高中物理竞赛运动学
高中物理奥赛必看讲义——运动学

运动学第一讲 基本知识介绍一.一. 基本概念1. 质点质点2. 参照物参照物3. 参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)是一个点)4.绝对运动,相对运动,牵连运动:v 绝=v 相+v 牵二.运动的描述1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0Δr/Δt.在大学教材中表述为:v =d r/dt, 表示r 对t 求导数求导数 4.加速度a =a n +a τ。
a n :法向加速度,速度方向的改变率,且a n =v 2/ρ,ρ叫做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ: 切向加速度,速度大小的改变率。
a =d v /dt 5.以上是运动学中的基本物理量,以上是运动学中的基本物理量,也就是位移、也就是位移、也就是位移、位移的一阶导数、位移的一阶导数、位移的一阶导数、位移的二阶导数。
位移的二阶导数。
可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。
(a 对t 的导数叫“急动度”。
)6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好三.等加速运动v(t)=v 0+at r(t)=r 0+v 0t+1t+1//2 at 2 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v 0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。
此抛物线为在大炮上方h=v 2/2g 处,以v 0平抛物体的轨迹。
) 练习题:一盏灯挂在离地板高l 2,天花板下面l 1处。
灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。
求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,(认为碎片和天花板的碰撞是完全弹性的,即切即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。
全国高中物理竞赛专题一 运动学

全国高中物理竞赛专题一运动学全国高中物理竞赛专题一:运动学的奥秘运动学是物理学的基础分支之一,它研究的是物体位置随时间的变化以及物体速度和加速度的测量方法。
在全国高中物理竞赛中,运动学是必考的重要专题之一。
本文将带领大家深入探讨运动学的基本概念和规律,帮助大家更好地备战物理竞赛。
一、基本概念1、位移、速度和加速度位移、速度和加速度是描述物体运动的三个基本物理量。
位移指的是物体在空间中的位置变化,速度是物体在一定时间内位移的变化量,而加速度则是物体速度的变化率。
2、匀速运动和变速运动根据速度是否变化,可以将运动分为匀速运动和变速运动。
匀速运动是指速度大小和方向保持不变的运动,而变速运动则是指速度大小或方向发生变化的运动。
3、自由落体运动和竖直上抛运动自由落体运动是物体在重力作用下沿竖直方向做初速度为零的匀加速直线运动。
竖直上抛运动则是物体以一定初速度沿竖直方向做减速直线运动,直至速度为零后返回。
这两种运动是高中物理竞赛中常见的考点。
二、基本规律1、位移公式根据匀速运动和变速运动的定义,我们可以得到位移公式:匀速直线运动:x = vt变速直线运动:x = v0t + 1/2at^2其中v0是初速度,a是加速度。
2、速度公式根据位移公式的微分形式,我们可以得到速度公式:匀速直线运动:v = v0 = const变速直线运动:v = v0 + at3、加速度公式根据速度公式的微分形式,我们可以得到加速度公式:匀速直线运动:a = 0变速直线运动:a = (v - v0)/t4、自由落体运动和竖直上抛运动的公式自由落体运动:v = gt, h = 1/2gt^2, t = sqrt(2h/g)竖直上抛运动:v = v0 - gt, h = v0t - 1/2gt^2, t = (v0 - gt)/g 其中g是重力加速度。
三、典型例题解析例1:一物体从高空自由下落,已知物体下落的加速度为g/2,求物体在时间t内的位移。
高二物理竞赛运动学的一些基本概念课件

0
结论
质点做匀速率圆周运动。质点的速度沿圆的切线方
向,加速度沿半径指向圆心;速度和加速度互相垂直。
例1-3 已知一质点由静止出发,它的加速度在 x轴和 轴y上的分
量分别为 ax和10t 。a求y 15t时2 质点t的速5s度和位置。 解: 取质点的出发点为坐标原点,由
axdd vtx1t0 , aydd vty1t5 2 初始条件为 t 0,v0x 0 ,v0y 0,对上式进行积分,得
静力学:研究物体在相互作用下的平衡问题。
第1章 质点运动学
本章主要内容: 1、理解运动学的基本概念(质点,参考系,坐标系) 2、掌握描述质点运动的基本物理量 3、掌握质点平面曲线运动的描述方法 4、了解运动的相对性
1.1 运动学的一些基本概念
一、参考系和坐标系
参考系:为了描述物体的运动而选取的标准物体。
v
v
v
五、加速度矢量 表示速度变化的快慢的物理量
质点在 t ,
v1
t t, v2
vv2 v1
定义:平均加速度
a
v
t
瞬时加速度
v
dv
d2r
alim t 0t dt
dt2
瞬时加速度是速度随 时间的变化率。
大小:
a
a
dv
dt
方向:t0 时 v 的极限方向。在曲线运动中,
总是指向曲线的凹侧。
时间表征物理事件的顺序性和物质运动的持续性。
微观粒子的最短寿命是10-24 s,宇宙的年龄大约是1018 s。 2、空间及其计量
空间反映物质运动的广延性。
1米是1/299792458秒的时间间隔内光在真空中行程的长度。
宇宙范围的尺度1027m,微观粒子尺度10-15m。 三、质点
高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义第2篇 运动学【知识梳理】一、匀变速直线运动二、运动的合成与分解运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。
我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。
以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则v 绝对 = v 相对 + v 牵连或 v 甲对乙 = v 甲对丙 + v 丙对乙位移、加速度之间也存在类似关系。
三、物系相关速度正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。
以下三个结论在实际解题中十分有用。
1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。
2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。
3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。
四、抛体运动: 1.平抛运动。
2.斜抛运动。
五、圆周运动: 1.匀速圆周运动。
2.变速圆周运动:线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a tτ∆→∆=∆,方向指向切线方向。
六、一般的曲线运动一般的曲线运动可以分为很多小段,每小段都可以看做圆周运动的一部分。
在分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。
对于一般的曲线运动,向心加速度为2n v a ρ=,ρ为点所在曲线处的曲率半径。
七、刚体的平动和绕定轴的转动1.刚体所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。
刚体的基本运动包括刚体的平动和刚体绕定轴的转动。
高中物理竞赛专题 运动学综合

截止到目前,我们已经把运动学的主要框架知识都学习完了,但是从学完知识到灵活运用,还有很远的一段路程。
大家应该重点从公式和物理量的推导,方法,模型的总结几个方面去反复复习。
运动学思想方法总结:1.坐标系方法:坐标系是定量研究世界的一个非常重要的工具,利用坐标系可以很容易的定义物理量(比如,位置,位移,轨迹,速度,加速度等等),分析物理量之间的关系(最大,最小,曲率半径等等).坐标系方法除了我们学习过的正交分解和斜分解,还有以后会学习到的极坐标等等.要注意根据不同的例题采用不同的方法.【例1】 如图()a 所示,冰球沿与冰山底边成60β=︒的方向滚上山,上山初速度010m/s v =,它在冰山上痕迹已部分消失,尚存痕迹如图()b 所示,求冰山与水平面的夹角α(冰球在冰山上加速度为gsin α,方向沿着斜面向下,其中g 为重力加速度,近似取10m/s 2)。
例题精讲方法提示本讲导学高中物理竞赛专题运动学综合【例2】如图所示,已知在倾角为θ的斜面上,以初速度v及与斜面成θ角的方向发射一小球,斜面与小球发生完全弹性碰撞,即小球的速度会被“镜面反射”.问:⑴小球恰能到原始出发点,问总时间t总为多少?⑵为了实现这个过程,θ必须满足什么条件?【例3】一轮胎在水平地面上沿着一直线无滑动地滚动。
(这种情况下,轮胎边缘一点相对于轮胎中心的线速度等于轮胎中心对地的速率),轮胎中心以恒定的速率v向前移动,轮胎的半径为R,在0t=时,轮胎边缘上的一点A正好和地面上的O点接触,试以O为坐标原点,在如图的直角坐标系中写出轮胎上A点的位矢、速度、加速度和时间的函数关系。
并写出A的轨迹方程(可以用参数方程描述,也就是说,可以引入一个新的自变量,x和y 都随着这个自变量的变化而变化。
最常见的参数方程,就是以时间t为参数的。
)A A'Oxyv【例4】一根长为l的均匀细杆可以绕通过其一端的水平轴O在竖直平面内转动,如图所示.杆最初在水平位置,杆上距O为a处放有一小物体(可视为质点),杆与其上小物体最初均处于静止状态.若此杆突然以匀角速ω绕O轴转动,设碰撞时细杆与水平面夹角为θ求B追上细杆时θ与ω的关系。
物理竞赛--力学复习第1讲运动学

ax
dv x dt
0
ay
dv y dt
6m s2
a
dv dt
18t , 1 9t 2
a
ax2
a
2 y
6m s2
an
a2 a2
6 1 9t 2
或 ( x2 y2 )3/ 2 [22 (6t)2 ]3/ 2 2(1 9t 2 )3/ 2
yx yx 6 2 6t 0
dt 角加速度: d
dt
切向加速度:at
dv dt
R
法向加速度:an
v2 R
R 2
二.基本运动规律
(1)直线运动:x x(t)
v dx dt
a
dv dt
d2x dt 2
(2)匀变速直线运动:
v x
v0 x0
at v0t
1 2
at
2
v2 v02 2a( x x0 )
5
0 t
(3)匀变速圆周运动:
a
x2
y2
(d
bc2
b)2 sin3
y 0
9
例题3、细杆OL绕O以匀角速率ω转动,并推动小环C在
固图定),求的小钢环丝的A速B上度滑v动和, O加点速与度钢a丝. 间的垂直距离为d (如
L
解:这是一维问题
A o x B
x d tan
d
v
xi
d cos2
i
d2
d
x
2
i
o
C
x
ar
vr&
r &x&i
t) j
dt
质点的加速度:a加
2(a Rcos
dv dt t )i
高中物理竞赛辅导运动学
高中物理竞赛辅导运动学§2.1质点运动学的差不多概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,那个被选的物体叫做参照物。
为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。
通常选用直角坐标系O –xyz ,有时也采纳极坐标系。
平面直角坐标系一样有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向〔我们常把这种坐标称为自然坐标〕。
2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时刻的函数 x=X 〔t 〕 y=Y 〔t 〕 z=Z 〔t 〕 这确实是质点的运动方程。
质点的位置也可用从坐标原点O 指向质点P 〔x 、y 、z 〕的有向线段r来表示。
如图2-1-1所示, r 也是描述质点在空间中位置的物理量。
r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时刻而变,可表示为r =r (t)。
在直角坐标系中,设分不为i 、j 、k 沿方向x 、y 、z 和单位矢量,那么r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。
研究质点的运动,不仅要明白它的位置,还必须明白它的位置的变化情形,假如质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。
它描写在一定时刻内质点位置变动的大小和方向。
高中物理竞赛运动学
运动学1如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D ,BC 段水平,当以恒定水平速度V 拉绳上的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动速度。
(V A=αcos 1+V )2. 缠在轴上的线被绕过滑轮B 后,以恒定速度v0 拉出。
这时线轴沿水平平面无滑动滚动。
求线轴中心点O 的速度随线与水平方向的夹角 α 的变化关系。
线轴的内、外半径分别为r 和R 。
3.均匀光滑细棒AB 长l ,以速度v 搁在半径为r 的固定圆环上作匀速平动,试求在图13位置时,杆与环的交点M 的速度和加速度.图134一个半径为 R 的半圆柱体沿水平方向向右做加速度为 a 的匀加速运动。
在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动(如图)。
当半圆柱体的速度为 v 时,杆与半圆柱体接触点 P 与柱心的连线与竖直方向的夹角为θ,求此时竖直杆运动的速度和加速度。
5 A ,B ,C 三个芭蕾舞演员同时从边长为l 的三角形顶点A ,B ,C 出发,以相同的速率v 运动;运动中始终保持A 朝着B ,B 朝着C ,C 朝着A .试问经多少时间三人相聚?每个演员跑了多少路径?6.三只小虫A 、B 、C 沿水平面爬行,A 、B 的速度都能达到v =1cm/s 。
开始时,这些虫子位于一个等边三角形的三个顶点上。
C 应具有什么样的速度,才能在A 、B 任意移动的情况下使三小虫仍保持正三角形?7 在掷铅球时,铅球出手时距地面的高度为h ,若出手时的速度为V 0,求以何角度掷球时,水平射程最远?最远射程为多少?(α=gh v v 22sin 2001+-、 x=g gh v v 2200+)7、模型飞机以相对空气v = 39km/h 的速度绕一个边长2km 的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?9如图所示,合页构件由两菱形组成,边长分别为2L 和 L ,若顶点A以匀加速度a水平向右运动,当 BC 垂直于 OC 时,A 点速度恰为 v ,求此时节点B 和节点 C 的加速度各为多大?10、细杆AB长L ,两端分别约束在x 、y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果v A为已知,试求P点的x 、y向分速度v Px和v Py 对杆方位角θ的函数。
高中物理竞赛辅导资料第一章运动学
x t 图关键要将一
些特殊点的位置先求出来,如 t 1 、2、3、4、5、6、7、8s 末各时刻的位移,再将这些点用平滑的曲线 连接起来。如下图所示。 例 2 用边长为 l 的正方形薄板做成一个小屋,置于地面上,并且屋顶面相互垂直,如图所示。已知 水滴沿屋顶从 A 点流到 B 点所需的时间为从 B 点滴落地面所需时间的 2 倍。假定水滴从 A 点以初速度零开 始滴下,试求水滴从 A 流到地面所需的时间。
r xi yj zk .
2.运动方程 质点在空间运动时,位矢随时间变化的规律即为运动方程,记为:
r r (t ) x(t )i y(t ) j z(t )k .
(1)运动方程中包含了质点运动的全部信息。或者说知道了也就可以解决质点的运动问题。 (2)运动方程的分量式 x=x(t)、y=y(t)、z=z(t),是运动方程的分量式。 (3)轨道(轨迹)方程 在运动方程的分量式中,消去时间 t 得 f(x, y, z)=0,此方程称为质点的轨迹方程;轨迹是直线的称为 直线运动;轨迹是曲线的称为曲线运动。 3.位移 t 时刻,质点在 P1 点,位矢为 r1 ;t+Δ t 时刻,质点在 P2 点,位矢为 r2 ,则在Δ t 这段时间内位矢的 增量 r r2 r1 称为质点在Δ t 时间内的位移。 4. 路程Δ S 与位移大小 | r | 的区别:路程是Δ t 内走过的轨道的长度,而位移大小是质点实际移动的直 线距离,位移和位矢均为向量,但路程为标量,路程用Δ S 表示。即使在直线运动中,位移和路程也是截 然不同的两个概念。 三、速度
解析:由图中的阴影三角形 BDE 可得
4 / 70
x BE ED
2l l 2
2 1 l 2
全国高中物理竞赛专题一 运动学
222z y x r ∆+∆+∆=∆ 竞赛专题一 运动学【基本知识】一、 质点的位置、位置矢量和位移1、质点 如果物体的大小和形状可以忽略不计,就可以把物体当做一个有质量的点。
称该点为质点。
2、参考系 物理学中把选作为标准的参考物体系统为参考系。
3、位置矢量 由参考点指向质点所在位置的有向线段称为位置矢量,简称位矢或矢径。
其大小为方位是4、位移 由初位置指向末位置的矢量称为位移,它等于质点在t ∆时间内位置矢量的增量,即 12r r r -=∆k j i z y x r ∆+∆+∆=∆其中12x x x -=∆ 12y y y -=∆ 12z z z -=∆位移的大小为位移的方位是rx ∆∆=αcosry ∆∆=βcosrz ∆∆=γcos二、直线运动的速度和加速度 1、速度平均速度 质点在t t t ∆+~内产生的位移r ∆与t ∆之比,称为此时间间隔内的平均速度,表达式是为tr v ∆∆=瞬时速度 当0→∆t 时,平均速度的极限值,即位移矢量对时间的一阶导数,称为质点在t 时刻的瞬时速度,简称速度,表达式为dtd t r r v t =∆∆=→∆lim 02、、 加速度平均加速度 在t t t ∆+~内质点速度的增量与时间之比,称为时间间隔内的平均加速度,表达式为tv a ∆∆=瞬时加速度 平均加速度的极限值,即速度对时间的一阶导数,或位置矢量对时间的二阶导数,称为质点在t 时刻的瞬时加速度,简称加速度,表达式为dt d dt d tr v v a t 20lim ==∆∆=→∆(1)加速度具有瞬时性,即)(t a a =。
只有质点做匀变速直线运动时,=a 恒矢量,这时有如下运动公式k z j y i x r++=222z y x r ++= r x /cos =αr /y cos =βr /z cos =γyy2,z 2)⎪⎪⎩⎪⎪⎨⎧-=-+=-+=)(22102022000x x a v v at t v x x at v v (2)加速度具有相对性,对于不同的参考系来说,质点的加速度一般不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动学一.质点的直线运动运动 1.匀速直线运动 2.匀变速直线运动 3.变速运动: ①微元法问题:如图所示,以恒定的速率v 1拉绳子时,物体沿水平面运动的速率v 2是多少?设在∆t (∆t →0)的时间内物体由B 点运动到C 点,绳子与水平面成的夹角由α增大到α+∆α,绳子拉过的长度为∆s 1,物体运动的位移大小为∆s 2。
因∆t →0,物体可看成匀速运动(必要时可看成匀变速度运动),物体的速度与位移大小成正比,位移比等于速率比,v 平= v 即=∆s /∆t ,∆s 1与∆s 2有什么关系? 如果取∆ACD 为等腰三角形,则B D =∆s 1,但∆s 1≠∆s 2cos α。
如果取∆ACD '为直角三角形,则∆s 1=∆s 2cos α,但D 'B ≠∆s 1。
②普通量和小量;等价、同价和高价有限量(普通量)和无限量∆x →0的区别.设有二个小量∆x 1和∆x 2,当121→x x ∆∆, ∆x 1和∆x 2为等价无穷小,可互相代替,当→21x x∆∆普通量, ∆x 1和∆x 2为同价无穷小,当∞→21x x ∆∆(或012→x x∆∆), ∆x 2比∆x 1为更高价无穷小。
在研究一个普通量时,可以忽略小量;在研究一个小量时,可以忽略比它阶数高的小量。
如当α→0时,AB 弧与AB 弦为等价,α(圆周角)和θ(弦切角)为同价。
如图∆OAB 为等腰三角形,∆OAD 为直角三角形,OA =OB =OD +BD =OD 。
OAADOA AB OD AD OA AD ====ααα,tan ,sin ,即ααα==tan sin (等价)。
22sin 2cos 122ααα==-,比α更高价的无穷小量。
回到问题①:因为DD '为高价无穷小量,绳子拉过的长度∆s 1=BD =BD ',因直角三角形比较方便,常取直角三角形。
(v2=v 1/cos α)例:如图所示,物体以v 1的速率向左作匀速运动,杆绕O 点转动,求 (1)杆与物体接触点P 的速率?(v 2=v 1cos α) (2)杆转动的角速度?(ω=v 1sin α/OP )。
1. 细杆M 绕O 轴以角速度为ω匀速转动,并带动套在杆和固定的AB 钢丝上的小环C 滑动,O 轴与AB 的距离为d ,如图所示.试求小环与A点距离为X 时,小环沿钢丝滑动的速度.(答案:ωdd x 22+) 解:设t 时刻小环在C 位置,经∆t 时间(∆t 足够小),小环移动∆x ,由于∆t 很小,所以∆α也很小,于是小环的速度v =∆x /∆t ,根据图示关系,CD =OC ⨯∆α,α∆cos COx =,22d x OC +=,从上面关系得 ωωωαωα∆αα∆∆∆d d x d x d d x d x OC t OC t x v 22222222)/(cos cos cos +=++=+====.2. 用微元法求:自由落体运动,在t 1到t 2时间内的位移。
(答案:21222121gt gt -) 解:把t 1到t 2的时间分成n 等分,每段为∆t ,则nt t t 12-=∆,且看成匀速。
则v 1=gt 1+g ∆t ,∆s 1=( gt 1+g ∆t )∆t , v 2=gt 1+2g ∆t ,∆s 2=(gt 1+2g ∆t )∆t ,⋅⋅⋅⋅⋅⋅⋅⋅⋅ v n =gt 1+ng ∆t ,∆s n =(gt 1+ng ∆t )∆t ,s =∆s 1+∆s 2⋅⋅⋅⋅⋅⋅⋅+∆s n =21222121212121212)()(2)1(gt gt t t g t t gt nn t g t ngt -=-+-=++∆∆.若v 1=gt 1,∆s 1=gt 1∆t ,v 2=gt 1+g ∆t ,∆s 2=(gt 1+g ∆t )∆t ,⋅⋅⋅⋅⋅⋅⋅⋅⋅v n =gt 1+(n -1)g ∆t ,∆s n =[gt 1+(n -1)g ∆t ]∆t ,s =∆s 1+∆s 2⋅⋅⋅⋅⋅⋅⋅+∆s n =21222121212121212)()(2)1(gt gt t t g t t gt nn t g t ngt -=-+-=-+∆∆也可用图象法求解。
3. 蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心L 1=1m 的A 点处时,速度是v 1=2cm/s.试问蚂蚁从A 点爬到距巢中心L 2=2m 的B 点所需的时间为多少? (答案:75s )解法1:将蚁巢中心定为坐标原点O ,OA 连线即为x 轴正方向,则坐标x 处蚂蚁的速度可表示为xvL v 11=.将AB 连线分成n 等份,每等份n L L x )(12-=∆.当n很大时,每小段的运动可看成是匀速运动.每小段对应的速度为1111L v L v =,xL v L v ∆+=1112,⋅⋅⋅⋅⋅⋅x n L v L v n ∆)1(111-+=。
])3()2()([11111121+++++++=++=x L x L x L L v L xv xv xv xt n∆∆∆∆∆∆∆得7522))((2)(]2)1([1121221121122111111=-=+-=+=-+=v L L L v L L L L L L L n v L x n x L v L xn ∆∆∆s解法2:各种图象的意义?因蚂蚁在任一位置时的速度xL v v 111=, 即x L v v 1111=,1/v -x 的图象如图所示。
蚂蚁运动的时间t 为如图梯形的面积,t =11212212112122))(1(L v L L L L L v L v -=-+=75s. 二.运动的合成与分解1.相对运动4. 某汽艇以恒定的速率沿着河逆流航行,在某一地点丢失一个救生圈,经过t 时间才发现丢失,汽艇立即调头航行,并在丢失点下游s 距离处追上救生圈,则水流的速度大小为 . (答案:s /2t )以地为参照物,水速为v 1,船速为v 2,船调头后追上救生圈的时间为t ', 对船(v 2+v 1)t '=(v 2-v 1)+v 1(t '+t )t ,得t '=t ,所以v 1=s /2t . 或以水为参照物,则救生圈静止,t '=t ,所以v 1=s /2t5. 在空间某点,向三维空间的各个方向以大小相同的速度v 0射出很多的小球,问(1)这些小球在空间下落时会不会相碰?(2)经t 时间这些小球中离得最远的二个小球间的距离是多少? (答案:不会相碰;2v 0t )解(1)选取在小球射出的同时开始点作自由下落作参照系,则小球都以v 0的速度作匀速直线运动,小球始终在以抛出点为圆心的球面上,所以小球不会相碰.(2)这些小球中离得最远的二个小球间的距离等于球面的直径,即d =2v 0t .6. 一只气球以10m/s 的速度匀速上升,某时刻在气球正下方距气球为10m 的地方有一个石子以v 0的初速度竖直上抛(取g =10m/s 2),石子要击中气球,则v 0应满足什么条件?(答案:)21(100+>v m/s )解法1:设气球的速度为v ,开始相距为h ,当石子与气球的速度相等时追上,石子要击中气球,否则石子不能击中气球,速度相等时所用的时间t =(v 0-v )/a ---(1),则好击中时的位移关系为v 0t -21gt 22=vt +h ---(2)解得石子的初速度至少)21(1020+=+=gh v v m/s.解法2:以气球为参照物,则初速度v 1=v 0-v ,未速度v 2=0,所以(v 0-v )2=2gh , 解得石子的初速度至少)21(1020+=+=gh v v m/s.2.物体系的相关速度:杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(即两质点间的距离的改变只取决于沿它们连线方向分运动,而它们相对方们位改变只取决于垂直连线方向的分运动)。
求下列各图中v 1和v 2的关系.答案依次是:A :v 1=v 2cos α;B:v 1=v 2cos α;C:v 1cos θ=v 2cos α;D:v 2=v tan α; 7. 如图所示,AB 杆的A 端以匀速v 沿水平地面向右运动,在运动时杆恒与一半圆周相切,半圆周的半径为R ,当杆与水平线的交角为θ时,求此时:(1)杆上与半圆周相切点C 的速度大小。
(2)杆转动的角速度。
(3)杆上AC 中点的速度大小。
(4)杆与半圆周相切的切点的速度大小。
[答案:(1)θcos v ;(2)θθsin tan Rv ;(3);4sin cos 22θθ+v ;(4)θθsin tan v ]解:把A 的速度分解成沿杆的速度θcos 1v v =,和垂直杆方向速度θsin 2v v =。
(1)沿同一杆的速度相等,所以杆上与半圆周相切点C 的速度大小θcos 1v v v C ==。
(2)A 点对C 点的转动速度为θsin 2v v =,所以杆转动的角速度为θθθθθωsin tan cot sin sin R vR v AC v ===。
(3)4sin cos )2(222221θθ+=+=v v v v AC (4)在相同时间内,杆转过的角度与切点转过的角度相同,所以切点转动的角速度也为θθωsin tan Rv=, 杆与半圆周相切的切点的速度大小θθωsin tan v R v C=='。
8. 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在O 的正上方,OB 之间的距离为H 。
某一时刻,当绳的BA 段与OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速率M v 。
解:A v R ω=,A v 沿绳BA 的分量cos M A v v ϕ=由正弦定理知sin sin OAB H Rα∠=由图看出2OAB πϕ∠=+ 由以上各式得sin M v H ωα=3.运动的合成与分解:在船渡河中,水地船水船地v v v+=。
推广乙丙甲乙甲丙v v v +=9. 当骑自行车的人向正东方向以5m/s 的速度行驶时,感觉风从正北方向吹来,当骑自行车的人的速度增加到10m/s 时,感觉风从正东北方向吹来.求风对地的速度及的方向.(答案:25m/s ,方向正东南)V 风对地=V 风对人+V 人对地,得V 风对地=25m/s ,方向正东南10. 如图所示,质点P1以v 1的速度由A 向B 作匀速直线运动,同时质点P 2以v 2的速度由B 向C 作匀速直线运动,AB =L ,∠ABC =α,且为锐角,试确定何时刻t ,P 1、P 2的间距d 最短,为多少?(答案:ααcos 2)cos (21222121v v v v v v L t +++=;ααcos 2sin 2122212v v v v Lv d ++=) 解:以A 为参照物,v BA =v B 地+v 地A 。