气相色谱常识

合集下载

气相色谱基本知识

气相色谱基本知识

对于毛细管柱:
1.增加了隔垫吹扫的功能
隔垫吹扫的作用:由于要让进去的液体或固体样品在汽化室汽化, 这里必然 有高温,高温会使隔垫上的一些易挥发的物质出来,同 时由于进样针的插入,有可能会使垫圈上的物质脱落,若没有隔垫 吹扫,则会使色谱图上出现鬼峰,采用隔垫吹扫,这些物质可以从 隔垫吹扫气路吹走.
2.增加了排放多余样品的阀和管路
常用的载气有氮气和氢气,也有用氦气、氩气。载 气的净化,需经过装有活性炭、分子筛或硅胶的净化器, 以除去载气中的水、氧、油等不利的杂质。
2.进样系统
组成:进样系统包括进样装置和汽化室两部分。
作用:是将液体或固体试样,在进入色谱柱之前瞬间气化,
然后快速定量地转入到色谱柱中。进样的多少,进样时间的
长短,试样的气化速度等都会影响色谱的分离效果和分析结 果的准确性和重现性。
2.
气-固色谱
气-固色谱的固定相是固体吸附剂,分离是基于样品分子
在固定相表面的吸附能力的差异而实现的。
常用的固体吸附剂有碳质吸附剂(活性炭、石墨化碳黑、
碳分子筛)、氧化铝、硅胶、无机分子筛和高分子小球。
气-固色谱不如气-液色谱应用广泛,主要用于永久性气
体和低沸点烃类的分析,在石油化工领域应用很普遍。
外套加热块,为消除金属表面的催化作用,在汽化室管内有 石英衬管,衬管有分流与不分流之分。衬管是可以清洗的。
3.分离系统:
分离系统是指把混合样品中各组分分离的装置,它由 色谱柱组成
色谱柱的分类:
1)填充柱 由不锈钢、玻璃和聚四氟乙烯等材料制成,常用 的为不锈钢柱,柱管内径为2-6mm,柱长1-5m。柱形有U 型和螺旋型二种。 2)毛细管柱又叫空心柱,分为涂壁、多孔层和涂载体空心柱。 空心毛细管柱材质为玻璃或石英。内径一般为0.2-0.5mm, 长度30-300m,呈螺旋型。

气相色谱法知识汇总

气相色谱法知识汇总

气相色谱法知识汇总1.气相色谱法(GC):是以气体为流动相的色谱分析法。

2.气相色谱要求样品:气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%~20%的有机物能用气相色谱法进行分析。

3.气相色谱仪的组成:气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4.气路系统:包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气。

5.进样系统:包括:进样装置和气化室,气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6.进样方式:分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7.分离系统:色谱柱:填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。

8.温控系统的作用:温度是色谱分离条件的重要选择参数;气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。

9.检测系统:作用:将色谱分离后的各组分的量转变成可测量的电信号;指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;检测器类型:浓度型检测器:热导检测器、电子捕获检测器;质量型检测器:氢火焰离子化检测器、火焰光度检测器。

10.热导检测器的主要特点:结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。

11.氢火焰离子化检测器的特点:优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(3)不能检测永久性气体、水及四氯化碳等。

气相色谱仪基础知识

气相色谱仪基础知识

气相色谱仪基础知识一、气相色谱原理色谱法又叫层分析法,它是一种物理分离技术。

阿德分离原理是使混合物中的各组分在两相间进行分配,其中的一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。

当流动相中所含的混合物经过固定相,就会与固定相发生相互作用。

由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。

因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱分离技术或色谱法。

当用气体为流动相,称为气相色谱。

色谱法具有:分离效能高、分析速度快。

样品用量高、灵敏度高。

适用范围广等许多化学分析法无可与之比拟的优点。

二、气相色谱仪工作原理利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配。

由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。

三、气相色谱仪的组成部分1、载气系统:包括气源、气体净化、气体流速控制和测量2、进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)3、色谱柱和柱温:包括恒温控制装置(将多组分样品分离为单个)4、检测系统:包括检测器,控温装置5、记录系统:包括放大器、记录仪、或数据处理装置、工作站四、什么叫保留时间?从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用t表示。

五、什么是色谱图?进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。

六、什么是色谱峰?峰面积?1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。

2、出峰到峰回到基线所包围的面积,称为峰面积。

气相色谱仪基础知识

气相色谱仪基础知识

21
21
6.数据分析• 数据不良时的Fra bibliotek查措施22
22
6.数据分析
• 计算方法
23
23
6.数据分析
• 定性参数
24
24
6.数据分析
• 定量方法(一)
25
25
6.数据分析
• 面积归一法
26
26
6.数据分析
• 校准面积归一法
27
27
6.数据分析
• 定量方法(二)
28
28
6.数据分析
• 外标法
气相色谱仪基础知识
1
气相色谱仪基础知识
1 色谱原理和基本构成 2 载气部分 3 进样口部分 4 色谱柱 5 检测器 6 数据分析
2
2
1.色谱原理和基本构成
• 色谱起源
3
3
1.色谱原理和基本构成
• 色谱定义
4
4
1.色谱原理和基本构成
• 气相色谱构成示意图
5
5
1.色谱原理和基本构成
• 气相色谱基本流路图
13
13
3.进样口部分
• 不分流进样2
14
14
4.色谱柱
• 色谱柱类型
15
15
4.色谱柱
• 载气控制方式
16
16
5.检测器
• 常用检测器
17
17
5.检测器
• FID检测器
18
18
5.检测器
• FID检测器进样过程
19
19
5.检测器
• FID检测器使用事项
20
20
6.数据分析
• 数据可靠性判断

气相色谱知识大全

气相色谱知识大全

气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。

这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。

气相色谱可分为气固色谱和气液色谱。

气相色谱可分为气固色谱和气液色谱。

气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。

例如活性炭、硅胶等。

气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。

例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。

气相色谱仪(图2)GC色谱的发展与下面两个方面的发展是密不可分的。

一是气相色谱分离技术的发展,二是其他学科和技术的发展。

1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。

这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。

用滴定溶液体积对时间做图,得到积分色谱图。

以后,他们又发明了气体密度天平。

1954年Ray 提出热导计,开创了现代气相色谱检测器的时代。

此后至1957年,是填充柱、TCD年代。

1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。

20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。

如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。

同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。

如TCD出现了衡电流、横热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。

气相色谱知识

气相色谱知识

气相色谱一、基本术语1、气相色谱法(Gas Chromatography/GC)以气体为流动相的色谱法。

2、色谱图(Chromatography)色谱柱流出物通过检测器时所产生的的响应信号对应时间或载气流出体积的曲线图。

3、流动相(Mobile Phase)气相色谱法的流动相是在色谱柱中以携带样品和洗脱其组分的气体。

4、固定相(Stationary Phase)色谱柱内不移动的、起分离作用的物质。

5、色谱柱(Chromatography Column)内有固定相用以分离样品组分的柱管。

6、填充柱(Packed Column)填充固定相的色谱柱。

7、毛细管柱(Caplliary Column)内径一般为0.1-0.5mm的色谱柱。

8、检测器(Detector)能检测色谱柱流出组分及其量的变化的器件。

9、氢火焰离子化检测器(Hydrogen Flame Ionization Detector \FID)能使同入的有机物在氢火焰中生成离子并在电场的作用下产生电信号的器件。

10、基线(Baseline)在正常操作条件下,仅有在起通过检测器系統时所产生的相应信号曲线。

11、基线漂移(Baseline Drift)基线随时间定向的缓慢的变化。

12、基线噪音(Baseline noise)由于各种因素所引起的基线波动。

13、保留时间(Retention Time)进样的组分流入检测器的浓度达到最大值的时间,即组分从进样到出现峰最大值所需的时间。

14、柱温(Column Temperature)色谱分析时色谱柱的温度,即为柱温度。

15、气化温度(V aporization Temperature)为了使液体样品汽化,气化室被设置的温度。

16、检测器温度(Detector Temperature)为了便于检测组分,检测器被设置的温度。

17、气化室(V aporizer)使样品暂能气化及预热载气的部件。

18、分流比(Split Ratio)样品载气化时中完全气化并与载气充分混合后,一部分进入柱内,其余的放空,这两部分载气量的比值。

培训资料气相色谱基础知识

析。
进样技术分类及特点
手动进样
操作简单,但精度和重复性较差,适用于少量样品的分析。
自动进样
通过自动化设备实现进样,精度高、重复性好,适用于大量样品 的分析。
在线进样
将样品前处理与色谱分析系统集成,实现连续、自动的样品处理 和进样,提高分析效率。
进样误差来源及减小方法
注射器污染
注射器内壁或针头残留物会对分 析结果产生影响。
PART 06
检测器类型及性能评价
REPORTING
热导检测器(TCD)
1 2
工作原理
基于不同物质具有不同的热导系数,通过测量组 分与载气热导系数的差异进行组分检测。
优点
通用性强,对大多数物质都有响应;结构简单, 操作方便。
3
缺点
灵敏度相对较低,对痕量组分的检测能力有限。
氢火焰离子化检测器(FID)
气相色谱应用领域
食品安全
农药残留、添加剂、重金属等 有害物质的检测。
医药卫生
药物成分分析、生物样品中代 谢产物的检测等。
环境分析
大气、水、土壤等环境样品中 的有机物和无机物的分析。
石油化工
石油产品组成分析、油品质量 控制等。
其他领域
香精香料、化妆品、高分子材 料等行业的分析测试。
XX
PART 02
纯度要求
载气的纯度对色谱分离效果有很大影响,一般要求纯度在 99.999%以上,以避免杂质对色谱峰的干扰。
流动相组成对分离效果影响
流动相组成
流动相由载气和固定相组成,固定相的选择对分离效果至关重要。不同的固定相 具有不同的选择性,可以根据分析物的性质进行选择。
流动相极性
流动相的极性对分离效果也有影响。极性流动相有利于极性物质的分离,非极性 流动相则有利于非极性物质的分离。

气相色谱基础知识

气相色谱基本知识1、什么是气相色谱法以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。

2.、气相色谱是基于时间的差别进行分离在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。

峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。

涉及的几个术语:固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小;保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间;3、气相色谱法特点3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。

3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。

3.⒊灵敏度高:气相色谱可检测1110-~1310-g的物质。

3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。

3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。

3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。

4、气相色谱系统主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。

基本流程如下脱水管限流器4.1、载气系统:可控而纯净的载气源。

载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。

载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。

气相色谱知识

色谱柱的温度控制方式有恒温和程序升温两种。

●一般单个组分化合物,用等温分析(恒温)的方法就行,而分析沸点范围很宽的混合物是,有时要采用程序升温的方法来完成分析任务。

●程序升温:指在一个分析周期内柱温随时间由低温向高温做线性或非线性变化,已达到用最短时间获得最佳分离的目的。

●检测器:是构成气相色谱的关键部件,其作用是把被色谱柱分离的样品组分,根据物理或化学的特性,转变成电信号,经放大器后有记录仪记录成色谱图。

根据检测原理的差别,气相色谱检测器可分为浓度型和质量型两类。

●担体:又叫载体,分为硅藻土型和非硅藻土型。

非硅藻土型担体包括玻璃微球和聚四氟乙烯等。

●氢火焰离子化检测器
氢火焰离子化检测器(FID)简称氢焰检测器。

是职业卫生空气监测用得最多的检测器,例如三苯、醇类等。

它具有结构简单,灵敏度高,死体积小,响应快,稳定性好的特点,是目前常用的检测器之一。

但是,他仅对含碳有机化合物有相应,对某些物质,如永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢等不产生信号或者信号很弱。

使用注意事项:离子头绝缘要好,金属离子头外壳要接地,使用温度应大于100℃,离子头内的喷嘴和收集极在使用一段时间后要进行清洗。

气相色谱分析复习知识点

气相色谱分析复习知识点1.P4页何为色谱法?何为固定相?何为流动相?色谱法的分类。

气-固色谱以及气-液色谱的固定相各为什么?2. P5页何为气相色谱法?气相色谱仪的组成。

色谱柱的组成。

3. P6页何为色谱图?何为保留值?保留值的两种表示方法:时间和体积。

P7页何为死时间t M、保留时间t R和调整保留时间t'R(见式2-1)?何为死体积、保留体积和调整保留体积?何为相对保留值如r21(或α)(见式2-5)?P8页相对保留值的物理意义。

P8页何为半峰宽Y1/2、峰底宽Y。

根据色谱流出曲线可以获得哪些信息?4. P8页色谱柱的分类。

气-固色谱的固定相与气-液色谱的固定相有何不同?各自分离的原理是什么?5. P9页何为分配系数K(见式2-8)?分配系数K的物理意义。

6. P10页何为分配比k(见式2-9),何为相比β?分配系数K与分配比k之间的关系(见式2-10)。

P11页分配比与保留时间的关系(见式2-16),可以通过实验测定。

7. P11页色谱分离的基本理论:塔板理论和速率理论。

P14页理论塔板数的计算公式(见式2-18,由此公式得出何结论?)以及有效塔板数的计算公式(式2-20);n和H如何来影响柱效?P15页速率理论公式(见式2-22,各个物理量的含义);影响H的因素;各项的意义;为何毛细管气相色谱法的柱效更高?8. P17页分离度的计算公式(式2-27);P18页分离度的物理意义,是色谱柱总分离效能的指标;相邻两峰已完全分开的标志R≥1.5。

9. P19页色谱分离基本方程式(见式2-31);P19页、20页分离度受哪些因素影响?10. P21页根据速率理论方程式,如何选择最佳流速(见式2-34、式2-35)?如何选择载气?11. P22页程序升温有何优点?12. P24页气-固色谱的固定相有哪些?P26页至28页气-液的固定相有哪些?P32页固定液选择的依据以及相应的色谱流出规律。

13. P34页检测器的分类:浓度型和质量型;通用型和专属型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱常识
气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。

这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。

气相色谱可分为气固色谱和气液色谱。

气相色谱分类
气相色谱可分为气固色谱和气液色谱。

气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。

例如活性炭、硅胶等。

气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。

例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。

气相色谱发展历史
气相色谱仪GC色谱的发展与下面两个方面的发展是密不可分的。

一是气相色谱分离技术的发展,二是其他学科和技术的发展。

1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。

这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。

用滴定溶液体积对时间做图,得到积分色谱图。

以后,他们又发明了气体密度天平。

1954年Ray提出热导计,开创了现代气相色谱检测器的时代。

此后至1957年,是填充柱、TCD年代。

1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。

20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。

如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU 公司推出了实用的窗式光电离检测器(PID)等。

同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。

如TCD出现了衡电流、横热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。

20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。

进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。

其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。

另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。

相关文档
最新文档