翻译原文
世说新语原文及翻译

精心整理世说新语原文及翻译德行第一1.陈仲举①言为士则,行为世范②,登车揽辔③,有澄清天下之志。
为豫章④太守,至,便问徐孺子⑤所在,欲先看之。
主薄⑥白:“群情欲府君先入廨⑦。
”陈曰:“武王式商容之闾⑧,席不暇暖。
吾之礼贤,有何不可?”「注释」「译文」官府去。
2.「注释」①周子居:周乘,字子居,东汉末年贤人。
②黄叔度:黄宪,字叔度,东汉末年贤人。
③鄙吝:粗鄙贪婪。
已复:竟然。
「译文」周子居(周乘)经常说:“我只要一段时间见不到黄叔度(黄宪),粗俗贪婪的念头就又萌生了。
”3.郭林宗①至汝南,造袁奉高②,车不停轨,鸾不辍轭【e】③;诣【yi】黄叔度,乃弥日信宿④。
人问其故,林宗曰:“叔度汪汪如万顷之陂⑤,澄之不清,扰之不浊,其器深广⑥,难测量也。
”「注释」①郭林宗:郭太,字林宗,东汉末年太学生领袖。
②造:拜访。
袁奉高:袁阆,字奉高,东汉末年贤人。
③车不停轨,鸾不辍轭:比喻停留的时间短暂。
轨:车辙。
鸾:鸾铃,此指马车。
轭:套在牲4.「注释」峭壁耸立,水位落差大。
传说鱼游到此处,能跳过去即可成龙。
「译文」李元礼(李膺)风度高雅,品德高尚,自视甚高。
以弘扬儒教,正定天下是非为己任。
后辈的读书人到了李元礼家,受到他的接待,就认为自己登龙门了。
5.李元礼(李鹰)尝叹荀淑、钟浩①曰:“荀君清识难尚,钟君至德可师②。
”「注释」①荀淑:字季和,东汉人。
钟皓:字季明,东汉人,归隐后收徒达千人。
②清识:高明的见识。
尚:超越。
至德:大德,高尚的品德。
师:动词,指可为人师表。
「译文」李元礼曾经赞扬荀淑、钟浩二人说:“淑见识卓越,别人很难超过。
钟浩道德高尚,足以为人师表。
”6.陈太丘诣荀朗陵①,贫俭无仆役,乃使元方将车,季方持杖后从②,长文尚小③,载着车中。
既至,荀使叔慈应门,慈明行酒④,余六龙下食,文若亦小,坐着膝前。
于时,太史奏:“真人(有道德的贤人)东行。
”「注释」上奏说:7.「注释」荷:②阿(ē):山脚。
③沾:浸润。
「译文」有客人问陈季方(陈谌):“您的父亲太丘先生,有何功德而负天下盛名?"季方回答说:"我爸爸就像生在泰山角落的桂树,上有万仞高峰,下有万丈深渊;上承甘露浸湿,下被渊泉滋润。
《千字文》原文及翻译

【原文】天地玄黄,宇宙洪荒。
日月盈昃,辰宿列张。
【译文】天是青黑色的,地是黄色的,宇宙形成于混沌蒙昧的状态中。
日出日落,月圆月缺,星辰分布在无边的太空中。
【原文】寒来暑往,秋收冬藏。
闰余成岁,律吕调阳。
【译文】寒暑循环变换,来了又去,去了又来;秋天收割庄稼,冬天储藏粮食。
积累数年的闰余并成一个月,放在闰年里;古人用六律六吕来调节阴阳。
【原文】云腾致雨,露结为霜。
金生丽水,玉出昆冈。
【译文】云气上升遇冷就形成了雨,夜里露水遇冷就凝结成霜。
黄金产在金沙江,玉石出在昆仑山。
【原文】剑号巨阙,珠称夜光。
果珍李柰,菜重芥姜。
【译文】最有名的宝剑叫“巨阙”,最贵重的明珠叫“夜光”。
水果中的珍品是李和奈,蔬菜中最重要的是芥菜和生姜。
【原文】海咸河淡,鳞潜羽翔。
龙师火帝,鸟官人皇。
【译文】海水是咸的,河水是淡的,鱼儿在水中潜游,鸟儿在空中飞翔。
龙师、火帝、鸟官、人皇,这都是上古时代的帝王官员。
【原文】始制文字,乃服衣裳。
推位让国,有虞陶唐。
【译文】苍颉创制了文字,嫘祖制作了衣裳。
主动把君位禅让给功臣贤人,是尧和舜。
【原文】吊民伐罪,周发殷汤。
坐朝问道,垂拱平章。
【译文】安抚百姓,讨伐暴君,是周武王姬发和商王成汤。
贤明的君主端坐朝廷,向大臣们询问治国之道,垂衣拱手,毫不费力就能使天下太平,功绩彰著。
【原文】爱育黎首,臣伏戎羌。
遐迩一体,率宾归王。
【译文】他们爱抚、体恤老百姓,使四方各族人都来归附。
普天之下都统一成了一个整体,四方诸侯率领子民,归顺于他的统治。
【原文】鸣凤在竹,白驹食场。
化被草木,赖及万方【译文】凤凰在竹林中欢乐地鸣叫,小白马在草场上自由自在地吃着草食。
圣君贤王的仁德之治使草木都沾受了恩惠,恩泽遍及天下百姓。
【原文】盖此身发,四大五常。
恭惟鞠养,岂敢毁伤。
【译文】人的身体发肤分属于地、水、风、火这“四大”,一言一动都要符合仁、义、礼、智、信这“五常”。
诚敬地想着父母养育之恩,哪里还敢毁坏损伤它。
【原文】女慕贞洁,男效才良。
文言文十二则全部翻译

一、原文:子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”译文:孔子说:“学习并且时常复习,不是很愉快吗?有朋友从远方来,不是很快乐吗?别人不了解我,我却不生气,不是很君子吗?”二、原文:曾子曰:“吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”译文:曾子说:“我每天都要反省自己:为人出谋划策是否忠诚?与朋友交往是否诚信?传授的知识是否复习过?”三、原文:子曰:“温故而知新,可以为师矣。
”译文:孔子说:“温习旧知识,能够从中获得新的理解,就可以成为老师了。
”四、原文:子曰:“学而不思则罔,思而不学则殆。
”译文:孔子说:“只学习不思考就会迷茫,只思考不学习就会陷入危险。
”五、原文:子曰:“知之者不如好之者,好之者不如乐之者。
”译文:孔子说:“懂得它的人不如喜爱它的人,喜爱它的人不如以此为乐的人。
”六、原文:子曰:“三人行,必有我师焉。
择其善者而从之,其不善者而改之。
”译文:孔子说:“三个人一起行走,其中必定有我可以学习的人。
选择他们的优点来学习,对他们的缺点加以改正。
”七、原文:子曰:“君子不器。
”译文:孔子说:“君子不拘泥于某一方面的才能。
”八、原文:子曰:“君子坦荡荡,小人长戚戚。
”译文:孔子说:“君子心胸宽广,小人则常常忧愁。
”九、原文:子曰:“岁寒,然后知松柏之后凋也。
”译文:孔子说:“到了严寒的冬天,才知道松柏是最后凋零的。
”十、原文:子曰:“知之者不如好之者,好之者不如乐之者。
”译文:孔子说:“懂得它的人不如喜爱它的人,喜爱它的人不如以此为乐的人。
”十一、原文:子曰:“其身正,不令而行;其身不正,虽令不从。
”译文:孔子说:“自身品行端正,不用命令也能行动;自身品行不正,即使命令也无法遵守。
”十二、原文:子曰:“过而不改,是谓过矣。
”译文:孔子说:“犯了错误不改正,这就是真正的错误。
”。
世说新语翻译及原文

世说新语翻译及原文世说新语10篇原文及翻译如下:1、原文:陈太丘与友期行,期日中,过中不至,太丘舍去,去后乃至。
元方时年七岁,门外戏。
客问元方:“尊君在不?”答曰:“待君久不至,已去。
”友人便怒,曰:“非人哉!与人期行,相委而去!”元方曰:“君与家君期日中。
日中不至,则是无信;对子骂父,则是无礼。
”友人惭,下车引之。
元方入门不顾。
译文:陈寔(东汉时期官员、名士)和朋友约好一同外出,约定中午出发,到了中午,朋友没有来,陈寔于是独自出行了,走之后,朋友才赶到。
当时陈寔的儿子元方才七岁,正在门外玩耍。
来客问元方:“令尊在家吗?”元方回答说:“等您很久不见您来,已经走了。
”那位朋友非常生气,说:“真不是人呀!和别人约好一起走,却扔下别人不管,自己走了!”元方说:“您跟家父约定中午走,到了中午还不来,这就是不守信用;对着人家的儿子骂人家的父亲,这是不讲礼貌。
”那位朋友听了十分惭愧,就下车来招呼他,元方掉头回家去,连看也不看一眼。
2、原文:夏侯泰初与广陵陈本善。
本与玄在本母前宴饮,本弟骞行还,径入,至堂户。
泰初因起曰:“可得同,不可得而杂。
”译文:夏侯泰初(即夏侯玄)和广陵郡人陈本是好朋友。
一次,陈本和夏侯玄在陈母面前喝酒,陈本的弟弟陈骞从外面回来,径自进入厅堂之内。
夏侯玄于是站起身来说:“可以与人以礼相交,不可以违礼杂处。
”3、原文:和峤为武帝所亲重,语峙曰:“东宫顷似更成进,卿试往看。
”还,问何如,答云:“皇太子圣质如初。
”译文:和峤(曹魏后期至西晋初年大臣)被晋武帝司马炎所器重,司马炎曾对和峤说:“太子近来似乎有所长进了,你可以去看看。
”和峤回来后,武帝问他怎么样,和峤回答说:“太子的资质同以前一样。
”4、原文:山公大儿着短帢,车中倚。
武帝欲见之,山公不敢辞,问儿,儿不肯行。
时论乃云胜山公。
译文:山涛的大儿子山允戴着一顶便帽,靠在车边。
晋武帝想召见他,山涛不敢替他推辞,就出来问儿子的意见,他儿子不肯去。
文言文原文及翻译

文言文原文及翻译原文庄辛谓楚襄王曰:“君王左州侯,右夏侯,辇从鄢陵君为寿陵君,专淫逸侈靡,不顾国政,郢都必危矣。
”襄王曰:“先生老悖乎?将以为楚国袄祥乎?”庄辛曰:“臣诚见其必然者也,非敢以为国袄祥也。
君王卒幸四子者不衰,楚国必亡矣。
臣请辟于赵,淹留以观之。
”庄辛去之赵,留五月,秦果举鄢、郢、巫、上蔡、陈之地,襄王流掩了城阳。
于是使人发驺,征庄辛于赵。
庄辛曰:“诺”。
庄辛至,襄王曰:“寡人不能用先生之言,今事至于此,为之奈何?”庄辛对曰:“臣闻鄙语曰:‘见兔而顾犬,未为晚也;亡羊而补牢,未为迟也’。
臣闻昔汤、武以百里昌,桀、纣以天下亡。
今楚国虽小,绝长续短,犹以数千里,岂特百里哉?“王独不见于蜻蛉乎?六足四翼,飞翔乎天地之间,俛啄蚊虻而食之,仰承甘露而饮之,自以为无患,与人无争也。
不知夫五尺童子,方将调饴胶丝,加已乎四仞之上,而下为蝼蚁食也亡羊补牢。
蜻蛉其小者也,黄雀因是以,俯啄白粒,仰栖茂树,鼓翅奋翼,自以为无患,与人无争也。
不知夫公子王孙,左挟弹,右摄丸,将加已乎十仞之上,以其颈为招。
昼游乎茂树,夕调乎酸醎。
“夫雀其小者也,黄鹄因是以。
游于江海,淹乎大沼,俯啄鱼卷鲤,仰啮陵艹衡,奋其六翮,而凌清风,飘摇乎高翔,自以为无患,与人无争也。
不知夫射者,方将修其卢,治其缯缴,将加已乎百仞之上。
彼礛磻,引微缴,折清风而抎矣。
故昼游乎江河,夕调乎鼎鼎。
“夫黄鹄其小者也。
蔡圣侯之事因是以。
南游乎高陂,北陵乎巫山,饮茹溪流,食湘波之鱼,左抱幼妾,右拥嬖女,与之驰骋乎高蔡之中,而不以国家为事。
不知夫子发方受命乎宣王,系已朱丝而见之也。
“蔡圣侯之事其小者也,君王之事因是以。
左州侯,右夏侯,辇从鄢陵君为寿陵君,饭封禄之粟,而载方府之金,与之驰骋乎云梦之中,而不以天下国家为事,不知夫穰候方受命乎秦王,填邑塞之内,而投已乎黾塞之外。
”襄王闻之,颜色变作,身体战栗。
于是乃以执珪而援之为阳陵君,与淮北之地也。
译文庄辛对楚襄王说:“君王左有州侯右有夏侯,车后又有鄢陵君和寿陵君跟从着,一味过着毫无节制的生活,不理国家政事,如此会使郢都变得很危险。
世说新语原文翻译

世说新语1、《咏雪》原文:谢太傅寒雪日内集,与儿女讲论文义。
俄而雪骤。
公欣然曰:“白雪纷纷何所似?”兄子胡儿曰:“撒盐空中差可拟。
”兄女曰:“未若柳絮因风起。
”公大笑乐。
即公大兄无奕女,左将军王凝之妻也。
翻译:在一个寒冷的下雪天,谢太傅把家人聚集在一起,跟年轻一辈的人讲解诗文。
不一会儿,雪下得很大,谢太傅高兴地说:“这纷纷扬扬的白雪像什么呢?”他哥哥的长子说:“差不多可以比作把盐撒在空中。
”太傅哥哥的女儿说:“不如比作柳絮随风飞舞。
”谢太傅高兴得笑了起来。
谢道韫是大哥谢奕的女儿,左将军王凝之的妻子。
2、《陈太丘与友期》原文:陈太丘与友期行,期日中,过中不至,太丘舍去,去后乃至。
元方时年七岁,门外戏。
客问元方:“尊君在不?”答曰:“待君久不至,已去。
”友人便怒:“非人哉!与人期行,相委而去。
”元方曰:“君与家君期日中,日中不至,则是无信;对子骂父,则是无礼。
”友人惭,下车引之,元方入门不顾。
翻译:陈太丘和朋友相约同行,约定的时间在正午,过了正午朋友还没有到,陈太丘不再等候他便离开了,陈太丘离开后朋友才刚刚到。
儿子元方当时才只有七岁,正在门外玩耍。
陈太丘的朋友问元方:“你的父亲在吗?”元方回答道:“我父亲等了您很久您却还没有到,已经离开了。
”友人便生气地说道:“陈太丘真不是人!和别人相约同行,却丢下别人先离开了。
”元方说:“您与我父亲约在正午,正午时,您没到,就是不讲信用;对着孩子骂父亲,就是更没有礼貌的事。
”朋友感到十分惭愧,下了车想去拉元方的手,元方连头也不回,就径直走入家门。
古诗19首原文翻译
古诗19首原文翻译古诗19首原文翻译古诗十九首·庭中有奇树庭中有奇树,绿叶发华滋。
攀条折其荣,将以遗所思。
馨香盈怀袖,路远莫致之。
此物何足贵?但感别经时。
译文庭院裏一株珍稀的树,满树绿叶的衬托下开了茂密的花朵,显得格外生气勃勃,春意盎然。
我攀着枝条,折下了最好看的一串树花,要把它赠送给日夜思念的亲人。
花的香气染满了我的衣襟和衣袖,天遥地远,花不可能送到亲人的手中。
只是痴痴地手执著花儿,久久地站在树下,听任香气充满怀袖而无可奈何。
这花有什么珍贵呢,只是因为别离太久,想借著花儿表达怀念之情罢了。
注释:1、奇树:犹“嘉木”,美好的树木。
2、滋:当“繁”解释。
“发华滋”,花开得正繁盛。
3、荣:犹“花”。
4、致:送达。
5、贡:献。
一作“贵”。
赏析:这诗写一个妇女对远行的丈夫的深切的怀念之情。
由树及叶,由叶及花,由花及采,由采及送,由送及思。
全诗八句,可分作两个层次。
前四句诗描绘了这样一幅图景:在春天的庭院里,有一株嘉美的树,在满树绿叶的衬托下,开出了茂密的花朵,显得格外生气勃勃。
春意盎然。
女主人攀着枝条,折下了最好看的一束花,要把它赠送给日夜思念的亲人。
古诗中写女子的相思之情,常常从季节的转换来发端。
因为古代女子受到封建礼教的严重束缚,生活的圈子很狭小,不像许多男子那样,环境的变迁,旅途的艰辛,都可能引起感情的波澜;这些妇女被锁在闺门之内,周围的一切永远是那样沉闷而缺少变化,使人感到麻木。
唯有气候的变化,季节的转换,是她们最敏感的,因为这标志着她们宝贵的青春正在不断地逝去,而怀念远方亲人的绵绵思绪,却仍然没有头。
“庭中有奇树,绿叶发华滋。
攀条折其荣,将以遗所思。
”这两句诗写得很朴素,其中展现的正是人们在日常生活中常常可以见到的一种场面。
但是把这种场面和思妇怀远的特定主题相结合,却形成了一种深沉含蕴的意境,引起读者许多联想:这位妇女在孤独中思念丈夫,已经有了很久的日子吧?也许,在整个寒冬,她每天都在等待春天的来临,因为那充满生机的春光,总会给人们带来欢乐和希望。
文言文原文加翻译
文言文原文加翻译文言文原文加翻译文言文是语文考试里的必考内容,下面就让小编给你介绍文言文原文加翻译,欢迎阅读!文言文原文加翻译传是楼记文言文原文昆山徐健庵先生,筑楼于所居之后,凡七楹。
间命工木为橱,贮书若干万卷,区为经史子集四种,经则传注义疏之书附焉,史则日录家乘山经野史之书附焉,子则附以卜筮医药之书,集则附以乐府诗余之书,凡为橱者七十有二,部居类汇,各以其次,素标缃帙,启钥灿然。
于是先生召诸子登斯楼而诏之曰:“吾何以传女曹哉?吾徐先世,故以清白起家,吾耳目濡染旧矣。
盖尝慨夫为人之父祖者,每欲传其土田货财,而子孙未必能世富也;欲传其金玉珍玩、鼎彝尊斝之物,而又未必能世宝也;欲传其园池台榭、舞歌舆马之具,而又未必能世享其娱乐也。
吾方以此为鉴。
然则吾何以传女曹哉?”因指书而欣然笑曰:“所传者惟是矣!”遂名其楼为“传是”,而问记于琬。
琬衰病不及为,则先生屡书督之,最后复于先生曰:甚矣,书之多厄也!由汉氏以来,人主往往重官赏以购之,其下名公贵卿,又往往厚金帛以易之,或亲操翰墨,及分命笔吏以缮录之。
然且裒聚未几,而辄至于散佚,以是知藏书之难也。
琬顾谓藏之之难不若守之之难,守之之难不若读之之难,尤不若躬体而心得之之难。
是故藏而勿守,犹勿藏也;守而弗读,犹勿守也。
夫既已读之矣,而或口与躬违,心与迹忤,采其华而忘其实,是则呻占记诵之学所为哗众而窃名者也,与弗读奚以异哉!古之善读书者,始乎博,终乎约,博之而非夸多斗靡也,约之而非保残安陋也。
善读书者根柢于性命而究极于事功:沿流以溯源,无不探也;明体以适用,无不达也。
尊所闻,行所知,非善读书者而能如是乎!今健庵先生既出其所得于书者,上为天子之所器重,次为中朝士大夫之所矜式,藉是以润色大业,对扬休命,有余矣,而又推之以训敕其子姓,俾后先跻巍科,取?仕,翕然有名于当世,琬然后喟焉太息,以为读书之益弘矣哉!循是道也,虽传诸子孙世世,何不可之有?若琬则无以与于此矣。
居平质驽才下,患于有书而不能读。
文言文大全原文翻译
文言文大全原文翻译【序】述而不作,《春秋》而求准,《诗》而求法。
有悔莫大于言而不行,有为莫大于行而不已。
知者不惑,仁者不忧,勇者不惧。
人之所以有成就,皆由心志决定。
心志坚定则事事可为,胆怯优柔则事事无成。
故为人者,须要勤勉奋发,坚定不移地追求目标。
【正文】文言文是古代汉字的书写形式,是中国古代文化的重要组成部分。
它是传达古人智慧与思想的重要媒介,对于我们了解中国文化与历史有着重要的意义。
下面将为大家翻译一些文言文的经典原文,帮助读者更好地了解和欣赏古代文学作品。
第一篇:《大学》大学之道,在明明德,在亲民,在止于至善。
知止而后有定,定而后能静,静而后能安,安而后能虑,虑而后能得。
物有本末,事有终始。
知所先后则近道矣。
第二篇:《孟子·告子上》孟子曰:“生而知之者上也,学而知之者次也。
困于所学,而能以其情实之者,又能以其辞达之者,此之谓至德也。
知之者上也、不知而知之者次也。
”第三篇:《道德经·第一章》道可道,非常道;名可名,非常名。
无名天地之始;有名万物之母。
故常无欲,以观其妙;常有欲,以观其徼。
此两者同出而异名,同谓之玄。
玄之又玄,众妙之门。
第四篇:《论语·阳货》子曰:“志士仁人,无求生以害仁,有杀身以成仁。
”孟子曰:“若圣人之仁不成,得与?长求以为,成也不难矣。
”第五篇:《韩非子·外储说左上》夫事下不类则形亡。
气急则速递,气缓则困穷。
诸大夫之谋衰败者,皆不夷然、失其度也。
第六篇:《史记·滥驾》周顷王,河阳嘧军杀成王而立之,即位十二年而景王立。
大臣杀周宣王以立幸成,成立三十年,宪王立,立十三年而不立,立景王。
【结语】文言文作为古代汉字的书写形式,承载着丰富的历史文化。
通过翻译文言文的经典原文,我们可以更好地了解古代智慧和思想,增进对中国文化与历史的认识。
同时,在学习和欣赏过程中,我们也能不断提升自身的文字理解能力和翻译技巧。
文言文的翻译工作不仅仅是语言文字的转换,更是传承和发扬古人智慧的重要方式之一。
经典文言文原文及翻译五篇
【导语】⽂⾔⽂是中国古代的⼀种书⾯语⾔组成的⽂章,主要包括以先秦时期的⼝语为基础⽽形成的书⾯语。
下⾯是分享的经典⽂⾔⽂原⽂及翻译五篇。
欢迎阅读参考!【篇⼀】经典⽂⾔⽂原⽂及翻译 画蛇添⾜原⽂ 楚有祠者,赐其舍⼈卮酒,舍⼈相谓⽈:“数⼈饮之不⾜,⼀⼈饮之有余,请画地为蛇,先成者饮酒。
”⼀⼈蛇先成,引酒且饮之,乃左⼿持卮,右⼿画蛇⽈:“吾能为之⾜。
”未成,⼀⼈之蛇成,夺其卮⽈:‘蛇固⽆⾜,⼦安能为之⾜?’遂饮其酒。
为蛇⾜者,终亡其酒。
翻译 楚国有个搞祭祀活动的⼈,祭祀完了以后,拿出⼀壶酒赏给门⼈们喝。
门客们互相商量说:“这壶酒⼤家都来喝则不⾜够,⼀个⼈喝则有剩余。
我们各⾃在地上⽐赛画蛇,先画好的⼈就喝这壶酒。
”有⼀个⼈先把蛇画好了,他拿起酒壶正要喝,却左⼿拿着酒壶,右⼿继续画蛇,说:“我能够给它画脚。
”没等他画完,另⼀个⼈已把蛇画成了,把壶抢过去说:“蛇本来是没有脚的,你怎么能给它画脚呢!”然后他便把壶中的酒喝了下去。
为蛇画脚的⼈,最终失去了酒。
画蛇添⾜,语出《战国策·齐策⼆》。
原意为画蛇时给蛇添上脚。
后⽐喻做了多余的事,⾮但⽆益,反⽽不合适。
也⽐喻虚构事实,⽆中⽣有。
【篇⼆】经典⽂⾔⽂原⽂及翻译 精卫填海原⽂ ⼜北⼆百⾥,⽈发鸠之⼭,其上多柘⽊,有鸟焉,其状如乌,⽂⾸,⽩喙,⾚⾜,名⽈:“精卫”,其鸣⾃詨(⾳同“笑”)。
是炎帝之少⼥,名⽈⼥娃。
⼥娃游于东海,溺⽽不返,故为精卫,常衔西⼭之⽊⽯,以堙(⾳同“⾳”)于东海。
漳⽔出焉,东流注于河。
——《⼭海经》 翻译 再向北⾛⼆百⾥,有座⼭叫发鸠⼭,⼭上长了很多柘树。
树林⾥有⼀种鸟,它的形状像乌鸦,头上⽻⽑有花纹,⽩⾊的嘴,红⾊的脚,名叫精卫,它的叫声像在呼唤⾃⼰的名字。
这其实是炎帝的⼩⼥⼉,名叫⼥娃。
有⼀次,⼥娃去东海游玩,溺⽔⾝亡,再也没有回来,所以化为精卫鸟。
经常叼着西⼭上的树枝和⽯块,⽤来填塞东海。
浊漳河就发源于发鸠⼭,向东流去,注⼊黄河。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Artical histuryReceived 19 February 2014Received in revised form 11 April 2014Accepted 17 April 2014Available online 26 April 2014Keywords: Slug Porosity Conveying mechanisms;Horizontal pneumatic conveying;Stresses Pipe blockageMoving slugs of plastic pellets were investigated in-situ during low velocity pneumatic conveying in horizontal pipelines.Slugcharacteri- stics including the profile of pressure, pressure gradient, particle velocity, porosity, radial and wall shear stresses, aspect and behaviour were combined to obtain a complete picture of moving slugs. The objective was to gain unique knowledge on the physical mechanisms involved in slug formation,transport, and decay and the occurrence of pipe blockage. Slugs in both stable and unstable states were analysed.A strong correlation between particle velocity and wall stresses was found, which suggests that the stressesresponsible for the high pressure loss characterising slug flow may result mostly from the transfer of particle impulses to the pipe wall. Most slugs were found to be denser at the rear where particlevelocity was the highest, thus leading to slug shortening over time. This phenomenon was successfully modelled using both Newton's 2nd law and the ideal gas law and prediction of particle velocity showed good agreement with experimental values. In contrast, other slugs were found to extend due to the particles at the front moving faster than the particles at the rear. Pipe blockage was found to result from insufficient permeation of the slug by the conveying gas, indicating that sufficient material permeability is a condition for slug flow to occur.1.IntroductionDespite increased interest in dense phase pneumatic conveying since the seventies and the development of special dense phase conveying systems, the real establishment of such systems for industrial applications has been somewhat slow. The resistance typically comes from practitioners for whom the random performances of low velocity pneumatic conveying systems result in too higher risk. In fact, even if operating a pneumatic conveying system constitutes a relatively easy task, the design of such a system is often problematic. Since the end of World War II, research teams in both industry and academia have been working actively to assist designers of pneumatic conveying systems by developing design guidelines for the selection of system parameters like pressure, mass flow rate and velocity of both the gas and solid phases. The goal is to furnish equipment manufacturers design tables, diagrams and equations to aid in the design of new conveying systems. While this has been satisfactorily achieved in the field of high velocity pneumatic conveying by integrating friction factors as in the transport of gas alone, the design of low velocity pneumatic conveying systems and particularly slug flow conveying systems still remains a problem. This is because the complex physical mechanisms involved in the transport of high particle concentrations in a gas phase have still not been fully understood. In fact, in dense phase, the flowphenomena occurring in the pipeline are influenced by not only the gas velocity, solid properties, pipeline direction and configuration and solidin the transport of high particle concentrations in a gas phase havestill not been fully understood. In fact, in dense phase, the flow phenomena occurring in the pipeline are influenced by not only the gas velocity,solid properties, pipeline direction and configuration and solid feeding devices, but also the particle–particle and particle–wall interactions that are of great importance and should be taken into account. In addition, the transport of solids by a gas stream can cause some unique phenomena that often are not encountered in gas–liquid flows or single-phase flows, like the production of electrostatic charges, which again increases the complexity of the flow phenomena and their description. A frequent approach to describe and systematise slug flow pneumatic conveying consists of extrapolating the physical parameters characterising the conveying process, such as average gas velocity, slug velocity and pressure loss to the behaviour of individual slugs. However, since information such as number and length of slugs is usually unavailable and each individual slug is in a particular state of formation, stability or decay, generally little information can be gained. Therefore, the converse approach in which measurements performed on individual slugs are extrapolated to the entire pipeline has also been applied. This approach presents great advantages in that if sufficient information is available, the actual physical mechanisms leading to slug flow and the resulting pressure loss can be identified and put into equations, which in turn can be used to predict overall slug flow design parameters. Some in the transport of high particle concentrations in a gas phase havestill not been fully understood. In fact, in dense phase, the flow phenomena occurring in the pipeline are influenced by not only the gasvelocity, solid properties, pipeline direction and configuration and solid feeding devices, but also the particle–particle and particle–wall interactions that are of great importance and should be taken into account. In addition, the transport of solids by a gas stream can cause some unique phenomena that often are not encountered in gas–liquid flows or single-phase flows, like the production of electrostatic charges, which again increases the complexity of the flow phenomena and their description.A frequent approach to describe and systematise slug flow pneumatic conveying consists of extrapolating the physical parameters characterising the conveying process, such as average gas velocity, slug velocity and pressure loss to the behaviour of individual slugs. However, since information such as number and length of slugs is usually unavailable and each individual slug is in a particular state of formation, stability or decay, generally little information can be gained. Therefore, the converse approach in which measurements performed on individual slugs are extrapolated to the entire pipeline has also been applied. This approach presents great advantages in that if sufficient information is available, the actual physical mechanisms leading to slug flow and the resulting pressure loss can be identified and put into equations, which in turn can be used to predict overall slug flow design parameters.Some workers including Ramachandran Konrad[2], Mi [3], Krull [4], Mason [5], and Daoud [6] focused on observing slugflow and investigating experimentally some of the slug characteristics, usually the slug velocity and pressure gradient. While some general knowledge on slug flow could be gained, because usually only one or two characteristics were investigated, the mechanics of slug formation, stability and decay could not be identified. One of the issues is thatbecause slug flow is a dynamic process, significant parameters suchasslug porosity and internal stress states are particularly difficult to determine experimentally, in particular because the measurements must be nonintrusive to avoid flow disturbance. As a result, complex measuring devices must be specifically designed or adapted to this application. In addition, the variations of porosity and stresses along a slug or between slugs are generally low and their recording necessitates highly accurate measuring devices, which were not easily available until the last decade. The experimental studies of Niederreiter [7], Pahk [8], Lecreps [9] and Nied [10] in this area are particularly relevant.Technological advances also gave rise to the development of numerical analysis, which are increasingly applied and permit slug flow analysis without the requirement of pneumatic conveying trials. Tsuji [11],Kuang [12], Wensrich [13] and Levy [14] are among the authors who took up the challenge of simulating slug flow pneumatic conveying using diverse approaches such as Discrete Element Methods, Computational Fluid Dynamics or a combination of the two. Numerical simulations have the advantage of identifying some precise physical phenomena that physical measuring devices would only pick up with difficulty. In addition, they can deliver a complete picture of a moving slug with data on local stresses, porosity, velocity, pressure and also shape. However, computer simulations rely on many assumptions and require pre-calibration of the models, which usually necessitate experimental data. In addition, most simulation works consider steady-state slug flow and a short length of pipe. Thus, those results are often more qualitative than quantitative. Only in recent years, simulation results for unstable slug flow became available [15].This paper deals with detailed in-situ investigations of moving slugs during pneumatic conveying in horizontal pipelines. It addresses both experimental and theoretical investigations performed with the aim ofidentifying the main physical mechanisms playing a role in the formation,transport and decay of slugs and the occurrence of pipe blockage.In particular, focus has been on the mechanisms driving the flowinstabilities and leading to pipe blockage through establishment ofrelationships between profiles of pressure, porosity, particle velocityand wall stresses along moving slugs. By combining all thosecharacteristics, a unique insight into the physical mechanisms involvedin the transport of slugs in horizontal pipes was obtained. Slugs in bothsteady and unsteady states as well as occurrence of pipe blockage wereanalysed.2. Thirty five years of research to understand slug flow2.1. Flow observationRamachandran was possibly the first to study the flow of solid–gasmixtures using long transparent pipes to enable flow observation inlarge pipe diameters [1]. He noticed that the ease of movement is betterin the case of coarser particles due to lower compaction of the mass. Healso noticed that the material follows different modes of flow along thepipeline and proposed that the increase of material velocity down thepipe may be due to the expansion of the air from higher to lower pressures,which leads to the increase of the size of the interstices betweenparticles, i.e. decrease of the compaction degree which, in turn, leadsto the increase of the particle velocity. However, no measurement wasperformed to verify this premise. When Konrad [2] proposed that thematerial is conveyed only in the slugs and in the regions just in frontof and behind them with the material being picked up from the stationarylayer by the moving slug, transported along the pipe and then dropped offthe back of the slug to form a stationary layer of the same thickness,he actually suggested that slug flow is no steady-statetransport. Alsonumerical results obtained by Levy [14] indicated that slugs arecontinuously created and destructed. Further, Kuang traced numerically the process of particle exchange between the settled layer and horizontal moving slugs [12]. He found that the particles in the centre of a settled layer move into the upper part of a slug while the particles initially located in the lower part of a settled layer move into the lower area of the slug. Nevertheless, many workers including Konrad [16] assumed that plugs are like moving packed beds with all particles within each plug fixed relative to each other and moving with the same velocity, even though the transport occurs in a wave motion.2.2. Particle, slug and gas velocityTomita investigated slug flow pneumatic conveying in a horizontal pipeline numerically and found that the gas velocity increases preceding the slug arrival. He mentioned that this would explain the jump of particles in front of the slug that has frequently been observed. He also found that the slug velocity is not always constant but changes sinuously [17]. Mi [18] and Krull [4] also measured the slug velocity and both established a linear correlation between slug and air velocity. Klinzing suggested as a rough estimate of slug velocity that it achieves about 70% of the air velocity in horizontal pipes [19]. Kuang [12] reported from numerical analysis that the gas mainly flows in the empty part of the pipe over a settled layer before encountering a slug, then redistributes itself to cover the entire cross-sectional area at the rear of a slug and finally becomes a partial flow again after passing through the slug. When the gas flow rate was low and the particles in a settled layer were stationary, he sometimes observed a backflow of gas inside the settled layer before and after a slug. Recently, Kuang also reported that an increase of the friction coefficient leads to the decrease of particle velocity but increase of solid concentration and pressure drop [15].2.3. Slug lengthDaoud noticed that the plug length decreases with the gas flow rate while for a given mass flow rate, the plug length increases along the pipe. He explained the changes of plug length and velocity along the pipe by establishing relationships based on mass balances at the front face and rear of the plug. In particular, he explained the increase in plug length along the pipe by the velocity difference between the front and rear of the plug [6]. It is however questionable whether those experimental results are indicative of a coming pipe blockage. Hitt also found that the waves increase in length along the pipeline [20]. Mason identified the same phenomenon and observed further over the pipeline short waves close together with a long gap before another series of waves [5]. This implied that the waves increase in length and then break up. Krull suggested that factors such as the pressure gradient and the slug velocity largely influence the length of a slug [4]. The numerical simulations carried out by Levy [14] also revealed that both the shape and the length of the slugs change along the pipe. Recent simulation results by Kuang [15] indicate that the slug length increases and the slug velocity decreases when the friction coefficient is increased.All those results indicate that horizontal slug flow pneumatic conveying is far from being a steady-state process.2.4. Porosity distribution/permeation through a slugAziz investigated the pressure loss variation across a plug according to the possibility for the gas to permeate through the plug [22]. He concluded that the pressure drop across the plug varies either linearly if permeation of the transport gas into the plug is allowed or in an exponential fashion if the plug is consolidated at its back and its initialdense state solid packing is maintained. He also concluded that the transport of material is made easier if a certain amount of permeation is possible. Kuang investigated the porosity distribution by means of computer simulation and found that the solid concentration is denser.Fig 1.industrial-scale plot plant in stainless steel for conveying trials3.2.2. Pressure, wall shear stress and normal stress within a slugNiederreiter [7] developed and constructed a measurement device (Element 3 in Fig. 1) that allows the in-situ and simultaneous detection of pressure within a slug and stresses that a slug induces at the pipe wall. The measurement probe has the particularity to allow both the radial and wall shear stresses to be measured simultaneously and locally around the pipeline circumference without disturbing the conveying process. For this purpose, a short pipeline section has been instrumented with both pressure and force sensors (Fig. 2). Two piezoelectric force sensors (type 208C01, PCB Piezotronics Inc., USA) are mechanically arranged perpendicular to each other and connected to a measurement plate of 970 mm2 surface area, which simulates a piece of pipeline wall and transfers the stresses to the force sensors.In addition, the probe includes several miniature pressure sensors. One of the sensors is located in the measuring chamber and aims to control that pressure equilibrium between the two sides of the measuring plate (conveying section and measurement chamber) is well provided by the small holes located on each side of the plate. Further miniature pressure sensors, which measure the pressure inside a slug over a distance of 35 mm each, are used to determine the slug porosity as described in Section 3.2.3. The design of the probe and the calibration method are detailed in [28]3.2.3.Slug porosityThe slug porosity was determined indirectly from pressure loss and particle velocity measurements by applying the principles of gas flow through porous columns of bulk material. The Ergun equation, which correlates pressure loss, porosity and relative velocity between gas and particles, was found to be suitable to determine the profile of porosity along moving slugs [23]. Hence, by applying Eq. (1), the porosity within a slug can be determined by means of pressure loss measurements over a given distance where the relative velocity between air and particles is known. The determination procedure is summarised in Fig. 3. Note that a detailed description of the method and a discussion of its applicability can be found in [23,28].where ΔP is the pressure loss, ΔL is the bed length,ε is the bed porosity, ηf is the fluid dynamic viscosity, dp is the particle diameter, is the relative velocity between fluid and particles, and ρf is the vslipfluid density. The pressure loss was measured using high accuracyminiature piezoresistive pressure sensors, model XTM-190 from the firm Kulite.。