系 (13)考点六、分式方程 (13)考点七、二元一次方程组 (14)第四章不等式(组)考点一、不等式的概念 (15)考点二、不等式基本性质 (15)考点三、一元一次不等式 (15)考点四、一元一次不等式组 (15)第五章统计初步与概率初步考点一、平均数 (17)考点二、统计学中的几个基本概念 (17)考点三、众数、中位数 (18)考点四、方差 (18)考点五、频率分布 (19)考点六、确定事件和随机事件 (20)考点七、随机事件发生的可能性 (20)考点八、概率的意义与表示方法 (20)考点九、确定事件和随机事件的概率之间的关系 (20)考点十、古典概型 (21)考点十一、列表法求概率 (21)考点十二、树状图法求概率 (21)考点十三、利用频率估计概率 (21)第六章一次函数与反比例函数考点一、平面直角坐标系 (22)考点二、不同位置的点的坐标的特征 (22)考点三、函数及其相关概念 (23)考点四、正比例函数和一次函数 (24)考点五、反比例函数 (25)第七章二次函数考点一、二次函数的概念和图像 (28)考点二、二次函数的解析式 (28)考点三、二次函数的最值 (28)考点四、二次函数的性质 (29)第八章图形的初步认识考点一、直线、射线和线段 (31)考点二、角 (32)考点三、相交线 (33)考点四、平行线 (34)考点五、命题、定理、证明 (35)第九章三角形考点一、三角形 (37)考点二、全等三角形 (38)考点三、等腰三角形 (39)第十章四边形考点一、四边形的相关概念 (42)考点二、平行四边形 (42)考点三、矩形 (43)考点四、菱形 (44)考点五、正方形 (44)考点六、梯形 (45)第十一章解直角三角形考点一、直角三角形的性质 (47)考点二、直角三角形的判定 (47)考点三、锐角三角函数的概念 (48)考点四、解直角三角形 (48)第十二章圆考点一、圆的相关概念 (49)考点二、弦、弧等与圆有关的定义 (49)考点三、垂径定理及其推论 (49)考点四、圆的对称性 (50)考点五、弧、弦、弦心距、圆心角之间的关系定理 (50)考点六、圆周角定理及其推论 (50)考点七、点和圆的位置关系 (51)考点八、过三点的圆 (51)考点九、反证法 (51)考点十、直线与圆的位置关系 (51)考点十一、切线的判定和性质 (52)考点十二、切线长定理 (52)考点十三、三角形的内切圆 (52)考点十四、圆和圆的位置关系 (52)考点十五、正多边形和圆 (53)考点十六、与正多边形有关的概念 (53)考点十七、正多边形的对称性 (53)考点十八、弧长和扇形面积 (53)第十三章图形的变换考点一、平移 (55)考点二、轴对称 (55)考点三、旋转 (55)考点四、中心对称 (56)考点五、坐标系中对称点的特征 (56)第十四章图形的相似考点一、比例线段 (57)考点二、平行线分线段成比例定理 (58)考点三、相似三角形 (58)第十五章尺规作图考点一、尺规作图的要求 (61)考点2、五种基本尺规作图 (61)第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。
2016年中考数学专题复习

2016年中考数学专题复习第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
2016届中考数学第一轮复习课件1_中考数学课件AlMnwl

二次根式的运算
【例 2】 (1)方程 x+2y=5 的正整数解有( B )
A.一组
B.二组
C.三组
D.四组
3x-5y=3, (2)(2014·威海)解方程组:x2-y3=1.
解:整理方程组,得33xx- -52yy= =36① ②, ,
②-①,得 3y=3,即 y=1,将 y=1 代入①,得 x=83,则方程组的解为xy==831
一分耕耘一分收获
【点评】 (1)去括号可用分配律,注意符号,勿漏乘;含有多重括号的 ,按去括号法则逐层去括号;(2)去分母,方程两边同乘各分母的最小公 倍数时,不要漏乘没有分母的项(特别是常数项),若分子是多项式,则 要把它看成一个整体加上括号;(3)解方程后要代回去检验解是否正确; (4)当遇到方程中反复出现相同的部分时,可以将这个相同部分看作一个 整体来进行运算,从而使运算简便.
含有两个未知数,且含未知数的项的次数为1,这样 的整式方程叫做二元一次方程
将两个或两个以上的方程联立在一起,就构成了一 个方程组.如果方程组中含有__两__个__未__知__数____,且 含未知数的项的次数都是__1__,这样的方程组叫做
二元一次方程组
由三个一次方程组成的含有三个未知数,且含未知 数的项的次数都是1的方程组叫做三元一次方程组
一分耕耘一分收获
一元一次方程的应用 【例4】 (2015·柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还 需要多长时间才能到达B点?
解:设蜗牛还需要 x 分钟到达 B 点.则(6+x)×53=6,解得 x=4.答: 蜗牛还需要 4 分钟到达 B 点
[对应训练]
5.(2015·佛山)某景点的门票价格如表:
2016年中考数学复习资料
2016年中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
中考数学知识点总结(完整版)-第一轮
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
2016中考数学备考复习(1)
答卷情况及对教学的启示
23.直线 l 与⊙O 相切于点 D,过圆心 O 作 EF∥l 交⊙O 于
E、F 两点,点 A 是⊙O 上一点,连接 AE,AF,并分别延
长交直线 l 于 B、C 两点;
(1)求证:∠ABC+∠ACB=90°;
(2)若⊙O 的半径 R=5,BD=12,求 tan∠ACB 的值.
在图形变换的复习中,不仅重视各自图形变换本 身的性质,更要关注它们在解决相关图形问题时的 应用,发展几何直观和空间观念.
在推理证明的复习中,不仅重视演绎推理能力的 培养,更要重视合情推理能力的发展.
中考数学备考复习的策略与方法
(3)加强数学知识与现实生活的联系 在中考数学复习中,要充分利用已有
的生活经验和熟知的生活实例,通过比 较、分析、猜想、归纳、综合等思维训 练,使之完成各知识之间的正迁移;通 过抽象、概括、数学建模来增强应用意 识,提高分析问题和解决问题的能力.
2016年中考数学备考复习研讨
2015年中考数学试题评析与启示 2016年中考数学命题趋势 中考数学备考复习的策略与方法
2015年中考数学试题评析与启示
2015年中考数学试题评析 答卷情况及对教学的启示
答卷情况及对教学的启示
17.化简: m n 2mn m n m n m2 n2
错解:原式= m(m n) n(m n) 2mn =…
4. 中考数学复习的基本方法
(1)由厚到薄 — 构建知识网络
华罗庚先生说:读书要从薄到厚, 又从厚到薄.复习重在从厚到薄. 中 考复习要把三年螺旋上升的知识分 成块,整理成知识网络,而采用树 图、表格、口诀、习题组等方法是 有效的.
中考数学备考复习的策略与方法
(2)由浅入深 — 提升思维坡度
中考数学第一轮复习资料(全)(含答案)
•2••b中考数学第一轮复习资料课题一:数与式(一)一、考点讲解:1.了解实数的概念,会进行分类. 2.理解相反数、绝对值的意义. 3.会用适当的方法比较实数的大小.4.掌握实数的运算法则、运算律,并能熟练应用它们解决计算问题.5.了解近似数与有效数字的概念,能用科学记数法按问题的要求对结果取近似值. 6.会利用数轴解决数形结合的问题. 二、经典题剖析:1.将下列各数填入相应的集合内.( 2 - 3 )°,227,21--,2,8-,3π,︒30sin ,4-,7,1.2121121112......无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 2.实数c b a ,,在数轴上对应点的位置如图所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个 3.下列说法正确的是( )A .近似数3.9×103精确到十分位.B .按科学计数法表示的数8.04×105其原数是80400.C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001.4.唐家山堰塞湖是“5•12汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为________________立方米.5.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,•小聪发现当台阶数分别为1级,2级,3级,4级,5级,6级,7级……逐渐增加时,上台阶的不同方法种数依次为1,2,3,5,8,13,21,……这就是著名的斐波那契数列,•那么小聪上这9级台阶共有_____种不同方法.6.若a 的倒数是-1,b+2与a -3互为相反数,c 的绝对值为2,且ac>0,试比较:b+c 与ab 的大小. 7.计算: ⑴(-13-12)×(-6)-(-2)3÷(-12)2+π0 ⑵(79-56-718)×18-1.45×6-3.55×6; 8.比较大小:(1)3 54(2)65 ____56 (3)58______51-(4) 67_____56-- (5) 已知a 2=2,b 3=3,且a>0,比较a 、b 大小. 三、针对性训练:1.-(-4)的相反数是_______; 2.2--的倒数是_______. 3.已知有理数x 、y 满足1+2y-4+z-6=0x -,求xyz 的值.4.如图,数轴上表示12A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ).(1) (2) (3)(4)A .12-B .21-C .22-D .22-5.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为( )(结果保留整数) A .-26°C B .-22°C C .-18°C D .22°C 6.如图,数轴上点P 表示的数可能是( )7 B. 7- 3.2- D. 10-7.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( )A .①②③B .②③④C .①②④D .②④8.据某网站报道:一粒废旧纽扣电池可以使600t 水受到污染,某校团委四年来共回收废旧纽扣电池3 600粒.若这3 600粒废旧纽扣电池可以使m (t )水受到污染,用科学记数法表示m 为__________(保留2位有效数字);用四舍五入法得到的近似数3.20×105的精确度是精确到_______位,有效数字为_________.9.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学2016年中考一轮复习(2月3日--4月30日)目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲 尺规作图127 第4讲 图形的相似130 第5讲 解直角三角形132第三部分 统计与概率第七章 统计与概率 第1讲 统计135 第2讲 概率137第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分) 1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ; 注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分) 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较 (3分) 1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数, ,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大) 1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.(河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.图X1-1-1B 级 中等题11.实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-33|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.C级拔尖题16.如图X1-1-2,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a1=11×3=12×113⎛⎫-⎪⎝⎭;第2个等式:a2=13×5=12×1135⎛⎫-⎪⎝⎭;第3个等式:a3=15×7=12×1157⎛⎫-⎪⎝⎭;第4个等式:a4=17×9=12×1179⎛⎫-⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a5=______________=______________;(2)用含有n的代数式表示第n个等式:a n=______________=______________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.选做题18.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a⊕b=________(用a,b的一个代数式表示).第2讲代数式考点一、整式的有关概念 (3分) 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分) 1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则 (1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:1.),(都是正整数n m a a a n m n m +=• 2.),(都是正整数)(n m a a mn nm = 3.)()(都是正整数n b a ab n n n = 4.22))((b a b a b a -=-+ 5.2222)(b ab a b a ++=+ 6.2222)(b ab a b a +-=- 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。