宁夏石嘴山市2018届高考第一次模拟考试数学(理)试题含答案
宁夏银川市2018届高三数学第一次模拟考试试题 理

宁夏银川市2018届高三数学第一次模拟考试试题理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0。
5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=错误!-2i (其中i为虚数单位),则|z|=A.3 3 B.3错误!C.2错误!D.2错误! 2.设集合A={(x,y)|x2+y2=1},B={(x,y)|y=3x},则A∩B的子集的个数是A.4 B.3 C.2 D.13.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?"意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?"根据上题的已知条件,可求得该女子第3天所织布的尺数为A.错误!B.错误!C.错误!D.错误!4.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为A .错误!a 2B .错误!a 2C .错误!a 2D .错误!a 25.阅读程序框图,如果输出的函数值在区间[错误!,错误!]内,则输入的实数x 的取值范围是A .(-∞,-2]B .[-2,-1]C .[-1,2]D .[2,+∞)6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为A .96B .80+4错误!πC .96+4(错误!-1)πD .96+4(2错误!-1)π7.上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有A .4526A A ⨯种B .⨯26A 54种C .4526A C ⨯种D . ⨯26C 54种8.根据需要安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是A .2日和5日B .5日和6日C .6日和11日D .2日和11日9.设x ,y 满足条件错误!若目标函数z =ax +by (a 〉0,b >0)的最大值为12,则错误!+错误!的最小值为A .错误!B .错误!C .错误!D .410.设F1,F2是双曲线错误!-错误!=1(a〉0,b〉0)的左、右两个焦点,若双曲线右支上存在一点P,使(错误!+错误!)·错误!=0(O为坐标原点),且|PF1|=错误!|PF2|,则双曲线的离心率为A.错误!B.错误!+1 C.错误!D.错误!+1 11.在△ABC中,错误!=错误!=错误!,则sin A:sin B:sin C=A.5 : 3 : 4 B.5 :4 :3 C.错误!:错误!:2 D.错误!:2 :错误!12.若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是A.(-错误!,1)B.[-错误!,1) C.[-2,1)D.(-错误!,-2]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分。
宁夏石嘴山2018届高三第三次联考模拟试题(理数) 精品

2018年石嘴山市高三年级第一次联考试卷数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22—24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚。
2.选择题必须使用2B 铅笔填涂;非选择体必须使用0.5毫米黑色字迹的中性笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用2B 铅笔填涂;非选择题作图必须用黑色字迹的中性笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
参考公式:柱体体积公式 Sh V =其中S 为底面面积,h 为高 锥体体积公式 Sh V 31=其中S 为底面面积,h 为高独立检验临界值表)(2k k P ≥ 0.10 0.05 0.025 0.010 0.005 0.001 k2.7063.8415.0246.6357.87910.828第I 卷一、选择题(每小题5分,共60分)1.已知全集{1,2,3,4,5,6}U =,{2,3,5}M =,{4,5}N =,则集合{1,6}=A .MN B. M N C. U (N M ) D. U (N M )2.若i b i i a -=-)2(,其中R b a ∈,,i 是虚数单位,复数bi a +=A .12i +B .12i -+C .12i --D .12i -3.某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此该学生不能同时报考这两所学校,则该学生不同的报考方法种数是A .16B .24C .36D .484.在等差数列{a n }中,若a 1 + a 5 + a 9 =43π,则tan( a 4 + a 6 )的值为 A.33B.1C.-1D.不存在 5.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是正视图侧视图俯视图A .B .C .D .6. 若方程xx 2)1ln(=+的根在区间))(1,(Z k k k ∈+上,则k 的值为 A .1- B .1C .1-或2D .1-或17.若函数1)sin(2)(-+=ϕωx x f 的图象与直线3-=y 的相邻的两个交点之间的距离为π,则ω的一个可能取值为 A .3 B31 C .21D .2 8.已知不等式组0,0210x y x y ≥≥⎧⎨+-≤⎩表示平面区域D ,往抛物线22y x x =-++与x 轴围成的封闭区域内随机地抛掷一粒小颗粒,则该颗粒落到区域D 中的概率为A .19B .118C .13 D .169.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程 =3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程 =bx+a 必过),(y x ;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k 2=13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是A. 1B. 2C. 3D. 4 O thh t O h t O Ot hyˆy ˆ10.已知离心率为e 的双曲线17222=-y ax ,其右焦点与抛物线x y 162=的焦点重合,则e 的值为A .43B .23234 C .34 D .423 11.定义某种运算⊙, a S =⊙b 的运算原理如框图,则式子5⊙3+2⊙4=A. 14B. 15C. 16D. 1812. 已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大时, 其高的值为 A .33 B .332 C .3 D .32第Ⅱ卷二、填空题(每小题5分,共20分)13.已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -∥b ,则k = 14.直线y=2与曲线2y x x a =-+有四个交点,则a 的取值范围是 15.1110(1)()nnn n n ax a x a xa x a n N -*-+=++⋅⋅⋅++∈,点列(,)i i A i a (i=0,1,2 …n )的部分图像 如图所示,则实数a 的值为1A 2A 23o14输入a,ba >b? 开始是否输出SS=a(b -1)S=b(a -1)结束16.有下列命题:①函数31x y x +=-的图象关于点(1,1)-对称;②设α,β是两角,则“2παβ=+”是“sin cos αβ=”的必要不充分条件;③在△ABC 中,内角A,B,C 的对边分别是a,b,c ,223a b bc -=,sin 23sin C B =,则A=300;④已知命题p :对任意的R x ∈,都有1sin ≤x ,则p ⌝是:存在x R ∈, 使得sin 1x >其中所有真命题的序号是三、解答题(共5题,共60分) 17.(本小题满分12分)已知数列{}n a 是首项与公比均为12的等比数列,数列{}n b 的前n 项和 21()2n B n n =+,n N *∈. (1)求数列{}n a 与{}n b 的通项公式; (2)求{}n n a b ⋅的前n 项和n s .18.(本小题满分12分)如图,在三棱锥S-ABC 中,⊥SC 平面ABC , 点P 、M 分别是SC 和SB 的中点,设1,90PM AC ACB ==∠=︒, 直线AM 和直线SC 所成的角为600. (1)求证:PM ⊥平面SAC ;(2)求二面角M AB C --的平面角的余弦值. APMC BS19.(本小题满分12分)某大学举办“我爱记歌词”校园歌手大赛,经过层层选拔,有5人进入决赛。
2018年宁夏银川一中高考数学一模试卷(理科)

一、选择题:本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的..( 分)已知复数 ﹣ ♓(其中♓为虚数单位),则 ()✌. . . ..( 分)设集合✌(⌧,⍓) ⌧ ⍓ ❝, (⌧,⍓) ⍓⌧❝,则✌∩ 的子集的个数是()✌. . . ..( 分)古代数学著作《九章算术》有如下问题:❽今有女子善织,日自倍,五日织五尺,问日织几何?❾意思是:❽一女子善于织布,每天织的布都是前一天的 倍,已知她 天共织布 尺,问这女子每天分别织布多少?❾根据上题的已知条件,可求得该女子第 天所织布的尺数为()✌. . . ..( 分)已知正三角形✌的边长为♋,那么△✌的平面直观图△✌的面积为()✌.♋ .♋ .♋ .♋.( 分)阅读程序框图,如果输出的函数值在区间内,则输入的实数⌧的取值范围是()✌.(﹣∞,﹣ .☯﹣ ,﹣ .☯﹣ , .☯, ∞) .( 分)如图,网格纸上小正方形的边长为 ,粗线画出的是某几何体的三视图,则该几何体的表面积为()✌. . . ..( 分)上海某小学组织 个年级的学生外出参观包括甲博物馆在内的 个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()✌.✌×✌种 .✌× 种. ×✌种 . × 种.( 分)某单位安排甲、乙、丙三人在某月 日至 日值班,每人 天.甲说:我在 日和 日都有值班;乙说:我在 日和 日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()✌. 日和 日 . 日和 日 . 日和 日 . 日和 日 .( 分)设⌧,⍓满足条件,若目标函数 ♋⌧♌⍓(♋> ,♌> )的最大值为 ,则的最小值为()✌. . . .10.(5分)设F1,F2是双曲线﹣=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(+)•=0(O为坐标原点),且|PF1|=|PF2|,则双曲线的离心率为()A.B.C.D.+111.(5分)在△ABC中,==,则sinA:sinB:sinC=()A.5:3:4 B.5:4:3 C.::2 D.:2:12.(5分)若函数f(x)=x3﹣3x在(a,6﹣a2)上有最小值,则实数a的取值范围是()A.(﹣,1) B.[﹣,1) C.[﹣2,1)D.(﹣2,1)二、填空题:本大题共4小题,每小题5分.13.(5分)若a=log43,则2a+2﹣a=.14.(5分)函数f(x)=2sin2(+x)﹣cos2x(≤x≤)的值域为.15.(5分)已知圆x2+y2=4,B(1,1)为圆内一点,P,Q为圆上动点,若∠PBQ=90°,则线段PQ中点的轨迹方程为.16.(5分)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为.三.解答17.(12分)S n为数列{a n}前n项和,已知a n>0,a n2+2a n=4S n+3,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.18.(12分)人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:幸福感指数[0,2)[2,4)[4,6)[6,8)[8,10]男居民人数1020220125125女居民人数1010180175125(1)在图中绘出频率分布直方图(说明:将各个小矩形纵坐标注在相应小矩形边的最上面),并估算该地区居民幸福感指数的平均值;(2)若居民幸福感指数不小于6,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取4对夫妻进行调查,用X表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求X的分布列及期望(以样本的频率作为总体的概率).19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=PA=2,E,F分别为PB,AD的中点.(1)证明:AC⊥EF;(2)求直线EF与平面PCD所成角的正弦值.20.(12分)已知椭圆+=1(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程.(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.21.(12分)已知函数f(x)=lnx﹣ax2+(a﹣2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1和曲线C2的极坐标方程;(2)已知射线l1:θ=α(0<α<),将射线l1顺时针旋转得到射线l2;θ=α﹣,且射线l1与曲线C1交于O,P两点,射线l2与曲线C2交于O,Q两点,求|OP|•|OQ|的最大值.选修4-5;不等式选讲23.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,且a,b∈M.(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.2018年宁夏银川一中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z=﹣2i(其中i为虚数单位),则|z|=()A.3 B.3 C.2 D.2【解答】解:z=﹣2i=﹣2i=3﹣i﹣2i=3﹣3i,则|z|=3,故选:B.2.(5分)设集合A={(x,y)|x2+y2=1},B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3 C.2 D.1【解答】解:∵A={(x,y)|x2+y2=1},B={(x,y)|y=3x},∴A∩B={(x,y)|},如图:由图可知,A∩B的元素有2个,则A∩B的子集有22=4个.故选:A.3.(5分)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为()A.B.C.D.【解答】解:设这女子每天分别织布a n尺,则数列{a n}是等比数列,公比q=2.则=5,解得.∴a3==.故选:A.4.(5分)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.a2B.a2C.a2D.a2【解答】解:由于斜二测画法规则是在已知图象中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,画出相应的x′轴和y′轴,两轴相交于O′,且使∠x′O′y′=45° 或135°,它们确定的平面表示水平面,已知图形中平行于x轴或y轴的线段,在直观图中分别画出平行于x′轴和y′轴的线段,已知图形中平行于x轴的线段在直观图中长度保持不变,平行于y轴的线段长度变成原来的一半,∴△ABC的平面直观图△A′B′C′的底边长不变,高变为=a,∴△ABC的平面直观图△A′B′C′的面积S==.故选:D.5.(5分)阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()A.(﹣∞,﹣2]B.[﹣2,﹣1]C.[﹣1,2]D.[2,+∞)【解答】解:分析程序中各变量、各语句的作用再根据流程图所示的顺序,可知:该程序的作用是计算分段函数f(x)=的函数值.又∵输出的函数值在区间内,∴x∈[﹣2,﹣1]故选:B.6.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.96 B.C.D.【解答】解:由三视图可知几何体为边长为4的正方体挖去一个圆锥得到的,圆锥的底面半径为2,高为2,∴圆锥的母线长为2.∴几何体的平面部分面积为6×42﹣π×22=96﹣4π.圆锥的侧面积为=4.∴几何体的表面积为96﹣4π+4.故选:C.7.(5分)上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A×A种B.A×54种C.C×A种D.C×54种【解答】解:根据题意,分2步进行分析:①,在6个年级中任选2个,去参观甲博物馆,有C62种选法,②,剩下4个年级中每个年级都可以在剩下的5个博物馆中任选1个参观,都有5种选法,则剩下4个年级有5×5×5×5=54种选法,则一共有C62×54种方案;故选:D.8.(5分)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日 D.2日和11日【解答】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.9.(5分)设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.D.4【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,∴4a+6b=12,即2a+3b=6,∴=()×=(12+)≥4当且仅当时,的最小值为4故选:D.10.(5分)设F1,F2是双曲线﹣=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(+)•=0(O为坐标原点),且|PF1|=|PF2|,则双曲线的离心率为()A.B.C.D.+1【解答】解:取PF2的中点A,则=2∵()•=0,∴2•=0∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=|PF2|,∴2a=|PF1|﹣|PF2|=(﹣1)|PF2|,∵|PF1|2+|PF2|2=4c2,∴c=|PF2|,∴e===故选:D.11.(5分)在△ABC中,==,则sinA:sinB:sinC=()A.5:3:4 B.5:4:3 C.::2 D.:2:【解答】解:△ABC中,∵==,∴==,即==,即==bc•,即2a2+2c2﹣2b2=3a2+3b2﹣3c2=6b2+6c2﹣6a2,设2a2+2c2﹣2b2=3a2+3b2﹣3c2=6b2+6c2﹣6a2=k,求得a2=5k,b2=3k,c2=4k,∴a=,b=,c==2,∴由正弦定理可得a:b:c=sinA:sinB:sinC=::2,故选:C.12.(5分)若函数f(x)=x3﹣3x在(a,6﹣a2)上有最小值,则实数a的取值范围是()A.(﹣,1) B.[﹣,1) C.[﹣2,1)D.(﹣2,1)【解答】解:由题意可得:函数f(x)=x3﹣3x,所以f′(x)=3x2﹣3.令f′(x)=3x2﹣3=0可得,x=±1;因为函数f(x)在区间(a,6﹣a2)上有最小值,其最小值为f(1),所以函数f(x)在区间(a,6﹣a2)内先减再增,即f′(x)先小于0然后再大于0,所以结合二次函数的性质可得:a<1<6﹣a2,且f(a)=a3﹣3a≥f(1)=﹣2,且6﹣a2﹣a>0,联立解得:﹣2≤a<1.故选:C.二、填空题:本大题共4小题,每小题5分.13.(5分)若a=log43,则2a+2﹣a=.【解答】解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.14.(5分)函数f(x)=2sin2(+x)﹣cos2x(≤x≤)的值域为[1,2] .【解答】解:函数f(x)=2sin2(+x)﹣cos2x=﹣cos(+2x)﹣cos2x+1=sin2x ﹣cos2x=2sin(2x﹣),∵≤x≤,∴2x∈[,],当x=时,函数取得最大值为:2.x=时,函数取得最小值为:1.所以函数的值域为:[1,2].故答案为:[1,2].15.(5分)已知圆x2+y2=4,B(1,1)为圆内一点,P,Q为圆上动点,若∠PBQ=90°,则线段PQ中点的轨迹方程为x2+y2﹣x﹣y﹣1=0.【解答】解:设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x﹣1)2+(y﹣1)2=4.故线段PQ中点的轨迹方程为x2+y2﹣x﹣y﹣1=0.故答案为:x2+y2﹣x﹣y﹣1=0.16.(5分)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为.【解答】解:设P(2pt,2pt),M(x,y),则,∴x=,y=,∴k OM==≤=,当且仅当t=时取等号,∴直线OM的斜率的最大值为.故答案为:.三.解答17.(12分)S n为数列{a n}前n项和,已知a n>0,a n2+2a n=4S n+3,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.【解答】解:(1)a n>0,a n2+2a n=4S n+3,n≥2时,+2a n﹣1=4S n﹣1+3,相减可得:a n2+2a n﹣(+2a n﹣1)=4a n,化为:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即a n﹣a n﹣1=2,又=4a1+3,a1>0,解得a1=3.∴数列{a n}是等差数列,首项为3,公差为2.∴a n=3+2(n﹣1)=2n+1.(2)b n===,∴数列{b n}的前n项和=+…+==.18.(12分)人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:幸福感指数[0,2)[2,4)[4,6)[6,8)[8,10]男居民人数1020220125125女居民人数1010180175125(1)在图中绘出频率分布直方图(说明:将各个小矩形纵坐标注在相应小矩形边的最上面),并估算该地区居民幸福感指数的平均值;(2)若居民幸福感指数不小于6,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取4对夫妻进行调查,用X表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求X的分布列及期望(以样本的频率作为总体的概率).【解答】解:(1)频率分布直方图如右图.所求的平均值为0.01×2×1+0.015×2×3+0.2×2×5+0.15×2×7+0.125×2×9=6.46,(2)男居民幸福的概率为:=0.5.女居民幸福的概率为:=0.6,故一对夫妻都幸福的概率为:0.5×0.6=0.3,因此X的可能取值为0,1,2,3,4,且X~B(4,0.3)于是P(X=k)=3k(1﹣0.3)4﹣k(k=0,1,2,3,4),X的分布列为X01234p0.24010.41160.26460.07560.0081∴E(X)=np=4×0.3=1.2.19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=PA=2,E,F分别为PB,AD的中点.(1)证明:AC⊥EF;(2)求直线EF与平面PCD所成角的正弦值.【解答】解:(1)易知AB,AD,A P两两垂直.如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为:A(0,0,0),B(t,0,0),C(t,1,0),D (0,2,0),P(0,0,2),F(0,1,0).…(2分)从而=(﹣,1,﹣1),=(t,1,0),=(﹣t,2,0).因为AC⊥BD,所以•=﹣t2+2+0=0.解得或(舍去).…(4分)于是=(,1,﹣1),=(,1,0).因为•=﹣1+1+0=0,所以⊥,即AC⊥EF.…(6分)(2)由(1)知,=(,1,﹣2),=(0,2,﹣2).设=(x,y,z)是平面PCD的一个法向量,则令,则=(1,,).…(9分)设直线EF与平面PCD所成角为θ,则sinθ=|cos<,>|=.即直线EF与平面PCD所成角的正弦值为.…(12分)20.(12分)已知椭圆+=1(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程.(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.【解答】解:(1)由e=,得3a2=4c2.再由c2=a2﹣b2,解得a=2b.由题意可知,即ab=2.解方程组得a=2,b=1.所以椭圆的方程为.(2)由(Ⅰ)可知点A的坐标是(﹣2,0).设点B的坐标为(x1,y1),直线l的斜率为k.则直线l的方程为y=k(x+2).于是A、B两点的坐标满足方程组消去y并整理,得(1+4k2)x2+16k2x+(16k2﹣4)=0.由,得.从而.所以.设线段AB的中点为M,则M的坐标为.以下分两种情况:①当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是.由,得.②当k≠0时,线段AB的垂直平分线方程为.令x=0,解得.由,,==,整理得7k2=2.故.所以.综上,或.21.(12分)已知函数f(x)=lnx﹣ax2+(a﹣2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.【解答】解:(1)∵f(x)=lnx﹣ax2+(a﹣2)x,∴函数的定义域为(0,+∞).∴f′(x)=﹣2ax+(a﹣2)=.∵f(x)在x=1处取得极值,即f′(1)=﹣(2﹣1)(a+1)=0,∴a=﹣1.当a=﹣1时,在(,1)内f′(x)<0,在(1,+∞)内f′(x)>0,∴x=1是函数y=f(x)的极小值点.∴a=﹣1.(2)∵a2<a,∴0<a<1.f′(x)=﹣2ax+(a﹣2)=.∵x∈(0,+∞),∴ax+1>0,∴f(x)在(0,)上单调递增;在(,+∞)上单调递减,①当0<a≤时,f(x)在[a2,a]单调递增,∴f max(x)=f(a)=lna﹣a3+a2﹣2a;②当,即<a<时,f(x)在(a2,)单调递增,在(,a)单调递减,∴f max(x)=f()=﹣ln2﹣+=﹣1﹣ln2;③当≤a2,即≤a<1时,f(x)在[a2,a]单调递减,∴f max(x)=f(a2)=2lna﹣a5+a3﹣2a2.综上所述,当0<a≤时,函数y=f(x)在[a2,a]上的最大值是lna﹣a3+a2﹣2a;当<a<时,函数y=f(x)在[a2,a]上的最大值是﹣1﹣ln2;当a≥时,函数y=f(x)在[a2,a]上的最大值是2lna﹣a5+a3﹣2a2.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1和曲线C2的极坐标方程;(2)已知射线l1:θ=α(0<α<),将射线l1顺时针旋转得到射线l2;θ=α﹣,且射线l1与曲线C1交于O,P两点,射线l2与曲线C2交于O,Q两点,求|OP|•|OQ|的最大值.【解答】解:(1)曲线C1的参数方程为(α为参数),利用平方关系消去参数可得:曲线C1的普通方程为(x﹣2)2+y2=4,展开可得:x2+y2﹣4x=0,利用互化公式可得:ρ2﹣4ρcosθ=0,∴C1极坐标方程为ρ=4cosθ.曲线C2的参数方程为(β为参数),消去参数可得:曲线C2的普通方程为x2+(y﹣2)2=4,展开利用互化公式可得C2极坐标方程为ρ=4sinθ.(2)设点P极点坐标(ρ1,4cosα),即ρ1=4cosα.点Q极坐标为,即.则==.∵,∴,当,即时,|OP|•|OQ|取最大值4.选修4-5;不等式选讲23.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,且a,b∈M.(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.【解答】解:(1)证明:﹣2<|x﹣1|﹣|x+2|<0,可得|x﹣1|<|x+2|,即有x2﹣2x+1<x2+4x+4,解得x>﹣,则x+2>0,可得﹣2<|x﹣1|﹣(x+2),即有x<|x﹣1|,可得x﹣1>x或x﹣1<﹣x,解得﹣<x<,则|a|<,|b|<,|a+b|≤|a|+|b|<(+)×=;(2)|1﹣4ab|>2|a﹣b|.理由:|1﹣4ab|2﹣4|a﹣b|2=(1﹣4ab﹣2a+2b)(1﹣4ab+2a﹣2b)=(1﹣2a)(1+2b)(1+2a)(1﹣2b)=(1﹣4a2)(1﹣4b2),由|a|<,|b|<,可得4a2<1,4b2<1,则(1﹣4a2)(1﹣4b2)>0,可得|1﹣4ab|>2|a﹣b|.。
宁夏石嘴山市第三中学2018届高三下学期第一次模拟(一模)考试数学试题(理)

宁夏石嘴山市第三中学2018届高三下学期第一次模拟考试数学试题(理)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}12,A x x x Z =-≤≤∈,集合{}420,,=B ,则B A ⋃等于( ) A .{}4,2,1,0,1- B .{}4,2,0,1-C .{}2,0D .{}4210,,,2.复数5i1+2i 的虚部是 ( )A. iB. -iC. 1D. -1 3.在ABC ∆中,若15,,sin 43b B A π=∠==,则a = ( ) A .325 B .335 C.33 D .533 4.以抛物线x y 202=的焦点为圆心,且与双曲线191622=-y x 的两条渐近线都相切的圆的方程为( )A .0642022=+-+x y xB .0362022=+-+x y xC .0161022=+-+x y xD .091022=+-+x y x5.MOD(a ,b )表示求a 除以b 的余数,若输入a =34,b =85,则输出的结果为( )A. 0B. 17C. 21D. 346.三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱底面ABC ,其正视图⊥1AA是边长为2的正方形,则此三棱柱侧视图的面积为( )A .B .C .D .47.设,x y 满足约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是 ( )A .[4,1]-B .3[3,]7-C .(,3][1,)-∞-+∞UD .[3,1]-8.已知函数()sin 3cos f x x x ωω=-(ω>0)的图象与x 轴的两个相邻交点的距离等于2π,若将函数y =f (x )的图象向左平移6π个单位得到函数y =g (x )的图象,则y =g (x )是减函数的区间为( ))0,3.(π-A )4,4.(ππ-B )3,0.(πC )3,4.(ππD9.设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题中错误..的为( ) A. 若a b ⊥,,a b αα⊥⊄,则//b α B. 若//a α,a β⊥,则αβ⊥C. 若a β⊥,αβ⊥,则//a αD.若a b ⊥,,a b αβ⊥⊥,则αβ⊥10.若a ∈[1,6],则函数y =x 2+ax 在区间[2,+∞)内单调递增的概率是( ) A. 45 B. 35 C. 25 D. 1511.ABC ∆的外接圆的圆心为O ,半径为1,若2AB AC AO +=u u u r u u u r u u u r ,且OA AC =u u u r u u u r ,则向量BA uu u r在向量BC uuu r方向上的投影为( )A .32B .3C .3D .3-.12.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,0≤x ≤1,f x -1+m ,x >1在定义域[)0,+∞上单调递增,且对于任意a ≥0, 方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[]0,2n(n ∈N *)上的所有零点的和为( )33222A. n (n +1)2B. 22n -1+2n -1 C. (1+2n )22D. 2n -1二、填空题:(本大题共4小题,每小题5分,共20分)13.已知82a x x ⎛⎫- ⎪⎝⎭展开式中常数项为1120,则正数a =________14.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件{A =三个人去的景点各不相同},事件{B =甲独自去一个景点},则()P A B =__________1516.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________.三、解答题:(本大题共6小题70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3(1)求数列{a n },{b n }的通项公式.(2 )数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,求M 的最小值.18.(本小题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60…[]90,100后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数x 和方差2s .(同一组中的数据用该区间的中点值作代表);(2)从被抽取的数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率;(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X (以该校学生的成绩的频率估计概率),求X 的分布列和数学期望.19.(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已知平面,,,,为BC 的中点,//AO 面EFD .(1)求BD 的长;ABC DEF FA ⊥ABC 2=AB 2=AF 3=CEO(2)求证:面EFD 面BCED ;(3)求平面与平面ACEF 相交所成锐角二面角的余弦值.20.(本小题满分12分)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q . (1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.21.(本小题满分12分)DEF设(4)ln ()31x a xf x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直.(1)求a 的值;(2)若对于任意的[1,),()(1)x f x m x ∈+∞≤-恒成立,求m 的取值范围.请考生在22,23,二题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,椭圆C 的方程为1=4+1622x y ,以O 为极点,x 轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为πsin()33ρθ+=. (1)求直线l 的直角坐标方程;(2)设M (x ,y )为椭圆C 上任意一点,求|32x +y ﹣1|的最大值.23.(本题满分10分)选修4-5:不等式选讲设函数()||,R f x x a a =-∈.(1)当2a =时,解不等式:()6|25|f x x ≥--;(2)若关于x 的不等式f (x )≤4的解集为[﹣1,7],且两正数s 和t 满足2s t a +=,求证:ts 8+1≥6.【参考答案】一、选择题1 . A 2.C 3.A4.C 5. B 6 . B 7.D 8.D 9. C 10.B 11.A12. B 二、填空题 13.114 .21 15.21 16.3三、解答题17.解:(1)由已知可得⎩⎪⎨⎪⎧q +6+d =10,2d =2q ,解得d =q =2,所以a n =2n +1,b n =2n -1, (2)由a n b n =2n +12n -1,故T n =3×120+5×121+7×122+…+(2n +1)×12n -1, 由此可得12T n =3×121+5×122+7×123+…+(2n +1)×12n ,以上两式两边错位相减可得12T n =3+2⎝⎛⎭⎫121+122+123+…+12n -1-(2n +1)×12n =3+2-12n -2-2n +12n ,即T n =10-12n -3-2n +12n -1,故当n →+∞时,12n -3→0,2n +12n -1→0,此时T n →10,所以M 的最小值为10.18.解:(1)因为各组的频率和等于1,故第四组的频率:41(0.0250.1520.01f =-+⨯+0.005)100.3+⨯=.直方图如图所示.中位数是0.1701073.330.3c x =+⨯=, 样本数据中位数是73.33分.众数是75;x =71;2s =194(2)[)70,80,[)80,90,[)90,100的人数是18,15,3,所以从成绩是70分以上(包括70分)的学生中选两人,他们在同一分数段的概率:22218153236C +C +C 29C 70P ==. (3)因为()4,0.3X B ~,()44C 0.30.7kkkp X k -==⋅,()0,1,2,3,4k =,所以其分布列为:数学期望为40.3 1.2EX np ==⨯=.19.(1)取ED 的中点P ,连接,PO PF ,则PO 为梯形BCED 的中位线, 又//,//PO BD AF BD ,所以//PO AF ,所以,,,A O P F 四点共面, 因为//AO 面EFD ,且面AOPF I 面EFD PF =,所以//AO PF ,所以四边形AOPF 为平行四边形,2PO AF ==,所以1BD =. (2)由题意可知平面ABC ⊥面BCED ;又AO BC ⊥且AO ⊂平面ABC ,所以AO⊥面BCED , 因为//AO PF ,所以PF⊥面BCED ,又PF ⊂面EFD ,所以面EFD⊥面BCED ;(3)以为原点,,,OC OA OP 所在直线分别为轴建立空间直角坐标系(1,0,0),(1,0,0).(0,0,2),(1,0,3),2)A B C P E F -,设Q 为AC 的中点,则1(,,0)22Q ,易证:BQ ⊥平面ACEF , O z y x ,,平面ACEF的法向量为3(2BQ =u u u r ,设平面的法向量为(,,1)n x y =r,(1,0,1),PE PF ==u u u r u u u r,由00n PF n PE ⎧=⎪⎨=⎪⎩r u u u rg r u u u r g 得01y x =⎧⎨=-⎩,所以(1,0,1)n =-r,所以cos ,BQ n BQ n BQ n⋅<>==u u u r ru u u r r u u u r r由所求二面角为锐二面角,所以平面与平面ACEF 相交所成锐角二面角的余弦值 为46. 20.解:(1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |, 得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1. (2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0), ∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1k x . ⎩⎪⎨⎪⎧y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4,S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4),(4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85.综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85. 21.解:(1)f ′(x )=,由题设f ′(1)=1,∴,∴a =0.(2),∀x ∈[1,+∞),f (x )≤m (x ﹣1),即4ln x ≤m (3x ﹣﹣2),设g (x )=4ln x ﹣m (3x ﹣﹣2),即∀x ∈[1,+∞),g (x )≤0,DEF DEF高三一模数学试题∴g′(x)=﹣m(3+)=,g′(1)=4﹣4m,①若m≤0,g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m∈(0,1),当x∈(1,),g′(x)>0,g(x)单调递增,g(x)≥g(1)=0,与题设矛盾.③若m≥1,当x∈(1,+∞),g′(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立,综上所述,m≥1.22.解:(1)根据题意,椭圆C的方程为+=1,则其参数方程为(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin=3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的普通方程为x+y﹣6=0;(2)根据题意,M(x,y)为椭圆一点,则设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.23.解:当a=2时,不等式:f(x)≥6﹣|2x﹣5|,可化为|x﹣2|+|2x﹣5|≥6.①x≥2.5时,不等式可化为x﹣2+2x﹣5≥6,∴x≥;②2≤x<2.5,不等式可化为x﹣2+5﹣2x≥6,∴x∈∅;③x<2,不等式可化为2﹣x+5﹣2x≥6,∴x≤,综上所述,不等式的解集为(﹣];(Ⅱ)证明:不等式f(x)≤4的解集为[a﹣4,a+4]=[﹣1,7],∴a=3,∴=()(2s+t)=(10++)≥6,当且仅当s=,t=2时取等号.11。
宁夏石嘴山市2018届高考第一次模拟考试数学(文)试题含答案

宁夏石嘴山市2018届高考第一次模拟考试数学(文)试题含答案2018届第一次模拟考试数学(文科)能力测试注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}20=->A x x , 1|12xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A. {}|02A B x x ⋂=<≤B. {}|0A B x x ⋂=<C. {}|2A B x x ⋃=<D. A B R ⋃=2.已知a R ∈,复数122,12z ai z i =+=-,若12z z 为纯虚数,则a 的值为 A. 0 B. 1 C. 3 D. 53.给出下列四个命题:①若p 是q 的充分不必要条件,则q 是p 的必要不充分条件; ②若0,0a b d c >><<,则ac bd >;③“220,00:210,:,210p x x x p x R x x ⌝∃-+<∀∈-+>若命题则”④若“p 或q ”为真命题,“p 且q ”为假命题,则p 为真命题, q 为假命题. 其中正确命题的个数为A. 1B. 2C. 3D. 44.已知α满足1sin 2α=,那么sin().sin()44ππαα+-的值为 A.14 B. 14- C. 12 D. 12- 5.已知α、β是两个不同的平面, m 、n 是两条不同的直线,下列命题中错误的是 A. 若m α⊥, //m n , n β⊂,则βα⊥ B. 若//αβ, m α⊥, n β⊥,则//m n C. 若//αβ, m α⊂, n β⊂,则//m nD. 若αβ⊥, m α⊂, n αβ⋂=, m n ⊥,则m β⊥6.已知在正项..等差数列{}n a 中.若12315a a a ++=,且1232,5,13a a a +++成等比数列,则10a 等于A. 21B. 23C. 24D. 257.已知圆()22:1C x a y -+=与抛物线24y x =-的准线相切,则a 的值是2A. 0或1B. 0或2 C. 0 D. 8.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了别为4和2,利用秦九韶算法,求某多项式值的一个实例,若输入,n x 的值分则输出v 的值为A. 32B. 64C. 65D. 130 直,则a 与b9.已知平面向量,a b 满足3a =, 23b =,且a b +与a 垂的夹角为 A.6π B. 3πC.23π D. 56π 10. 已知 F 是双曲线 C : 2213y x -= 的右焦点, P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是 ()1,3.则 APF ∆ 的面积为 A. 13 B. 12 C. 23 D. 3211.某几何体的三视图如图所示,则该几何体的所有面中,最大面的面积是A. 2B. 3D.12.设奇函数()f x 在R 上存在导函数()'f x ,且在()0,+∞上取值范()2'f x x <,若()()1f m f m --()33113m m ⎡⎤≥--⎣⎦,则实数m 的围为A. 11,22⎡⎤-⎢⎥⎣⎦B. ][11,,22⎛⎫-∞-⋃+∞ ⎪⎝⎭C. 1,2⎡⎫+∞⎪⎢⎣⎭D. 1,2⎛⎤-∞- ⎥⎝⎦二、填空题:本大题共4小题,每小题5分.13. 已知变量x , y 满足约束条件1010 1--≤⎧⎪++≥⎨⎪≤⎩x y x y y ,则21z x y =++的最大值为______________.14.甲、乙、丙、丁四人商量去不去看一部电影,他们之间有如下对话:甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去.最终这四人中有人去看了这部电影,有人没去看这部电影,没有去看这部电影的人一定是______. 15.在数列{}n a 中, 12n n n b a a +=.数列{}n b 的前n 项和n S 为_______.16.函数21x x y x++=与3sin 12xy π=+的图像有n 个交点,其坐标依次为()11,x y , ()22,x y ,…,(),n n x y ,则()1ni i i x y =+=∑__________.三、解答题(共70分,解答应写出文字说明、证明过程或演算过程.)17.(本小题满分12分)已知,,a b c 分别是ABC ∆的三个内角A B C 、、的对边, 2cos cos -=b c Ca A. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ∆的面积S =ABC ∆周长的最小值.18.(本小题满分12分)随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99.5%的把握认为“使用微信交流”的态度与人的年龄有关;(Ⅱ)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.参考数据:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d.19.(本小题满分12分)如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1,DD DB 的中点. (Ⅰ)求证:EF //平面11ABC D ; (Ⅱ)求证:1⊥EF B C ; (Ⅲ)求三棱锥1B EFC V -的体积.20.(本小题满分12分)已知点()1F ,圆(222:16F x y+=,点M 是圆上一动点, 1MF 的垂直平分线与线段2MF 交于点N .(Ⅰ)求点N 的轨迹方程;(Ⅱ)设点N 的轨迹为曲线E ,过点()0,1P 且斜率不为0的直线l 与E 交于,A B 两点,点B 关于y 轴的对称点为B ',求证直线AB '恒过定点,并求出该定点的坐标.21.(本小题满分12分) 已知函数()()21123ln ,2=--++∈f x m x x x m R (Ⅰ)当0m =时,求函数()f x 的最值;(Ⅱ)若曲线()y f x =在点11P (,)处的切线l 与曲线()y f x =有且只有一个公共点,求实数m 的取值范围.请考生在22,23两道题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为35415=+⎧⎨⎩=+x a t y t(t 为参数),在以O 为极点, x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 8cos 0ρθθρ+-=. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点(),1P a ,且1>a ,设直线l 与曲线C 的两个交点为A , B ,若3PA PB =,求a 的值.23.(本小题满分10分)选修4—5;不等式选讲. 已知()211f x x x =++-.(Ⅰ)求()f x 在[]1,1-上的最大值m 及最小值n ;(Ⅱ)在(Ⅰ)的条件下,设,a b R ∈,且1am bn +=,求证: 22445a b +≥.石嘴山三中2018届第一次模拟考试文科数学试题答案一、选择题:本大题共12小题,每小题5分,共60分二、填空题:(4小题,每小题5分,共20分) 13.6.; 14.丁; 15.81nn + ; 16. 4 三、解答题:本大题共6小题,共70分。
届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
宁夏石嘴山市第三中学2017-2018学年高三上学期第一次月考数学(理)试题 Word版含答案
石嘴山市三中2017-2018学年度高三年级第一次月考数学(理科)试卷(考试时间:120分钟 满分150分)一、 选择题:(每小题5分,在每个小题只有一项是符合要求的) 1.已知向量()()2,1,,2a m b m ==.若存在R λ∈,使得0a b λ+=,则m =( ). A. 0 B. -2 C .0或2 D .2 2.复数32iz i-+=+的共轭复数是( ). A. 2i + B. 2i - C .1i -+ D .1i --3.已知sin sin 032ππααα⎛⎫++=-<< ⎪⎝⎭,则2cos 3πα⎛⎫+= ⎪⎝⎭( ). A. 45- B.45 C . 35- D .354.在数列{}n a 中,1112,1n n na a a a ++=-=-,则2016a = ( ).A .-2B .13- C.12D .3 5.给出下列四个:其中正确的个数是( ).①()sin 24f x x π⎛⎫=- ⎪⎝⎭的对称轴为3,28k x k Z ππ=+∈;②函数()sin f x x x =最大值为2; ③函数()sin cos 1f x x x =-的周期为2π;④函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数. A .1 B .2 C .3 D .4 6.已知()()*111,n n n a a n a a n N +==-∈,则数列{}n a 的通项公式是( ).A .nB .11n n n -+⎛⎫⎪⎝⎭C .2nD .21n -7.在△ABC 中,若sin()12cos()sin()A B B C A C -=+++,则△ABC 的形状一定是( ).A .等边三角形B .等腰三角形C .钝角三角形D .直角三角形8.数列{}n a中,9nn a S ==,则n =( ).A.97B.98 C .99 D .100 9.已知α∈R,,sin 2cos R ααα∈+=,则tan 2α= ( ).. A.-34 B.34 C .43 D .-4310.设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ).A.5B.6 C .7 D .8 11.已知O 是ABC ∆所在平面内的一点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++⎪⎝⎭,(0,)λ∈+∞,则动点P 的轨迹一定通过ABC ∆的( ).A.垂心B.重心 C .内心 D .外心12.在等比数列{}n a 中,1401a a <<=,则能使不等式12312311110n n a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立的最大正整数n 是( ).A.5B.6 C .7 D .8 二、填空题:(本大题共4小题,每小题5分)13.曲线2ln y x x =-在点(1,2)处的切线方程是 .14.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.15.复数12,z z 满足212(4),2cos (3sin ),(,,)z m m i z i m R θλθλθ=+-=++∈,并且12z z =,则λ的取值范围是______________.16.已知数列{}n a 满足递推关系式*1221()nn n a a n N +=+-∈,且2n n a λ+⎧⎫⎨⎬⎩⎭为等差数列,则λ的值是_________.三、解答题:(解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)在ABC ∆中,46,cos ,54AC B C π===.(I )求AB 的长;(II )求cos 6A π⎛⎫- ⎪⎝⎭的值.18.(本小题满分12分)设函数22()sin 23f x x x x π⎛⎫=+ ⎪⎝⎭.(I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移3π个单位长度,得到函数()g x 的图象,求()g x 在区间63ππ⎡⎤-⎢⎥⎣⎦,上的值域..19.(本小题满分12分)在等比数列{}n a 中, 11a =,且2a 是1a 与31a -的等差中项.(I )求数列{}n a 的通项公式; (II )若数列{}n b 满足*(1)1,()(1)n n n n a b n N n n ++=∈+.求数列{}n b 的前n 项和n S .20.(本小题满分12分)已知数列{}n a ,n S 是其前n 项和,且满足32n n a S n =+(n *∈N ). (I )求证:数列12n a ⎧⎫+⎨⎬⎩⎭是等比数列;(II )记12n n S S S T =++⋅⋅⋅+,求n T 的表达式.21.(本小题满分12分)已知函数()sin(),0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的图象的一部分如图所示.(I )求函数f(x)的解析式;(II )当26,3x ⎡⎤∈--⎢⎥⎣⎦时,求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值.22.(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知1228a a ==,,*1145,(2,)n n n S S S n n N +-+=≥∈且,n T 是数列{}2log n a 的前n 项和.(I )求数列{}n a 的通项公式; (II )求n T .(III )求满足2341111101011112013n T T T T ⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的最大整数n 的值.石嘴山市三中2016-2017学年度高三年级第一次月考数学(理科)试卷(考试时间:120分钟 满分150分)【人】二、 选择题:(每小题5分,在每个小题只有一项是符合要求的) 1.已知向量()()2,1,,2a m b m ==.若存在R λ∈,使得0a b λ+=,则m =( ). A. 0 B. -2 C .0或2 D .2【解析】选C. ∵a =(m,1),b =(m 2,2),a +λb =0,∴(m +λm 2,1+2λ)=(0,0),即⎩⎨⎧m +λm 2=0,1+2λ=0,解得⎩⎪⎨⎪⎧λ=-12,m =0或2.2.复数32iz i-+=+的共轭复数是( ). A. 2i + B. 2i - C .1i -+ D .1i -- 【解析】选D3.已知sin sin 0352ππααα⎛⎫++=--<< ⎪⎝⎭,则2cos 3πα⎛⎫+= ⎪⎝⎭( ). A. 45- B.45 C . 35- D .35【解析】选B ∵sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435,∴32sin α+12cos α=-45.∴cos ⎝⎛⎭⎪⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45. 答案 B4.在数列{}n a 中,1112,1n n n a a a a ++=-=-,则2016a = ( )[.A .-2B .13- C.12D .3 【解析】选D.由条件可得:a 1=-2,a 2=-13,a 3=12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的数列,所以a 2016=a 4=3.5.给出下列四个:其中正确的个数是( )[.①()sin 24f x x π⎛⎫=- ⎪⎝⎭的对称轴为3,28k x k Z ππ=+∈;②函数()sin f x x x =最大值为2; ③函数()sin cos 1f x x x =-的周期为2π;④函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数. A .1 B .2 C .3 D .4 【解析】选B ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ,正确;②由f (x )=sin x +3cos x =2sin(x +π3)知,函数的最大值为2,正确;③f (x )=sin x cos x -1=12sin2x -1,函数的周期为π,故③错误; ④函数f (x )=sin(x +π4)的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故④错误.6.已知()()*111,n n n a a n a a n N +==-∈,则数列{}n a 的通项公式是( ).A .nB .11n n n -+⎛⎫⎪⎝⎭C .2nD .21n -【解析】选A.法一:由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a n n ,∴数列{a nn }是常数列. 且a n n =a 11=1,∴a n =n .法二:(累乘法)n ≥2时,a n a n -1=nn -1,a n -1a n -2=n -1n -2, …a 3a 2=32,a 2a 1=21, 两边分别相乘得a n a 1=n . 又∵a 1=1,∴a n =n .7.在△ABC 中,若sin()12cos()sin()A B B C A C -=+++,则△ABC 的形状一定是( ).A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形【解析】D sin(A -B )=1+2cos(B +C )sin(A +C )=1-2cos A sin B ,∴sin A cos B -cos A sin B =1-2cos A ·sin B ,∴sin A cos B +cos A sin B =1,即sin(A +B )=1,则有A +B =π2,故三角形为直角三角形.答案 D8.数列{}n a 中,9n n a S ==,则n =( )[.A.97B.98 C .99 D .100【解析】选C .a n =1n +1+n =21n -n +1-n ,∴S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,∴n =99. 答案:999.已知α∈R ,,sin 2cos R ααα∈+=,则tan 2α= ( )[ . A.-34 B.34 C .43 D .-43 【解析】 A 解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34. 10.设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ). A.5 B.6 C .7 D .8 【解析】 B [解析]解:∵y=f (x)的图象向右平移个单位长度后所得:y=cosω(x﹣)=cos (ωx﹣);∵函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,就是2π的整数倍, 所以=2kπ 所以ω=6k ,k ∈Z ; ω>0∴ω的最小值等于:6. 故答案为:6.11.已知O 是ABC ∆所在平面内的一点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++⎪⎝⎭,(0,)λ∈+∞,则动点P 的轨迹一定通过ABC ∆的( ).A.垂心B.重心 C .内心 D .外心 【解答】选A12.在等比数列{}n a 中,1401a a <<=,则能使不等式12312311110n n a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立的最大正整数n 是( ).A.5B.6 C .7 D .8 【解答】选C 设公比为q,则1231231111n na a a a a a a a +++⋅⋅⋅+≤+++⋅⋅⋅+, 即()11111111nn a q a q q q⎛⎫-⎪-⎝⎭≤--,将131a q =代入得:7n q q ≤ 1,7q n >∴≤三、填空题:(本大题共4小题,每小题5分)13.曲线2ln y x x =-在点(1,2)处的切线方程是 x ﹣y+1=0 . 【解答】解:由函数y=2x ﹣lnx 知y′=2﹣,把x=1代入y′得到切线的斜率k=2﹣=1则切线方程为:y ﹣2=(x ﹣1),即x ﹣y+1=0. 故答案为:x ﹣y+1=014.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.37.答案 40013 解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.由正弦定理,可得BDsin ∠DAB =AD sin ∠ABD .所以400sin 30°=AD sin 120°,得AD =4003(米).在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC =(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米). 故索道AC 的长为40013米.15.复数12,z z 满足212(4),2cos (3sin ),(,,)z m m i z i m R θλθλθ=+-=++∈,并且12z z =,则λ的取值范围是______________.解析:由复数相等的充要条件可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以4sin 2θ-3sin θ∈⎣⎢⎡⎦⎥⎤-916,7. 答案:⎣⎢⎡⎦⎥⎤-916,7 16.已知数列{}n a 满足递推关系式*1221()nn n a a n N +=+-∈,且2n n a λ+⎧⎫⎨⎬⎩⎭为等差数列,则λ的值是________.解析 由a n +1=2a n +2n -1,可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n=a n +12n +1-a n2n -λ2n +1=12-12n +1-λ2n +1=12-λ+12n +1,当λ的值是-1时,数列⎩⎨⎧⎭⎬⎫a n -12n 是公差为12的等差数列.答案 -1三、解答题:(解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)在ABC ∆中,46,cos ,54AC B C π===.(I )求AB 的长;(II )求cos 6A π⎛⎫- ⎪⎝⎭的值.解(1)因为4cos ,0,5B B π=<<所以3sin ,5B ===由正弦定理知sin sin AC ABB C=,所以6sin 23sin 5AC C AB B ⋅===(2)在三角形ABC 中A B C π++=,所以().A B C π=-+ 于是cosA cos(B C)cos()cos cos sin sin ,444B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==,故43cos 55A =-=因为0A π<<,所以sin A ==因此1cos()cos cos sin sin 66610102A A A πππ-=+=-⨯=18.(本小题满分12分)设函数22()sin 2333f x x x x π⎛⎫=++- ⎪⎝⎭.(I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移3π个单位长度,得到函数()g x 的图象,求()g x 在区间63ππ⎡⎤-⎢⎥⎣⎦,上的值域.解 (1)f (x )=12sin2x +32cos2x -33cos2x =12sin2x +36cos2x =33sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期为T =2π2=π.令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ). (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+π6=-33cos2x 的图象, 即g (x )=-33cos2x .当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos2x ∈⎣⎢⎡⎦⎥⎤-12,1, 所以-33cos2x ∈⎣⎢⎡⎦⎥⎤-33,36,即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36.19.(本小题满分12分)在等比数列{}n a 中, 11a =,且2a 是1a 与31a -的等差中项.(I )求数列{}n a 的通项公式; (II )若数列{}n b 满足*(1)1,()(1)n n n n a b n N n n ++=∈+.求数列{}n b 的前n 项和n S .【考点】数列的求和;等比数列的通项公式. 【专题】方程思想;作差法;等差数列与等比数列.【分析】(1)设等比数列{a n }的公比为q ,运用等差数列的性质和等比数列的通项公式,解方程可得公比q ,即可得到所求通项公式;(2)化简b n =2n ﹣1+(﹣),运用分组求和和裂项相消求和,化简即可得到所求和.【解答】解:(1)设等比数列{a n }的公比为q , a 2是a 1与a 3﹣1的等差中项,即有a 1+a 3﹣1=2a 2,即为1+q 2﹣1=2q ,解得q=2, 即有a n =a 1q n ﹣1=2n ﹣1;(2)=a n +=2n ﹣1+(﹣),数列{b n }的前n 项和=(1+2+22+…+2n ﹣1)+(1﹣+﹣+﹣+…+﹣)=+1﹣=2n ﹣.【点评】本题考查等差数列和等比数列的通项和求和公式的运用,考查数列的求和方法:分组求和和裂项相消求和,考查运算能力,属于中档题.20.(本小题满分12分)已知数列{}n a ,n S 是其前n 项和,且满足32n n a S n =+(n *∈N ). (I )求证:数列12n a ⎧⎫+⎨⎬⎩⎭是等比数列;(II )记12n n S S S T =++⋅⋅⋅+,求n T 的表达式.()1证明:当1n =时,11321a S =+∴11a =当2n ≥时,32n n a S n =+ ① ()11321n n a S n --=+- ②∴②-①得:13321n n n a a a --=+即131n n a a -=+∴111322n n a a -⎛⎫+=+ ⎪⎝⎭即112312n n a a -+=+∴数列12n a ⎧⎫+⎨⎬⎩⎭是以11322a +=为首项,公比为3的等比数列()2解:由()1得:132321-⋅=+n n a ∴213231-⋅=-n n a∴代入得:)32(41343+-⋅=n S n n∴n n S S S S T ++++= 321[]2331(3333)579(23)44n n =++++-++++4)4()13(892)325(4131)31(343+--=++---⋅=n n n n n n 21.(本小题满分12分)已知函数()sin(),0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的图象的一部分如图所示.(I )求函数f(x)的解析式;(II )当26,3x ⎡⎤∈--⎢⎥⎣⎦时, 求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值.解:(1)由题图知A =2,T =8, 因为T =2πω=8,所以ω=π4. 又图象经过点(-1,0),所以2sin ⎝⎛⎭⎪⎪⎫-π4+φ=0.因为|φ|<π2,所以φ=π4.所以f (x )=2sin ⎝⎛⎭⎪⎪⎫π4x +π4. (2)y =f (x )+f (x +2)=2sin ⎝ ⎛⎭⎪⎪⎫π4x +π4+2sin ⎝⎛⎭⎪⎪⎫π4x +π2+π4 =22sin ⎝ ⎛⎭⎪⎪⎫π4x +π2=22cos π4x .因为x ∈⎣⎢⎡⎦⎥⎤-6,-23,所以-3π2≤π4x ≤-π6.所以当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6; 当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2. 22.设数列{}n a 的前n 项和为n S ,已知1228a a ==,,*1145,(2,)n n n S S S n n N +-+=≥∈且.n T 是数列{}2log n a 的前n 项和. (I )求数列{}n a 的通项公式; (II )求n T .(III )求满足2341111101011112013n T T T T ⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的最大整数n 的值.解:()1*1145,(2,)n n n S S S n n N +-+=≥∈且当2n ≥时,()111122144,2,8,4n+n n n-n n S S S S a a a a a a +∴-=-∴=∴==∴={}n a 是以2为首项,4为公比的等比数列.121242n n n a --∴=⨯=()2由(1)得:21221222log log 221log log log n n n n a n T a a a -==-∴=++⋅⋅⋅+213(21)n n =++⋅⋅⋅+-=()3()()23422222221111111111111111234132435112312n T T T T n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯-+=⨯⨯⋅⋅⋅⨯+= 110102201342877n n n +><故满足条件的最大正整数n 的值为287.。
2018年高考理科数学模拟试卷(共三套)(含答案)
2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
2018年宁夏石嘴山三中高考一模数学试卷(理科)【解析版】
2018年宁夏石嘴山三中高考数学一模试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|﹣1≤x≤2,x∈Z},集合B={0,2,4},则A∪B等于()A.{﹣1,0,1,2,4}B.{﹣1,0,2,4}C.{0,2,4}D.{0,1,2,4}2.(5分)复数的虚部是()A.i B.﹣i C.1D.﹣13.(5分)在△ABC中,若,则a=()A.B.C.D.4.(5分)以抛物线y2=20x的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为()A.x2+y2﹣20x+64=0B.x2+y2﹣20x+36=0C.x2+y2﹣10x+16=0D.x2+y2﹣10x+9=05.(5分)MOD(a.b)表示求a除以b的余数,若输入a=34,b=85,则输出的结果为()A.0B.17C.21D.346.(5分)如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.B.4C.D.7.(5分)设x,y满足约束条件,则的取值范围是()A.[﹣4,1]B.[﹣3,]C.(﹣∞,﹣3]∪[1,+∞)D.[﹣3,1]8.(5分)已知函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为()A.(﹣,0)B.(﹣,)C.(0,)D.(,)9.(5分)设a,b是不同的直线,α,β是不同的平面,则下列四个命题中错误的是()A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a∥α,a⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β10.(5分)若a∈[1,6],则函数在区间[2,+∞)内单调递增的概率是()A.B.C.D.11.(5分)△ABC的外接圆的圆心为O,半径为1,若,且,且,则向量在向量方向上的射影的数量为()A.B.C.3D.12.(5分)已知函数f(x)=在定义域[0,+∞)上单调递增,且对于任意a≥0,方程f(x)=a有且只有一个实数解,则函数g(x)=f(x)﹣x在区间[0,2n](n∈N*)上所有零点的和为()A.B.22n﹣1+2n﹣1C.D.2n﹣1二、填空题:(本大题共4小题,每小题5分,共20分)13.(5分)已知展开式中常数项为1120,则正数a=.14.(5分)甲,乙,丙三人到三个景点旅游,每个人只去一个景点,设事件A 为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率P(A|B)=.15.(5分)等于16.(5分)甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是.三、解答题:(本大题共5小题70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知:等差数列{a n}的前n项和为S n,数列{b n}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3(1)求数列{a n},{b n}的通项公式.(2)数列{}的前n项和为T n,若T n<M对一切正整数n都成立,求M的最小值.18.(12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…[90,100)后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数和方差s2.(同一组中的数据用该区间的中点值作代表);(2)从被抽取的数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率;(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X(以该校学生的成绩的频率估计概率),求X的分布列和数学期望.19.(12分)如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF 所截而得,已知F A⊥平面ABC,AB=2,AF=2,CE=3,O为BC的中点,AO∥面EFD.(1)求BD的长;(2)求证:面EFD⊥面BCED;(3)求平面DEF与平面ACEF相交所成锐角二面角的余弦值.20.(12分)如图,已知圆E:(x+)2+y2=16,点F(,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹Γ的方程;(2)已知A,B,C是轨迹Γ的三个动点,点A在一象限,B与A关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此最小值及相应直线AB的方程;若不存在,请说明理由.21.(12分)设f(x)=,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.(1)求a的值;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围.请考生在22,23,二题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|a∈R.(1)当a=2时,解不等式:f(x)≥6﹣|2x﹣5|;(2)若关于x的不等式f(x)≤4的解集为[﹣1,7],且两正数s和t满足2s+t =a,求证:≥6.2018年宁夏石嘴山三中高考数学一模试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|﹣1≤x≤2,x∈Z},集合B={0,2,4},则A∪B等于()A.{﹣1,0,1,2,4}B.{﹣1,0,2,4}C.{0,2,4}D.{0,1,2,4}【解答】解:∵集合A={x|﹣1≤x≤2,x∈Z}={﹣1,0,1,2},集合B={0,2,4},∴A∪B={﹣1,0,1,2,4}.故选:A.2.(5分)复数的虚部是()A.i B.﹣i C.1D.﹣1【解答】解:=,则复数的虚部是:1.故选:C.3.(5分)在△ABC中,若,则a=()A.B.C.D.【解答】解:由正弦定理可得=,∴a==,故选:A.4.(5分)以抛物线y2=20x的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为()A.x2+y2﹣20x+64=0B.x2+y2﹣20x+36=0C.x2+y2﹣10x+16=0D.x2+y2﹣10x+9=0【解答】解:∵抛物线y2=20x的焦点F(5,0),∴所求的圆的圆心(5,0)∵双曲线的两条渐近线分别为3x±4y=0∴圆心(5,0)到直线3x±4y=0的距离即为所求圆的半径R∴R==3所以圆方程((x﹣5)2+y2=9,即x2+y2﹣10x+16=0故选:C.5.(5分)MOD(a.b)表示求a除以b的余数,若输入a=34,b=85,则输出的结果为()A.0B.17C.21D.34【解答】解:模拟执行程序框图,可得a=34,b=85不满足条件a>b,c=34,a=85,b=34m=MOD(85,34)=17,a=34,b=17不满足条件m=0,m=MOD(34,17)=0,a=17,b=0,满足条件m=0,退出循环,输出a的值为17.故选:B.6.(5分)如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.B.4C.D.【解答】解:由三视图和题意可知三棱柱是正三棱柱,底面边长为2,侧棱长2,结合正视图,俯视图,得到侧视图是矩形,长为2,宽为面积为:2故选:D.7.(5分)设x,y满足约束条件,则的取值范围是()A.[﹣4,1]B.[﹣3,]C.(﹣∞,﹣3]∪[1,+∞)D.[﹣3,1]【解答】解:作出不等式组对应的平面区域如图:则的几何意义是区域内的点到定点P(﹣6,﹣4)的斜率,由得x=﹣1,y=1,即A(﹣1,1),由得x=﹣5,y=﹣7,即B(﹣5,﹣7),则AP的斜率k==1,BP的斜率k==﹣3,则的取值范围是[﹣3,1]故选:D.8.(5分)已知函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y =g(x)的图象,则y=g(x)是减函数的区间为()A.(﹣,0)B.(﹣,)C.(0,)D.(,)【解答】解:∵函数f(x)=sinωx﹣cosωx=2sin(ωx﹣),又∵函数f(x)=sinωx﹣cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于=,故函数的最小正周期T=π,又∵ω>0,∴ω=2,故f(x)=2sin(2x﹣),将函数y=f(x)的图象向左平移个单位可得y=g(x)=2sin[2(x+)﹣]=2sin2x的图象,令+2kπ≤2x≤+2kπ,即+kπ≤x≤+kπ,k∈Z,故函数y=g(x)的减区间为[+kπ,+kπ],k∈Z,当k=0时,区间[,]为函数的一个单调递减区间,又∵(,)⊆[,],故选:D.9.(5分)设a,b是不同的直线,α,β是不同的平面,则下列四个命题中错误的是()A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a∥α,a⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β【解答】解:由a,b是不同的直线,α,β是不同的平面,知:在A中,若a⊥b,a⊥α,b⊄α,则由线面垂直的性质定理得b∥α,故A正确;在B中,若a∥α,a⊥β,则面面垂直的判定定理得α⊥β,故B正确;在C中,若a⊥β,α⊥β,则a∥α或a⊂α,故C错误;在D中,若a⊥b,a⊥α,b⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:C.10.(5分)若a∈[1,6],则函数在区间[2,+∞)内单调递增的概率是()A.B.C.D.【解答】解:∵函数y=在区间[2,+∞)内单调递增,∴y′=1﹣=≥0,在[2,+∞)恒成立,∴a≤x2在[2,+∞)恒成立,∴a≤4∵a∈[1,6],∴a∈[1,4],∴函数y=在区间[2,+∞)内单调递增的概率是=,故选:C.11.(5分)△ABC的外接圆的圆心为O,半径为1,若,且,且,则向量在向量方向上的射影的数量为()A.B.C.3D.【解答】解:由于+=2由向量加法的几何意义,O为边BC中点,因为△ABC的外接圆的圆心为O,半径为1,所以==1,三角形应该是以BC边为斜边的直角三角形,斜边BC=2AO=2,直角边AB=,所以∠ABC=30°则向量在向量方向上的投影为|BA|cos30=×,故选:A.12.(5分)已知函数f(x)=在定义域[0,+∞)上单调递增,且对于任意a≥0,方程f(x)=a有且只有一个实数解,则函数g(x)=f(x)﹣x在区间[0,2n](n∈N*)上所有零点的和为()A.B.22n﹣1+2n﹣1C.D.2n﹣1【解答】解:∵函数f(x)=在定义域[0,+∞)上单调递增,∴m≥1,由因为对于任意a≥0,方程f(x)=a有且只有一个实数解,∵函数f(x)=在定义域[0,+∞)上单调递增,且图象连续,所有m=1其图象如下:函数g(x)=f(x)﹣x在区间[0,2n](n∈N*)上所有零点分别为0,1,2,3,…2n,∴所有零点的和等于.故选:B.二、填空题:(本大题共4小题,每小题5分,共20分)13.(5分)已知展开式中常数项为1120,则正数a=1.【解答】解:由=.令8﹣2r=0,得r=4.∴,解得a=1.故答案为:1.14.(5分)甲,乙,丙三人到三个景点旅游,每个人只去一个景点,设事件A 为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率P(A|B)=.【解答】解:甲独自去一个景点,则有3个景点可选,乙丙只能在甲剩下的哪两个景点中选择,可能性为2×2=4所以甲独自去一个景点的可能性为3×2×2=12因为三个人去的景点不同的可能性为3×2×1=6,所以P(A|B)==.故答案为:.15.(5分)等于【解答】解:===.故答案为:.16.(5分)甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是3.【解答】解:由①②可知,甲取出的小球编号为2,乙取出的小球编号可能是3或4.又|1﹣4|=3>2,|1﹣3|=2,所以由③可知,乙取出的小球编号是4,丙取出的小球编号是1,故丁取出的小球编号是3.故答案为:3三、解答题:(本大题共5小题70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知:等差数列{a n}的前n项和为S n,数列{b n}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3(1)求数列{a n},{b n}的通项公式.(2)数列{}的前n项和为T n,若T n<M对一切正整数n都成立,求M的最小值.【解答】解:(1)由题意易知可得,解得d=q=2,∴a n=2n+1,b n=2n﹣1,(2)=,∴T n=3×()0+5×()1+7×()2+…+(2n+1)×()n﹣1,∴T n=3×()1+5×()2+7×()3+…+(2n+1)×()n,两式相减可得T n=3+2[()+()2+()3+…+()n﹣1]﹣(2n+1)×()n,=3+2﹣()n﹣2﹣(2n+1)×()n,∴T n=10﹣﹣=10﹣,当n→+∞,→0,∴T n<10,∵T n<M对一切正整数n都成立,∴M≥10,∴M的最小值为10.18.(12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…[90,100)后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数和方差s2.(同一组中的数据用该区间的中点值作代表);(2)从被抽取的数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率;(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X(以该校学生的成绩的频率估计概率),求X的分布列和数学期望.【解答】解:(1)因为各组的频率和等于1,故第四组的频率为:f4=1﹣(0.025+0.15×2+0.01+0.005)×10=0.3;画出频率分布直方图如图所示;中位数是x c=70+10×=73.33,∴样本数据的中位数是73.33分;众数是75;平均数是=71;方差是s2=194;(2)在[70,80),[80,90),[90,100)内的人数是分别是18,15,3,所以从成绩是70分以上(包括70分)的学生中选2人,他们在同一分数段的概率是:P==;(3)因为X~B(4,0.3),所以p(X=k)=•0.3k•0.74﹣k,其中k=0,1,2,3,4;所以X的分布列为:所以X的数学期望为EX=np=4×0.3=1.2.19.(12分)如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF 所截而得,已知F A⊥平面ABC,AB=2,AF=2,CE=3,O为BC的中点,AO∥面EFD.(1)求BD的长;(2)求证:面EFD⊥面BCED;(3)求平面DEF与平面ACEF相交所成锐角二面角的余弦值.【解答】解:(1)取ED的中点P,连接PO,PF,则PO为梯形BCED的中位线,PO==,又PO∥BD,AF∥BD,所以PO∥AF,所以A,O,P,F四点共面,……………(2分)因为AO∥面EFD,且面AOPF∩面EFD=PF,所以AO∥PF,所以四边形AOPF为平行四边形,PO=AF=2,所以BD=1……………(4分)证明:(2)由题意可知平面ABC⊥面BCED,又AO⊥BC,且AO⊂平面ABC,所以AO⊥面BCED,因为AO∥PF,所以PF⊥面BCED,又PF⊂面EFD,所以面EFD⊥面BCED.……………(6分)解:(3)以O为原点,OC,OA,OP所在直线分别为x,y,z轴,建立空间直角坐标系,A(0,,0),B(﹣1,0,0),C(1,0,0).P(0,0,2),E(1,0,3),F(0,,2)……(7分)设Q为AC的中点,则Q(,,0),由题意得BQ⊥平面ACEF,平面ACEF的法向量为=(,0)……………(8分)设平面DEF的法向量为=(x,y,z),……………(10分)=(1,0,1),=(0,,0),则,取x=﹣1,得=(﹣1,0,1),所以cos<>==﹣,……………(11分)所以平面DEF与平面ACEF相交所成锐角二面角的余弦值为.…………(12分)20.(12分)如图,已知圆E:(x+)2+y2=16,点F(,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹Γ的方程;(2)已知A ,B ,C 是轨迹Γ的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.【解答】解:(1)Q 在线段PF 的垂直平分线上,所以QP =QF ;得QE +QF =QE +QP =PE =4, 又,得Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆.∴动点Q 的轨迹Γ的方程.(2)由点A 在一象限,B 与A 关于原点对称,设AB :y =kx (k >0),|CA |=|CB |,∴C 在AB 的垂直平分线上,∴.,,同理可得,则S △ABC =2S △OAC =|OA |×|OC |=.由于≤,所以S △ABC =2S △OAC ≥,当且仅当1+4k 2=k 2+4(k >0),|即k =1时取等号.△ABC 的面积取最小值. 直线AB 的方程为y =x . 21.(12分)设f (x )=,曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直. (1)求a 的值;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围.【解答】解:(1)根据题意,f(x)=,则f′(x)=,又由曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,则有f′(1)=1,即=1,解可得a=0;(2)由(1)的结论,a=0,则f(x)=,若∀x∈[1,+∞),f(x)≤m(x﹣1,即4lnx≤m(3x﹣﹣2)恒成立;设g(x)=4lnx﹣m(3x﹣﹣2),即∀x∈[1,+∞),g(x)≤0,其导数g′(x)=﹣m(3+)=,g′(1)=4﹣4m,①若m≤0,g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾②若m∈(0,1),当x∈(1,),g′(x)>0,g(x)单调递增,g(x)≥g(1)=0,与题设矛盾③若m≥1,当x∈(1,+∞),),g′(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立;综上所述,m≥1.请考生在22,23,二题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.【解答】解:(1)根据题意,椭圆C的方程为+=1,则其参数方程为,(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin=3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的普通方程为x+y﹣6=0;(2)根据题意,M(x,y)为椭圆一点,则设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|a∈R.(1)当a=2时,解不等式:f(x)≥6﹣|2x﹣5|;(2)若关于x的不等式f(x)≤4的解集为[﹣1,7],且两正数s和t满足2s+t =a,求证:≥6.【解答】解:(1)当a=2时,不等式:f(x)≥6﹣|2x﹣5|,可化为|x﹣2|+|2x﹣5|≥6.…..(1分)①x≥2.5时,不等式可化为x﹣2+2x﹣5≥6,∴x≥;…………..(2分)②2≤x<2.5,不等式可化为x﹣2+5﹣2x≥6,∴x∈∅;…………..(3分)④x<2,不等式可化为2﹣x+5﹣2x≥6,∴x≤,………………..(4分)综上所述,不等式的解集为(﹣∞,]∪[,+∞);………..(5分)(2)证明:不等式f(x)≤4的解集为[a﹣4,a+4]=[﹣1,7],∴a=3,……..(7分)∴=()(2s+t)=(10++)≥6,当且仅当s=,t=2时取等号…(10分)。
2018届高考模拟试卷一参考答案.doc
s i nB 2 sAi n,求边 a , b 的值 .
【解析】(Ⅰ)因为
f (x) 2sin( x )cos x 6
3
1
2 sin x cos x cos x
2
2
3 sin x cos x cos2 x
------------------------------------------------------------------- 4 分
2 . ---------------------------------------------------8 5
综上,满足要求的实数 k 有且仅有一个, k
2
; ---------------------------------9
5
(Ⅲ)当 k
1 时, an 1
2
1 ( an an 2 ) ,所以 an 2 an 1
kPB ?kBA
y1 - y0 ? y1 + y0 x1 - x0 x1 + x0
y12 -
2
x1 -
( y02
2
=
1-
x0
) ( x12 - 1-
4
2
2
x1 - x0
)x22
4 =-
1 4
............................... 9 分
(1-
又 kBA = kAD =
2l ) y0 - (x0 - (- x0 )
y0 ) =
(1- l ) y0
x0
故 kPB = -
1 =4k BA
x0
4 (1 - l ) y0 .----------------------------------------------------------------------
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届第一次模拟考试 理科数学能力测试注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷(选择题)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}12,A x x x Z =-≤≤∈,集合{}420,,=B ,则B A ⋃ 等于( ) A .{}4,2,1,0,1- B .{}4,2,0,1- C .{}2,0 D .{}4210,,, 2.复数5i1+2i 的虚部是 ( )A. iB. -iC. 1D. -1 3.在ABC ∆中,若15,,sin 43b B A π=∠==,则a = ( ) A .325 B .335 C .33 D .5334.以抛物线x y 202=的焦点为圆心,且与双曲线191622=-y x 的两条渐近线都相切的圆的方程为( )A . 0642022=+-+x y xB .0362022=+-+x y xC .0161022=+-+x y xD .091022=+-+x y x5.MOD(a ,b)表示求a 除以b 的余数,若输入a =34,b =85,则输出的结果为( )A. 0B. 17C. 21D. 346.三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱⊥1AA 底面ABC ,其正视图是边长为2的正方形,则此三棱柱侧视图的面积为( )A .3B .32C .22D .47.设,x y 满足约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是 ( )A .[4,1]-B .3[3,]7-C .(,3][1,)-∞-+∞D .[3,1]-8.(ω>0)的图象与x 轴的两个相邻交点的距离等于2π,若将函数y =f(x)的图象向左平移6π个单位得到函数y =g(x)的图象,则y =g(x)是减函数的区间为( ) )0,3.(π-A )4,4.(ππ-B )3,0.(πC )3,4.(ππD9.设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题中错误..的为( )A. 若a b ⊥,,a b αα⊥⊄,则//b αB. 若//a α,a β⊥,则αβ⊥C. 若a β⊥,αβ⊥,则//a αD. 若a b ⊥,,a b αβ⊥⊥,则αβ⊥ 10.若a ∈[1,6],则函数y =x 2+ax 在区间[2,+∞)内单调递增的概率是( )A. 45B. 35C. 25D. 1511.ABC ∆的外接圆的圆心为O ,半径为1,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为( )A .32 B C .3 D .-12.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,0≤x ≤1,f (x -1)+m ,x >1在定义域[)0,+∞上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[]0,2n(n ∈N *)上的所有零点的和为()A.n (n +1)2B. 22n -1+2n -1C. (1+2n )22D.2n-1第II 卷(非选择题)二、填空题:(本大题共4小题,每小题5分,共20分 )13.已知82a x x ⎛⎫- ⎪⎝⎭展开式中常数项为1120,则正数a =________14.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件{A =三个人去的景点各不相同},事件{B =甲独自去一个景点},则()P A B =__________ 15等于16.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________.三、解答题:(本大题共6小题70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知 :等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3(1)求数列{a n },{b n }的通项公式.(2 )数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,求M 的最小值.18.(本小题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[)40,50, [)50,60…[]90,100后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数x 和方差2s .(同一组中的数据用该区间的中点值作代表);(2)从被抽取的数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率;(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X (以该校学生的成绩的频率估计概率),求X 的分布列和数学期望.19.(本小题满分12分)如图所示的几何体是由以等边三角形ABC 为底面的棱柱被平面DEF 所截而得,已知FA ⊥平面ABC ,2=AB ,2=AF ,3=CE , O 为BC 的中点,//AO 面EFD . (1)求BD 的长;(2)求证:面EFD ⊥面BCED ;(3)求平面DEF 与平面ACEF 相交所成锐角二面角 的余弦值.20.(本小题满分12分)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是 圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q . (1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.ACBDEFO21.(本小题满分12分) 设(4)ln ()31x a xf x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直.(1)求a 的值;(2)若对于任意的[1,),()(1)x f x m x ∈+∞≤-恒成立,求m 的取值范围.请考生在22,23,二题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.(本题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,椭圆C 的方程为1=4+1622x y ,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin()33πρθ+=.(1)求直线l 的直角坐标方程;(2)设M (x ,y )为椭圆C 上任意一点,求|32x +y ﹣1|的最大值.23.(本题满分10分)选修4-5:不等式选讲 设函数()||,f x x a a R =-∈(1)当2a =时,解不等式:()6|25|f x x ≥--;(2)若关于x 的不等式f (x )≤4的解集为[﹣1,7],且两正数s 和t 满足2s t a +=,求证:ts 8+1≥6.2018高三年级一模数学(理科)试卷2018.31 . A. 2.C 3. A 4.. C 5. B 6 . B 7.D 8. D 9. .C 10.B 11.A. 12. B13.【答案】1 14 . 【答案】 21 15.【答案】2116.【答案】3 17.(本小题共12分)已知 :等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3(1)求数列{a n },{b n }的通项公式(2 )数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,求M 的最小值.解析 (1)由已知可得⎩⎪⎨⎪⎧q +6+d =10,2d =2q ,解得d =q =2,所以a n =2n +1,b n =2n -1, (2)由a n b n =2n +12n -1,故T n =3×120+5×121+7×122+…+(2n +1)×12n -1,由此可得12T n =3×121+5×122+7×123+…+(2n +1)×12n ,以上两式两边错位相减可得12T n =3+2⎝⎛⎭⎫121+122+123+…+12n -1-(2n +1)×12n =3+2-12n -2-2n +12n ,即T n =10-12n -3-2n +12n -1,故当n →+∞时, 12n -3→0,2n +12n -1→0,此时T n →10,所以M 的最小值为10.…………(12分)18.(本小题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[)40,50, [)50,60…[]90,100后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数x 和方差2s .(同一组中的数据用该区间的中点值作代表);(2)从被抽取的数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X (以该校学生的成绩的频率估计概率),求X 的分布列和数学期望.解析:(1)因为各组的频率和等于1,故第四组的频率:41(0.0250.15*20.01f =-++ 0.005)*100.3+=.直方图如图所示. 中位数是0.1701073.330.3c x =+⨯=, 样本数据中位数是73.33分.众数是75;x =71;2s =194(2)[)70,80, [)80,90, [)90,100的人数是18, 15, 3,所以从成绩是70分以上(包括70分)的学生中选两人,他们在同一分数段的概率:222181532362970C C C P C ++==. (3)因为()4,0.3X B ~, ()440.30.7kkkp X k C -==⋅, ()0,1,2,3,4k =,所以其分布列为:数学期望为40.3 1.2EX np ==⨯=.19.(本小题满分12分)如图所示的几何体是由以等边三角形ABC 为底面的棱柱被平面DEF 所截而得,已知FA ⊥平面ABC ,2=AB ,2=AF ,3=CE , O 为BC 的中点,//AO 面EFD . (1)求BD 的长;(2)求证:面EFD ⊥面BCED ;(3)求平面DEF 与平面ACEF 相交所成锐角二面角的余弦值. (1)取ED 的中点P ,连接,PO PF 则PO 为梯形BCED 的中位线,322BD CE BD PO ++== 又//,//PO BD AF BD ,所以//PO AF 所以,,,A O P F 四点共面……………2分 因为//AO 面EFD ,且面AOPF 面EFD PF =所以//AO PF所以四边形AOPF 为平行四边形,2PO AF == 所以1BD =……………4分(2)由题意可知平面ABC ⊥面BCED ; 又AO BC ⊥且AO ⊂平面ABC 所以AO ⊥面BCED因为//AO PF 所以PF ⊥面BCED又PF ⊂面EFD , 所以面EFD ⊥面BCED ;……………6分(3)以O 为原点,,,OC OA OP 所在直线分别为z y x ,,轴建立空间直角坐标系(1,0,0),(1,0,0).(0,0,2),(1,0,3),A B C P E F -……7分设Q 为AC的中点,则1(2Q 易证:BQ ⊥平面ACEF 平面ACEF的法向量为3(2BQ =……………8分设平面DEF 的法向量为(,,1)n x y =,(1,0,1),PE PF ==由00n PF n PE ⎧=⎪⎨=⎪⎩得01y x =⎧⎨=-⎩ 所以(1,0,1)n =-……………10分所以cos ,4BQ n BQ n BQ n ⋅<>==-11分由所求二面角为锐二面角角,所以平面DEF 与平面ACEF 相交所成锐角二面角的余弦值.为46…………12分 20.(本小题满分12分) 如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.解 (1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1.(2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0),∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1k x .⎩⎪⎨⎪⎧ y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4,S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4), (4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85.综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85.21.(本小题满分12分)设(4)ln ()31x a x f x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直. (1)求a 的值;(2)若对于任意的[1,),()(1)x f x m x ∈+∞≤-恒成立,求m 的取值范围.解:(1)f′(x )=………..1分由题设f′(1)=1,∴,∴a=0.………..3分 (2),∀x ∈[1,+∞),f (x )≤m (x ﹣1),即4lnx≤m (3x ﹣﹣2)………..4分设g (x )=4lnx ﹣m (3x ﹣﹣2),即∀x ∈[1,|+∞),g (x )≤0,∴g′(x )=﹣m (3+)=,g′(1)=4﹣4m ……..6分① 若m≤0,g′(x )>0,g (x )≥g (1)=0,这与题设g (x )≤0矛盾..7分 ② 若m ∈(0,1),当x ∈(1,),g′(x )>0,g (x )单调递增,g(x )≥g (1)=0,与题设矛盾.………..9分③ 若m≥1,当x ∈(1,+∞),),g′(x )≤0,g (x )单调递减,g (x )≤g (1)=0,即不等式成立综上所述,m≥1.………..12分22.(本题满分10分)选修4-4:坐标系与参数方程22.解:(1)根据题意,椭圆C的方程为+=1,则其参数方程为,(α为参数);………..1分直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin=3,即ρsinθ+ρcosθ=3,………..3分,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的普通方程为x+y﹣6=0;………..5分(2)根据题意,M(x,y)为椭圆一点,则设M(2cosθ,4sinθ),……..6分|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,………..8分分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.…………..10分23.(本题满分10分)选修4-5:不等式选讲23.解:当a=2时,不等式:f(x)≥6﹣|2x﹣5|,可化为|x﹣2|+|2x﹣5|≥6.…..1分①x≥2.5时,不等式可化为x﹣2+2x﹣5≥6,∴x≥;…………..2分②2≤x<2.5,不等式可化为x﹣2+5﹣2x≥6,∴x∈∅;…………..3分④x<2,不等式可化为2﹣x+5﹣2x≥6,∴x≤,………………..4分综上所述,不等式的解集为(﹣];………..5分(Ⅱ)证明:不等式f(x)≤4的解集为[a﹣4,a+4]=[﹣1,7],∴a=3,……..7分∴=()(2s+t)=(10++)≥6,当且仅当s=,t=2时取等号...10分。