全国2018年中考数学真题分类汇编 实数

合集下载

2018年全国各地中考数学真题汇编实数与代数式(解答题20题)及答案

2018年全国各地中考数学真题汇编实数与代数式(解答题20题)及答案

2018年中考数学真题汇编:实数与代数式(20道解答题)解答题1.计算: .【答案】解:原式=1-2+2=1. 2.(1)计算: ;(2)化简:. 【答案】(1)解:原式=1+2× -(2-)-4=1+-2+-4=;(2)解:原式= = = .3.(1)计算: ;(2)化简: .【答案】(1)=4-+1=5-;(2)=m 2+4m +4+8-4=m 2+12.4.(1)360sin 28232-+︒-+-;(2)化简.【答案】(1)解 :原式 =; (2)解:原式 .5.(1)计算: ;(2)解分式方程:.【答案】(1)解 :原式= ×3 - ×+2-+= -+2-+=2.(2)方程两边同时乘以x -2得:x -1+2(x -2)=-3, 310821+⎪⎭⎫ ⎝⎛--π移项得:x+2x=-3+1+4,归并同类项得:3x=2,系数化为1得:x= .查验:将x= 代入最简公分母不为0,故x= 是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2.【答案】(1)解:原式=4 -2+3-1=4 ;(2)解:原式= =a-b.当a=1,b=2时,原式=1-2=-1.7.(1)计算:.(2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1-.8.计算:+-4sin45°+.【答案】解:原式= .9.计算:【答案】解:原式=2-3+8-1=6.10.计算:【答案】解:原式= = .11.计算:.12.计算或化简. (1); (2).【答案】(1)解:原式=2+(2- )+=2+2- +=4;(2)解:原式=(2x )2+12x +9-[(2x 2)-9] =(2x )2+12x +9-(2x )2+9 =12x +18. 13.计算:【答案】解:原式=1+2+=1+2+4=7.14.计算:(π-2)°+4cos 30°- -(- )-2. 【答案】解:原式= =-3.15.(1)计算: ;(2)化简:.【答案】(1)解:原式= ;(2)解:原式= .16.计算:.【答案】解:原式=2-2×++1=2-++1=3.17.计算: . 【答案】解:原式=4-1+2- +2×,=4-1+2- +,=5.18.观看以劣等式: 第1个等式: , ()()︒+-+---60sin 2237202π第3个等式:,第4个等式:,第5个等式:,……依照以上规律,解决以下问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2)解:猜想:,证明:左侧= = = =1,右边=1,∴左侧=右边,∴原等式成立,∴第n个等式为:.19.关于任意实数、,概念关于“”的一种运算如下:.例如.(1)求的值;(2)假设,且,求的值.【答案】(1)解:;(2)解:由题意得∴.20.关于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,若是,那么的取值范围为________;(2)若是,求的值;(3)若是,求的值.(2)解:①当x+2≥2时,即x≥0时,2(x+2)=x+4, 解之:x=0;②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2时,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3;(3)解:①当9最小时,那么x2=3x-2解之:x1=1,x2=2 当x=1时,x2=1<9(舍去)当x=2时,x2=4<9(舍去);②当x2最小时,3x-2=9,解之x=∴x2= ;③当3x-2最小时,x2=9,解之:x=±3∴3x-2=7<9, 3x-2=-11<9故x=3和-3.。

2018年中考数学试题分类-实数

2018年中考数学试题分类-实数

2011年中考数学试题分类2_实数(含答案)一、选择题1. (2011福建泉州,1,3分)如在实数0,-3,32-,|-2|中,最小的是( ). A .32-B . -3C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C.12D.3【答案】D3. (2011山东滨州,1,3分)在实数π、13、2、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D . 2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m0m1n【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( ) A .(1)1x x --+=+ B .954-=C .3223-=- D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1· 【答案】D·10. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( ) A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是 A .56B .15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223=【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何? A .-1.1 B .-1.8 C .-3.2 D .-3.9 【答案】C19. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1 C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( )A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何?A .9B . 27C . 279D . 407 【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2C . (31)6 D . (-6)2 【答案】A29. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何? A .-1 B .-611 C .-512 D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111= B.819=± C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( ) A.2 B.0 C.5 D.13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =.②若b a <,则 b a <. ③若b a -=,则 22)(b a =-.其中正确的判断的个数是A .3B .2C .1D .0 【答案】C 二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= . 【答案】15. (2011江西,9,3分)计算:-2-1= . 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.输入数( )2-1( )2+1输出数减去5【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-39. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有a b=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a ✞b=a (1-b ),下面给出了关于这种运算的几个结论:①2✞(-2)=6②a ✞b= b ✞ a ③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab④若a ✞b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______.答案:12,12,1,-2 13. (2011广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”) 【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22= 2.2. (2011广东东莞,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4=0 3. (1) (2011福建福州,16(1),7分)计算:016|-4|+2011- 【答案】解:原式414=+-1=4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭【答案】解:原式=332123122=23--++-+6. (2011山东菏泽,15(1),6分)计算:027(4)6cos302--π-+- 解:原式=333-16+22-⨯=1 7. (2011山东济宁,16,5分)计算:084sin 45(3)4-︒+-π+-【答案】.解:原式2224142=-⨯++5= ························································ 8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .【答案】(1)111n n -+ ············································································· 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·················· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分 9. (2011 浙江湖州,17,6)计算:0022sin304(2)π--++- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2212122=-+⨯=+ 11. (2011浙江绍兴,17(1),4分)(1)计算:0182cos454π--+︒+(-2);【答案】解:原式21=221224-+⨯+ 3=32.4- 12. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)12-+--; 【答案】解:20(2)(2011)124123523-+--=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4=0 17. (2011浙江省嘉兴,17,8分)(1)计算:202(3)9+--. 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22= 2.19. (2011福建泉州,18,9分)计算:()()2201131313272π-⎛⎫-+-⨯--+ ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯ 【答案】2921. (2011湖南邵阳,17,8分)计算:0201043-+-。

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。

2018年全国中考数学真题汇编全集(共21套)

2018年全国中考数学真题汇编全集(共21套)

2018年中考数学真题汇编:实数与代数式(解答题21题) 解答题1.计算:.【答案】原式=1-2+2=02.(1)计算:(2)化简:.【答案】(1)解:原式=1+2× -(2- )-4=1+ -2+ -4=(2)解:原式= ==3.(1)计算:(2)化简:【答案】(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+124.(1).(2)化简.【答案】(1)原式(2)解:原式5.(1)计算:(2)解分式方程:【答案】(1)原式= ×3 - × +2- + ,= - +2- + ,=2.(2)方程两边同时乘以x-2得:x-1+2(x-2)=-3,去括号得:x-1+2x-4=-3,移项得:x+2x=-3+1+4,合并同类项得:3x=2,系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。

【答案】(1)原式=4 -2+3-1=4(2)原式= =a-b当a=1,b=2时,原式=1-2=-17.(1)计算:(2)解方程:x2-2x-1=0【答案】(1)解:原式= - -1+3=2(2)解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1= ,x2=8.计算:+-4sin45°+.【答案】原式=9.计算:【答案】原式=2-3+8-1=610.计算:【答案】解:原式= = 11.计算:.【答案】解:原式=4+1-6=-112.计算或化简.(1);(2).【答案】(1)解:()-1+| −2|+tan60°=2+(2- )+=2+2- +=4(2)解:(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+1813.计算:【答案】解:=1+2+=1+2+4=7.14.计算:(π-2)°+4cos30°--(-)-2.【答案】解:原式= ,=-3.15.(1)计算:;(2)化简:.【答案】(1)解:原式=(2)解:原式=16.计算:.【答案】解:原式=2-2× + +1,=2- + +1,=3.17.(1)计算:. (2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1- .18.计算:【答案】解:原式=4-1+2- +2× ,=4-1+2- + ,=5.19.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)(2)解:猜想:,证明:左边= = = =1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,20.对于任意实数、,定义关于“ ”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1)解:(2)解:由题意得∴.21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,如果,则的取值范围为________;(2)如果,求的值;(3)如果,求的值.【答案】(1);(2)解:①当2≤x+2时,即x≥0时,2(x+2)=x+4,解之:x=0②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3(3)解:①当9=x2,且3x-2≥9时。

全国各地中考数学实数试题归总(含答案)

全国各地中考数学实数试题归总(含答案)

全国各地中考数学实数试题归总(含答案)以下是查字典数学网为您推荐的全国各地中考数学实数试题归总(含答案),希望本篇文章对您学习有所帮助。

全国各地中考数学实数试题归总(含答案)1. (2021江苏盐城,3,3分)4的平方根是A. 2B.16C.D. 16【解析】本题考查了平方根的概念.掌握有平方根的定义是关键.选项A是4的算术平方根;选项B是4的平方,选项C 是4的平方根,表示为:【答案】4的平方根是,故选C【点评】本题主要考查平方根的定义,解决本题的关键是正确区分一个非负数的算术平方根与平方根.8.2. 实数1. (2021江苏盐城,5,3分)下列四个实数中,是无理数的为A.0B. C.-2D.【解析】本题考查了无理数的概念,掌握无理数的三种构成形式是解答本题的关键.无限不循环小数称为无理数,无理数有三种构成形式:①开放开不尽的数;②与有关的数;③构造性无理数. 属于开放开不尽的数,是无理数;【答案】选项A,C是整数,而D是分数,它们都是有理数,应选B.【点评】本题主要考查了无理数的概念,要注意区分有理数和无理数2.(2021山东泰安,2,3分)下列运算正确正确的是( )A. B. C. D.【解析】因为,,,,所以B项为正确选项。

【答案】B【点评】本题主要考查了非负数的算术平方根,负指数幂,同底数幂的除法,幂的乘方,掌握这些相关运算的基本性质是解题的基础。

3.(2021山东德州中考,1,3,) 下列运算正确的是( )(A) (B) = (C) (D)【解析】根据算术平方根的定义,4的算术平方根为4,故A 正确;负数的偶次方为正数, =9,故B错误;根据公式(a0),,故C错误; ,故D错误.【答案】A.【点评】正数的算术平方根为正数,0的算术平方根为0,负数的偶次方为正数,奇次方为负数,任何不等于0的数的负指数幂等于这个数的正指数幂的倒数;任何不等于0的数的0次方都为1.4.(2021山东省聊城,10,3分)如右图所示的数轴上,点B 与点C关于点A对称,A、B两点对应的实数是和-1,则点C所对应的实数是( )A. 1+B. 2+C. 2 -1D. 2 +1解析:因为点B与点C关于点A对称,所以B、C到点A的距离相等.由于点C在x轴正半轴上,所以c对应的实数是 + +1=2 +1.5. ( 2021年浙江省宁波市,6,3)下列计算正确的是(A)a6a2=a3 (B)(a3)2=a5 (C)25 =5 (D) 3-8 =-2【解析】根据幂的运算性质可排除A和B,由算术平方根的定义可排除C,而D计算正确,故选D【答案】D【点评】本题考查幂的运算性质、算术平方根、立方根的性质掌握情况,是比较基础的题目.6. ( 2021年浙江省宁波市,7,3)已知实数x,y满足x-2+(y+1)2=0,则x-y等于(A)3 (B)-3 (C)1 (D) -1【解析】由算术平方根及平方数的非负性,两个非负数之和为零时,这两个非负数同时为零,易得x-2=0,y+1=0,解得x=2,y= -1.【答案】A【点评】本题是一个比较常见题型,考查非负数的一个性质: 两个非负数之和为零时,这两个非负数同时为零.7. (2021浙江丽水4分,11题)写出一个比-3大的无理数是_______.【解析】:只要比-3大的无理数均可.【答案】:答案不唯一,如- 、、等【点评】:无理数是无限不循环小数,其类型主要有三种:①开方开不尽的数,如;②含型,如③无限不循环小数,如-0.1010010001.8.(2021广州市,6, 3分)已知,则a+b=( )A. -8B. -6C. 6D.8【解析】根据非负数的性质,得到两个代数式的值均为0.从而列出二元一次方程组,求出a,b的值。

2018年中考数学总复习专题提升一数轴实数的运算代数式的化简与求值试题

专题提升一数轴、实数的运算、代数式的化简与求值一、数轴热点解读实数和数轴上的点一一对应,利用数轴可以比较直观地解决数和式的问题,体现了数形结合的重要数学思想,是中考的热点.母题呈现(2016·台湾)如图,数轴上A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O 与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?( )A.在A的左边 B.介于A、B之间C.介于B、C之间 D.在C的右边对点训练1.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )第1题图A.-4 B.-2 C.0 D.42.(2017·广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )第2题图A.-6 B.6 C.0 D.无法确定3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )第3题图A.ac>bc B.|a-b|=a-bC.-a<-b<-c D.-a-c>-b-c4.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,5.第4题图A.p B.q C.m D.n5.如图,数轴上有A,B,C,D四点,根据图中各点的位置,判断哪一点所表示的数与11-239最接近( )第5题图A.A B.B C.C D.D6.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是3和-1,则点C所对应的实数是( )第6题图A.1+3 B.2+3C.23-1D.23+1二、实数的混合运算热点解读先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号内的,若没有括号,在同一级运算中,要从左至右依次进行运算.它是中考的必考题型.母题呈现(2016·绍兴)计算:55-(2-5)0+⎝⎛⎭⎪⎫12-2.对点训练7.(2016·临沂)计算:||-3+3tan30°-12-(2016-π)0.8.(2015·汕尾)计算:8+|22-3|-⎝ ⎛⎭⎪⎫13-1-(2015+2)0.9.(2015·内江)计算:|-2|-(π-2015)0+⎝ ⎛⎭⎪⎫12-1-2sin60°+12.10.已知a =⎝ ⎛⎭⎪⎫13-1,b =2cos45°+1,c =(2010-π)0,d =|1-2|. (1)请化简这四个数;(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.。

2018年全国中考数学试卷解析分类汇编专题2 实数

实数一.选择题1.(2015•湖北省武汉市,第1题3分)在实数-3、0、5、3中,最小的实数是()A.-3 B.0 C.5 D.3A【解析】有理数中,负数小于0,零小于正数,所以最小的是-3.备考指导:有理数大小比较的一般方法:①正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小;②在数轴上表示的数,右边的总比左边的大.2.(2015•江苏苏州,第4题3分)若,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。

【解析】化简得:m,因为A+提示:注意负数比较大小不要弄错不等号方向),所以。

故选C。

3(2015湖南邵阳第1题3分)计算(﹣3)+(﹣9)的结果是()A.﹣12 B.﹣6 C. +6 D. 12考点:有理数的加法..分析:根据有理数的加法运算法则计算即可得解.解答:解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.4.(2015•甘肃武威,第1题3分)64的立方根是()A. 4 B. ±4 C. 8 D. ±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.1.(2015•四川资阳,第6题3分)如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段A.AO上B.OB上C.BC上D.CD上考点:估算无理数的大小;实数与数轴..分析:根据估计无理数的方法得出0<3﹣<1,进而得出答案.解答:解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.故选:B.点评:此题主要考查了估算无理数的大小,得出的取值范围是解题关键.5、(2015•四川自贡,第2题4分)将用小数表示为()A. B. C. D.考点:科学记数法分析:在数学上科学记数法是把一个数记成的形式,其中要写成整数为一位的数;要注意的是当时,指数是一个负整数,这里的,实际上通过指数可以确定第一个有效数字前面0的个数为3个.略解:,故选C.6. (2015•浙江滨州,第2题3分)下列运算:sin30°= ,.其中运算结果正确的个数为( )A.4B.3C.2D.1【答案】D考点:实数的运算7. (2015•浙江杭州,第6题3分)若k<<k+1(k是整数),则k=( )A. 6B. 7C. 8D. 9【答案】D.【考点】估计无理数的大小.【分析】∵,∴k=9.故选D.1. (2015•浙江湖州,第3题3分)4的算术平方根是( )A. ±2B. 2C. −2D.【答案】B.【解析】因,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.。

2018中考真题汇编:实数

2018中考真题汇编:实数2018中考真题汇编:实数1.若实数m、n满足等腰△ABC的两条边长为m和n,第三边长为m+n,则△ABC的周长是() A。

12 B。

10 C。

8 D。

6 【来源】江苏省宿迁市2018年中考数学试卷【答案】B2.给出四个实数√36,37,√49,2,-1,其中负数是()A。

√36 B。

2 C。

0 D。

-1 【来源】浙江省温州市2018年中考数学试卷【答案】D3.实数在数轴上对应的点的位置如图所示,这四个数中最大的是() A。

B。

C。

D。

【来源】四川省成都市2018年中考数学试题【答案】D4.估计的值在() A。

5和6之间 B。

6和7之间 C。

7和8之间 D。

8和9之间【来源】天津市2018年中考数学试题【答案】D5.的算术平方根为() A。

B。

C。

D。

【来源】贵州省安顺市2018年中考数学试题【答案】B6.下列无理数中,与最接近的是() A。

B。

C。

D。

【来源】江苏省南京市2018年中考数学试卷【答案】C 序编辑区,再按下键,然后按下键,最后按下键,则输出的结果是____________.来源】山东省潍坊市2018年中考数学试题答案】1.5;1.5解析】分析:第一问要求计算,直接按照题目给出的按键序列进行计算即可;第二问要求按照步骤进行计算,需要注意每一步按键的顺序和操作,最终得到的结果即为答案.详解:第一问按照题目给出的按键序列进行计算,结果为1.5;第二问按照步骤进行计算,先计算2÷4得到0.5,再加上1得到1.5,最后乘以2得到3,再除以2得到1.5,因此输出的结果也为1.5.点睛:本题主要考查了计算器的使用和计算顺序,需要注意每一步按键的操作和顺序,以及计算结果的精度问题.15.对于两个非零实数x,y,定义一种新的运算:x*y=xy/(x+y)。

若1*(-1)=2,则(-2)*2的值是多少?解析:根据新定义的运算法则,可以列出方程式:1*(-1)/(1+(-1))=2,解得1=-2/(2+(-2))。

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数
一、单选题
1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()
A. 12
B. 10
C. 8
D. 6
【来源】江苏省宿迁市2018年中考数学试卷
【答案】B
2.与最接近的整数是()
A. 5
B. 6
C. 7
D. 8
【来源】山东省淄博市2018年中考数学试题
【答案】B
【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.
详解:∵36<37<49,
∴<<,即6<<7,
∵37与36最接近,
∴与最接近的是6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数,2,0,-1,其中负数是()
A. B. 2 C. 0 D. -1
【来源】浙江省温州市2018年中考数学试卷
【答案】D
【解析】分析: 根据负数的定义,负数小于0 即可得出答案.
详解: 根据题意:负数是-1,
故答案为:D.
点睛: 此题主要考查了实数,正确把握负数的定义是解题关键.
4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()
A. B. C. D.
【来源】四川省成都市2018年中考数学试题
【答案】D
【解析】分析:根据实数的大小比较解答即可.
详解:由数轴可得:a<b<c<d,故选D.
点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.
5.估计的值在()
A. 5和6之间
B. 6和7之间
C. 7和8之间
D. 8和9之间
【来源】天津市2018年中考数学试题
【答案】D
6.的算术平方根为()
A. B. C. D.
【来源】贵州省安顺市2018年中考数学试题
【答案】B
【解析】分析:先求得的值,再继续求所求数的算术平方根即可.
详解:∵=2,而2的算术平方根是,∴的算术平方根是,
故选B.
点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
7.的值等于()
A. B. C. D.
【来源】江苏省南京市2018年中考数学试卷
【答案】A
8.下列无理数中,与最接近的是()
A. B. C. D.
【来源】江苏省南京市2018年中考数学试卷
【答案】C
【解析】分析:根据无理数的定义进行估算解答即可.
详解:4=,与最接近的数为,故选:C.
点睛:本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
9.已知: 表示不超过的最大整数,例: ,令关于的函数
(是正整数),例:=1,则下列结论错误
..的是()A. B.
C. D. 或1
【来源】湖南省娄底市2018年中考数学试题
【答案】C
10.估计的值应在()
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】B
【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.
【详解】=,=,
而,4<<5,所以2<<3,
所以估计的值应在2和3之间,故选B.
【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.
11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )
A. 16张
B. 18张
C. 20张
D. 21张
【来源】2018年浙江省绍兴市中考数学试卷解析
【答案】D
二、填空题
12.化简(-1)0+()-2-+=________________________.
【来源】湖北省黄冈市2018年中考数学试题
【答案】-1
【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.
详解:原式=1+4-3-3=-1.故答案为:-1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
13.已知一个正数的平方根是和,则这个数是__________.
【来源】四川省凉山州2018年中考数学试题
【答案】
【解析】分析:由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.详解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=,
∴(±)2=故答案为:.
点睛:本题主要考查了平方根的逆运算,平时注意训练逆向思维.
14.用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.
【来源】山东省潍坊市2018年中考数学试题
【答案】34+9.
15.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是_____.
【来源】浙江省金华市2018年中考数学试题
【答案】﹣1
【解析】分析:根据新定义的运算法则即可求出答案.
详解:∵1*(-1)=2,∴,即a-b=2
∴原式==−(a-b)=-1故答案为:-1
点睛:本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.16.观察下列各式:



……
请利用你所发现的规律,
计算+++…+,其结果为_______.
【来源】山东省滨州市2018年中考数学试题
【答案】
17.计算:__________.
【来源】2018年甘肃省武威市(凉州区)中考数学试题
【答案】0
18.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题
【答案】4035
19.计算:______________.
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】3
三、解答题
20.计算:(﹣2)2+20180﹣
【来源】江苏省连云港市2018年中考数学试题
【答案】﹣1
【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
21.计算:
【来源】江苏省宿迁市2018年中考数学试卷
【答案】5
22.计算:
【答案】0
【解析】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可. 详解:原式=1-2+2=0
23.(1)计算:;(2)化简:(m+2)2 +4(2-m)
【答案】(1)5-;(2)m2+12
24.计算.
【答案】13.
25.计算:.
【答案】3
26.计算:.
【答案】
27.计算:+(﹣2018)0﹣4sin45°+|﹣2|.
【答案】3
28.计算:.
【答案】4.
29.(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;
(2)化简:(1﹣)÷.
【答案】(1)5;(2)x+1.
30.对于任意实数、,定义关于“”的一种运算如下:.例如
.
(1)求的值;
(2)若,且,求的值.
【答案】(1);(2).
31.计算: .
【答案】10
32.(1)计算:.(2)解方程:.
【答案】(1)2;(2),.
33.计算:
【答案】7
34.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.
【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.
35.计算:|﹣2|﹣+23﹣(1﹣π)0.
【答案】6
百度文库是百度发布的供网友在线分享文档的平台。

百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。

网友可以在线阅读和下载这些文档。

百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。

百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。

当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。

本文档仅用于百度文库的上传使用。

相关文档
最新文档