1仪器分析-电化学
仪器分析复习题(电化学)

仪器分析复习题(电化学)一、问答题1、单扫描极谱法和循环伏安法在原理上有何异同点?1、答:循环伏安法和单扫描极谱法都是利用产生的伏——安曲线进行分析的一种方法,测量池均为电解池,循环伏安法和单扫描极谱法一般都采用的是三电极系统。
循环伏安法以固体电极为工作电极,如玻碳电极,悬汞电极,汞膜电极等,单扫描极谱法以滴汞电极为工作电极,它们一般都以饱和甘汞电极为参比电极,铂电极为对电极。
单扫描极谱法在分析中采用锯齿波形加压的方法,在每一滴汞上,前5秒静止富集,后2秒加极化电压,在一滴汞上测得一个峰形伏——安曲线,获得一个数据,-7分辨率(△E≥30~50mV)和灵敏度(1某10mol/L)相对较高,分析时间短,峰电流ip=/kC;峰电位为φpc=φ1/2-1.11RT/nF。
循环伏安法在分析中施加的是三角波电压,它同时可以得到阳极波(或阳极支)和阴极波(或阴极支),它们的峰电位分别为:φpa=φ1/2+1.11RT/nF和φpc=φ1/2-1.11RT/nF;峰电流为±ip=kC;循环伏安法更多的用于电极反应机理的研究和氧化还原波可逆性的判断。
它们的工作电都是极化电极,具有小的电极表面积和大的电流密度。
2、产生浓差极化的条件是什么?2、答:当电流通过电极与溶液界面时,如果电极电位对其平衡值发生了偏差,这种现象称为极化现象。
当电解进行时,由于电极表面附近的一部分金属离子在电极上发生反应、沉积,而溶液中的金属离子又来不及扩散到电极表面附近,因而造成电极表面附近的金属离子浓度远低于整体浓度,电极电位又取决于电极表面附近的金属离子浓度,所以电解时的电极电位就不等于它的平衡电位,两者之间存在偏差,这种现象称为浓差极化。
3、什么是pA(pH)的实用定义3、答:在电位分析法中,离子选择性电极的定量基础是能斯特方程式,既:EISE=K±RT/nFlna;+表示阳离子,-表示阴离子;常数项K包括内参比电极电位,膜内相间电位,不对称电位,测量时还有外参比电极电位,液接电位等,这些变量是无法准确测量的,因此,不能用测的得EISE去直接计算活度a值,而必须与标准溶液比较才能消除K的影响,得到准确的分析结果,为此,pH值通常定义为与试液(pH某)和标准溶液(pH)之间电动势差(△E)有关的函数关系如:pH某=pH+(E某-E)F/RTln10;同样适用于其它离子选择性电极的测量,如:pA某=pA±Z(E某-E)F/RTln10;被称为pA(pH)的实用定义。
仪器分析第二章 电化学分析

4.伏安分析
伏安分析是通过测定特殊条件下的电流 电 伏安分析是通过测定特殊条件下的电流—电 是通过测定特殊条件下的电流 压曲线来分析电解质的组成和含量的一类 分析方法的总称。 分析方法的总称。 凡是在滴汞电极上可发生氧化还原反应的 物质,如金属离子、金属络合物、 物质 , 如金属离子 、 金属络合物 、 阴离子 和有机物均可用伏安法测定。 和有机物均可用伏安法测定。
原电池和电解池
在化学电池内,发生氧化反应的电极称为阳极,发生还 原反应的电极称为阴极。阳极和阴极上所发生的氧化还 原反应如下: 在阳极上 Zn ⇒ Zn2+ + 2e 在阴极上 Cu2+ + 2e ⇒ Cu 二者都是化学能与电能相互转化: 二者都是化学能与电能相互转化: 化学能与电能相互转化 电解池是外加电压提供能量, 原电池是把化学能转化为 电能释放出去。
Calomel electrode(甘汞电极) (甘汞电极)
两个玻璃套管,内套管 两个玻璃套管 内套管 封接一根铂丝,铂丝插 封接一根铂丝 铂丝插 入纯汞中,汞下装有甘 入纯汞中 汞下装有甘 汞(Hg2Cl2) 和汞的湖 状物;外套管装入 外套管装入KCl溶 状物 外套管装入 溶 液。甘汞电极的电极电 位与KCl浓度有关(表 浓度有关( 位与 浓度有关 2-1 )。 。
第二章 电化学分析法
什么是电化学分析 ?
将化学变化与电的现象紧密联系起来的学科便是电化学。 将化学变化与电的现象紧密联系起来的学科便是电化学。应用电化学的 电化学 基本原理和实验技术,依据物质的电化学性质来测定物质组成及含量的分析 基本原理和实验技术, 方法称之为电化学分析或电分析化学。 方法称之为电化学分析或电分析化学。 电化学分析或电分析化学
电位分析法的主要分类
仪器分析:电化学分析-离子选择性电极(ISE电极)

电化学分析(二) 凌悦菲
目
录
Contents
1 2 3 4
指示电极 电极分类 离子选择性电极 常用离子选择性电极
仪器分析
二、离子选择性电极(ISE电极)
电化学分析(二)
组成:电极管、内参比电极、内参比溶液、敏感膜
膜电位(Ф膜):敏感膜内外两个相界面处由于 离子交换、扩散产生的电位差。
仪器分析
二、离子选择性电极(ISE电极)
电化学分析(二)
Ф膜=K± lnai=K±
lgai(25℃)
n:离子电荷数,若离子带负电荷前面取“-”
ISE的电极电位 ФISE=Ф内参+Ф膜
仪器分析
电化学分析(二)
ISE的性能:选择性、响应时间、稳定性 选择性系数K =
ij
式中 :i—待测离子;
j—共存干扰离子
稳定性:漂移程度、重现性(三次测定值的平均偏差)
仪器分析
思是否越有利?为什么? 电极的稳定性和响应时间,是否是同一意思?
Kij的取值范围应该是多少?由其值可以说明什么?
感谢观看
仪器分析 第八章 电分析化学导论

42/68
盐桥:一个盛满饱和KCl和3%琼脂的U形管。
由于饱和KCl溶液浓度很高(3.5-4.2 mol/L), 因此,K+和Cl-离子向外扩散成为盐桥与两个溶 液液接界面上离子扩散的主要部分。
盐桥中,K+和Cl-的扩散速度几乎相等,因此在 两个液接界面上产生两个数值很小、且几乎相 等、方向相反的液接电位,近于完全消除。
38/68
39/68
40/68
2. 液体接界电位 L
定义:两种不同离子或不同浓度溶液接触界
面上,存在着微小电位差,称之为液体接界电位。 产生原因:各种离子具有不同的迁移速率。
41/68
电化学分析中,经常使用有液接界面的参比电 极,所以液接电位普遍存在。
液接电位往往难于测量,为减小其影响,实际 工作中通常在两个溶液之间用 盐桥 连接。
34/68
以锌电极为例:当锌片与含有Zn2+的溶液相
接触时:
金属锌有失去电子氧化为Zn2+的倾向;同时溶 液Zn2+中有从锌片上取得电子而沉积的倾向。
由于Zn氧化倾向大于Zn2+的还原倾向,致使锌 片上聚集了较多电子而带负电荷,溶液中Zn2+ 受锌片负电荷吸引,使溶液界面带正电荷,形 成双电层,产生电位差,即电极电位。
电极电位的测定方法。 液体接界电位的产生原因及消除方法。 浓差极化的产生原因与消除方法。 电化学极化的产生原因。
48/68
第八章 电分析化学导论
1. 根据电极的组成分类 2. 根据电极所起的作用分类
第四节 电极的种类
1. 根据电极的组成分类
第一类电极:金属-金属离子电极;
电化学分析法

电化学分析法电化学分析法(electrochemical analysis),是建立在物质在溶液中的电化学性质基础上的一类仪器分析方法,是由德国化学家C.温克勒尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家J.海洛夫斯基建立极谱法。
电化学分析(electrochemical analysis),是仪器分析的重要组成部分之一。
它是根据溶液中物质的电化学性质及其变化规律,建立在以电位、电导、电流和电量等电学量与被测物质某些量之间的计量关系的基础之上,对组分进行定性和定量的仪器分析方法。
1.发展历史电分析化学的发展具有悠久的历史,是与尖端科学技术和学科的发展紧密相关的。
近代电分析化学,不仅进行组成的形态和成分含量的分析,而且对电极过程理论,生命科学、能源科学、信息科学和环境科学的发展具有重要的作用。
作为一种分析方法,早在18世纪,就出现了电解分析和库仑滴定法。
19世纪,出现了电导滴定法,玻璃电极测pH值和高频滴定法。
1922年,极谱法问世,标志着电分析方法的发展进入了新的阶段。
二十世纪六十年代,离子选择电极及酶固定化制作酶电极相继问世。
二十世纪70年代,发展了不仅限于酶体系的各种生物传感器之后,微电极伏安法的产生扩展了电分析化学研究的时空范围,适应了生物分析及生命科学发展的需要。
纵观当今世界电分析化学的发展,美国电分析化学力量最强,研究内容集中于科技发展前沿,涉及与生命科学直接相关的生物电化学;与能源、信息、材料等环境相关的电化学传感器和检测、研究电化学过程的光谱电化学等。
捷克和前苏联在液-液界面电化学研究有很好的基础。
日本东京,京都大学在生物电化学分析,表面修饰与表征、电化学传感器及电分析新技术方法等方面很有特色。
英国一些大学则重点开展光谱电化学、电化学热力学和动力学及化学修饰电极的研究。
2. 基本原理电化学分析法的基础是在电化学池中所发生的电化学反应。
电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。
仪器分析大实验电化学测试的实验报告极化

仪器分析大实验电化学测试的实验报告极化
极化是电化学测试中常见的现象,它在电极上形成了一个电势障碍,阻碍了电流的流动。
极化通常分为两种:
1. 浓度极化:当电极表面周围的溶液中反应物浓度不足时,由于反应速率缓慢,导致电极上的反应物浓度降低,电极与溶液接触面积减小,从而导致电极的活性降低,电极内外所产生的电势差增加,出现浓度极化现象。
2. 电化学极化:由于反应速率较快,电流密度增大,导致电极表面氧化还原反应进行不完全,氧化物和还原物在电极上积聚,从而导致电极的活性降低,出现电化学极化现象。
为了解决极化问题,可以采取以下措施:
1. 增加溶液中反应物浓度,消除浓度极化现象。
2. 增加电极的表面积,提高反应速率,消除电化学极化现象。
3. 使用交错电极、倒置电极、振荡电极等特殊设计的电极,消除极化现象。
在电化学测试中,极化现象的存在会对测试结果的准确性产生一定影响,需要合理设计实验方案,选择合适的电极,采取相应的措施以消除或减小极化现象的影响。
《仪器分析教程》教学课件—第11章 电化学分析
11.2 参比电极与指示电极
11.2.1 参比电极 11.2.2 指示电极
11.2 参比电极与指示电极
电极:将溶液中的浓度或活度信息转变成电信号的一种传感器
指示电极(indicator electrode):指示待测溶液中离子活度变 化的电极。 参比电极(reference electrode):在测量电极电位时用来提供 电位标准的电极
ቤተ መጻሕፍቲ ባይዱ
11.1.2 电化学分析法的特点
(1)灵敏度、准确度高,选择性好 被测物质的最低量可以达到10-12mol/L数量级。
(2)电化学仪器装置较为简单,操作方便 直接得到电信号,易传递,尤其适合于化工生产中的自动
控制和在线分析。 (3)所需试样的量较少 (4)应用广泛
传统电化学分析:无机离子的分析; 测定有机化合物也日益广泛; 有机电化学分析;药物分析;
lg
a(Hg 2Cl 2 ) a2(Hg) a2(Cl
)
E Hg 2Cl/Hg
EO
Hg
2 2
Cl/Hg
0.059 lg
a(Cl )
当电极内溶液的Cl-活度一定,甘
汞电极电位为定值,故可作参比电极。
11:48:03
11.2.1 参比电极
2.甘汞电极
表11.1甘汞电极的电极电位( 25℃)
KCl 浓度 电极电位(V)
0.1mol/L 甘汞电极 0.1 mol / L +0.3365
标准甘汞电极(NCE) 1.0 mol / L +0.2828
饱和甘汞电极(SCE) 饱和溶液 +0.2438
甘汞电极的电极电位随温度变化,故需进行温度校正, 对于饱和甘汞电极(SCE),t ℃时的电极电位为:
仪器分析
20:52:26
3.电位分析法
电位法:是利用原电池内电极电位与溶液中某种 组分浓度的对应关系,实现定量测定的一种电化 学分析法。
R摩尔气体常数 能斯特(Nemst)方程: (8.314J· -1· -1) ; mol K T为绝对温度
为平衡电位
RT a(氧化态) ln nF a(还原态)
20:52:26
二、 色谱理论基础
• 1.塔板理论 • 2.速率理论 • 3.分离度
20:52:26
理论塔板高度H理——为使组分在柱内两相间达到一 次分配平衡所需要的柱长 理论塔板数n理——组分流过色谱柱时,在两相间进 行平衡分配的总次数 L
n理 H理
tR 2 tR 2 tR 2 n理 ( ) 5.54( ) 16( ) W1 2 W
第三章
色谱分析法
• 色谱法实质上是一种物理化学分离分析方法.它 是利用不同物质在两相(固定相和流动相)中具 有不同的分配系数或吸附能力及其它亲和作用性 能的差异为分离依据,当混合物中各组分随流动 相移动时,在两相中反复进行多次分配,从而使 各组分得谱分离过程及色谱常用术语
neff 16(
20:52:26
' tR
W
) 5.54(
2
' tR
W1 2
)
2
速率理论
色谱过程的动力学理论。
吸收了塔板理论的有效成果——H; 考虑了影响塔板高度及柱效的动力学因素; 指出理论塔板高度是色谱峰展宽的量度; 导出了塔板高度与载气线速度的关系式。
20:52:26
速率理论方程式:
20:52:26
• 5.保留时间(体积)——从进样开始到某一组分色 谱峰顶点所需的时间间隔称为该组分的保留时间 tR, 其相应通过的流动相体积称为该组分的保留体积 VR。 V R= t RF c
全版仪器分析-电化学分析.ppt
ni:被测离子i的电荷,nj:干扰离子j的电荷
选择性系数Ki/j的意义
在其它条件相同时,提供相同电位的欲测离 子活度αi和干扰离子活度αj的比值
选择性系数愈小,j离子对i离子的干扰愈小
估量某种干扰离子对测定造成的误差
36
相 对 误 差
K (α) i,j
α .精品课件.
ni /nj j
i
100%
47
.精品课件.
(4) 敏化电极
气敏电极
是一种基于界面化学反应 的敏化电极,由离子选择 性电极与参比电极置于内 充有电解质溶液的管中组 成的复合电极。
氨电极
NH
4
OH
NH 3
H 2O
48
pH变化→膜电.精位品课件的. 产生→与铵离子浓度相关
酶电极
也是一种基于界面化学反应的敏化电 极,酶在界面反应中起催化作用,而 催化反应的产物是一种能被离子选择 性电极所响应的物质。
9
.精品课件.
10
.精品课件.
原电池
发生氧化反应的电极称为阳极(负极) 发生还原反应的电极称为阴极(正极)
电解电池
发生氧化反应的电极称为阳极(正极) 发生还原反应的电极称为阴极(负极)
电子流出为负极,电子流入为正极
11
.精品课件.
化学电池可用图解法表示:
Zn︱ZnSO4(0.1mol/L)‖CuSO4(0.1mol/L)︱Cu
如何得到K’?
pH标
E标 K' 0.059
用标准溶液测定
pH试
pH标
E E标 2.303RT /
F
定位旋钮、斜率旋钮和温度旋钮的作用!
31
.精品课件.
32
仪器分析第2章电化学分析法
原电池
阳极:发生 氧化反应的 电极(负极) 阴极:发生 还原反应的 电极(正极)
阳极≠正极 阴极≠负极 电极电位较 正的为正极
2021/5/6
电解电池
阳极:发生氧 化反应的电极 (正极); 阴极:发生还 原反应的电极 (负极); 阳极=正极 阴极=负极
2021/5/6
电池的表达式
2021/5/6
电位分析的理论基础
理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系)。
对于氧化还原体系: Ox + ne- = Red
EEO Ox/RedR nF TlnaaR Odex
对于金属电极(还原态为金属,活度定为1):
EEM On/MR nF TlnaMn
2021/5/6
M n O 4 8 H 5 e M n 2 4 H 2 O
Zn |Zn2+(0.1mol/L ) | Cu2+(1mol/L) | Cu
用盐桥后 Zn |Zn2+(0.1mol/L ) || Cu2+(1mol/L) | Cu
|表示由电势差产生。用于两相界面不相混的两种溶液 之间。
左边:氧化反应,负极
右边:还原反应,正极
||用盐桥连接,消除液接电位。 溶液位于两电极之间。
E外 = k2 + 0.059 lg(a1 / a1’ )
a1 、 a2 分别表示外部试液和电极内参比溶液的H+活度;
a’1 、 a’2 分别表示玻璃膜外、内水合硅胶层表面的H+活度;
k1 、 k2 则是由玻璃膜外、内表面性质决定的常数。
玻璃膜内、外表面的性质基本相同,则k1=k2 , a’1 = a’2
KSP,CaC2O4 [Ca2 ][C2O42]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原电池的电动势为:
式中,E阴是阴极电极电位,E阳是阳极电极电位,Ej是液体接界电 位,IR是溶液的电阻引起的电压降。
电解池的工作原理:
i 反电动势
IR降
液接电位 超电压
A
V
理论 分解 电压
实际 分解 电压
v
电化学分析的关键是电极:
Pt电极系统——电解分析和库仑分析 离子选择性电极——电位分析和电位型传感器 滴汞、铂碳或微铂电极——极谱与伏安分析、电流 型传感器
C
C C0 X C0—电极表面浓度 C—本体溶液浓度
X
C [Cd ] [Cd ] i X
i k S ([Cd ] [Cd ] )
当电位进一步增大:
2 2 0
2
2 0
i k S [Cd ]
2
这是极谱定量分析的基础。
2、极限扩散电流方程
从上式中已知: KS代表什么物理含义? Ilkovic方程: I d ,max 706nD m t c
AFM image of a metal/S-SWNT/metal sample used for the experiments. Nanotube diameter is ~1.8 nm. The metal electrodes consist of 20-nm-thick Ni, with 60-nm-thick Au on top.
实验中用来验证极限电流是否受扩散控制。
三、半波电位E1/2 半峰高处对应的电位称为半波电位。 离子 Cd2+ Zn2+ Pb2+ Ni2+ Co2+ Cu2+ 非络合介 质中 -0.59 -1.0 -0.4 +0.02 1M KCN -1.18 -0.72 -1.36 -1.45 1M KCl -0.64 -1.00 -0.44 -1.20 -1.20 +0.04 1M NH4Cl -0.81 -1.35 -0.67 -1.10 -1.29 -0.24
3、电化学分析的特点:
1、仪器简单,价格较光学分析仪器便宜;
2、灵敏度高,如极谱分析可达10-12 M;
由于电导分析比较简单,教材没有讲。
电导分析的一个重要用途是测量水的纯度。如果水的纯 度达到18M,则认为是高纯水。
— +
纳米传感
Semi-conducting Nanotube Molecular Wires as Chemical Sensors for NH3 and NOx. Hydrogen Sensors / Palladium Mesowire Arrays
,,
当[H+]>> [Na+]
KH/Na bNa可以忽略.
当[Na+]浓度很大时,出现误差,称为钠差.
KH/Na称为选择性系数
2.303RT ni / n j EK lg( i kij ) ni F
i——表示待测离子
J——表示共存离子
Kij——称为选择系数 选择性系数越小,表示电极对该待测离子选 择性越好。
’ ’
k 0.059 pH
为什么一个玻璃薄膜能对pH产生特殊响应?
H+
Na+ Na+ Na+ Na+ Na+
Na+
H+
a1H
H+ H+ H+ H+
干玻璃膜
Na+ Na+ Na+ Na+
H+ H+
0.1mm
a2H
H+浓差梯度导致扩散电位
问题
这种电极能否用于Na+的响应?
E k 0.059 lg( aH K H / Na bNa )
饱 和 甘 汞 电 极
玻 璃 薄 膜 a1
Ag-AgCl 电极
a2
饱 和 甘 汞 电 极 a1
玻 璃 薄 膜
Ag-AgCl 电极 a2
60年代,根据这一原理,人们设计了p H电极:
a2
a1
采用这一装置,两参比电极间的电位差与H+ 活度间的关系是:
a1 E k 0.059 lg a2 k 0.059 lg a1
1 2 2 1 3 6
i k S [Cd ] k s c
D扩散系数 m汞滴的流速 t汞滴的寿命
2
I d ,ave 607nD m t c
2 1 3 6
1 2
2 1 3 6
m t
称为毛细管常数
m t m t
2 1 3 6
h 1 h h h
1 2
h为汞柱高度
I d ,ave
1 2
ECu 0.037 0.059 lg 1.0 0.037(V )
Ag先析出。当Ag的浓度降至10-6M时,电位为:
E Ag 0.779 0.059 lg 10 6 0.445(V )
Cu仍然不能析出,达到分离的目的。
三、库仑分析法
通过测量电解中消耗的电量进行分析的一类方法。
MQ m nF Q it Mit m nF
m——电极上析出物质的量 M——分子量或原子量
n——参与电极反应的电子数
F——法拉第常数(96486.7C/mol)
控制电位库仑分析
恒电流库仑分析
控制电位库仑分析
dQ it dt Q it dt
t 0 t
it i0 e kt i0 Q it dt i0 e dt (1 10 kt ) t 0 t 0 2.303k
t t kt
当t增大时,kt减小, kt>3,后一项可以忽略:
Hale Waihona Puke i0 Q 2.303kk lg it lg i0 t 2.303
问题:
怎么样实现恒电流分析?
恒电流库仑分析——库仑滴定 库仑法测定Na3AsO3 AsO33AsO43- + 2e
2Br-
Br2 +2e
问题
• 怎样确定库仑滴定亚砷酸 盐的终点?
实际 分解 电压
v
二、电解分析法
控制电位电解分析 电解分析
恒电流电解分析
汞阴极电解分析
控制电位电解分析法
控制 电压
工作电压
举例:1.0 mol/L Cu和0.01 mol/L Ag的分离:
Ag的析出电位:
E Ag 0.779 0.059 lg 0.01 0.681(V )
Cu的析出电位:
Y. Cui et al. Science, 293:1289, 2001
第二节
电位分析法
e
一、化学电池与电极电位
Zn|ZnSO4(x mol/L)||CuSO4(y mol/L) |Cu
E电池 = E阴 – E阳 + Ej -IR
E = Eo + 0.059/n lg n+ 当Cu2+溶液的浓度 Zn Cu
第四节
极谱分析法
一、极谱波的形成
设Cd2+的电解,电极反应为:
Cd2+ + 2e +Hg
分三个阶段
Cd(Hg)
(1)电位尚未负到Cd 的还原电位;
(2)Cd开始还原,扩 散电流产生; (3)极限扩散电流产 生。
i
极限扩散电流 id 电流上升阶段 i
残余电流 ir
-0.2
-0.5
-1
E(V)
问题 为什么会产生极限扩散电流呢??
Ag-AgCl 电极
as
a
pH测量
Es k 0.059 pH s E x k 0.059 pH x Es Ea Es Ex Ea E x Es Ex pH x pH s 0.059
饱 和 甘 汞 电 极 玻 璃 薄 膜 Ag-AgCl 电极
ax
a
溶液活度测量——标准加入法
为了简化起见,常用符号来表示化学电池。
习惯:将阳极写在左边,阴极写在右边。 两边的垂线表示金属与溶液的相界。此界面上存 在的电位差,称为电极电位。 中间的垂线表示不同电解质溶液的界面。该界面 上的电位差,称为液体接界电位。 它是由于不同离子扩散经过两个溶液界面时的速 度不同导致界面两侧阳离子和阴离子分布不均衡而引起 的。若两电解质溶液用盐桥连接,则用两条垂线表示, 用这样两条线表示液体接界电位已完全消除。
J. Kong et al., Science, 287: 622, 2000
F. Favier et al.,Science, 293: 2227, 2001
纳米传感
Electronically-based Nano-sensors for Highly Sensitive and Selective Detection of Chemical Species
第一章
第一节 概述
电化学分析法
Electrochemical Analysis
1、分类
电化学分析法是基于电化学原理与物质的电化学性质而 建立的一种分析方法。分为三种类型:
(1) 根据特定条件下溶液中离子浓度与电化学电池中某一电参量 (电导、电位、电流、电量)之间的关系建立的分析方法;
(2) 通过化学电池中某一电参数突变来指示容量分析终点的方法;
c x c cx
由两次测量的电位差可以求出未知浓度CX
(2)电位滴定法
E/mv
E V
V/ml
第三节 电解与库仑分析
一、分解电压与电极电位
电解与库仑分析——是以测量沉积于电极表面的 沉积物质量或电解过程中消耗的电量为基础的一类分 析方法。 i V A 反电动势