多项式的整除性
第二次课 整除的概念

第二次课 整除的概念教学目标要求:理解多项式整除概念和性质,熟练掌握带余除法及整除的性质。
教学内容:1.带余除法定理和综合除法 2.整除的概念 3.整除的性质。
教学重点与难点:多项式整除的概念和性质,带余除法定理;带余除法定理的理论证明..一、 带余除法与综合除法1.带余除法定理1 设f (x ), g (x )都是F [x ]中的多项式,且g (x )≠0,那么总可以在F [x ]中找到q (x )和r (x ),使得f (x )=g (x )q (x )+r (x )这里r (x )=0或者r (x )的次数小于g (x )的次数,满足以上条件的q (x )和r (x )只有一对. 证明 : 可行性若是f (x )=0或者f (x )的次数小于g (x )的次数,取q (x )=0,r (x )=f (x ),可使(2)式成立.若 0∂(f (x ))≥0∂(g (x )),令f (x )=a 0x n +a 1x n -1+…+a n -1x +a ng (x )=b 0x m +b 1x m -1+…+b m -1x +b m这里 a 0≠0,b 0≠0,且n ≥mg (x )=b 0x m +b 1x m -1+…+b m -1x +b m mn m n n n n n x a b x a b x f a x a n a x a ------+=++++110100101110)(1111111010)(n n n n a x a x a x f x a +++=+-2221,21220210)(n n n n a x a x a x f x a ++++-由此得: )()()(0101x g x a b x f x f m n ---=,)()()(01012x g x a b x f x f m n ---=,………………)()()(10,1101x g x a b x f x f m n k K k k ------=而 f k (x )=0或f k (x )=0的次数小于m ,把这些等式加起来得)())(()(110,1101010010x f x a b x a b x a b x g x f k m n k m n m n k ++++=-------- 取 )()(,)(110,1101010010x f x r x a b x a b x a b x q k m n k m n m n k =+++=-------- ,命题得证.唯一性:若还有q ’(x ),r ’(x ),使f (x )=g (x )q ’(x )+r ’(x ),则由f (x )=g (x )q (x )+r (x ),得g (x )(q (x )-q ’(x ))=r ’(x )-r (x ).。
数学中的多项式函数与整除性理论

数学中的多项式函数与整除性理论多项式函数作为基本的数学概念,在数学的各个分支中都有着广泛的应用。
而整除性理论是现代数学中的一个重要理论体系,它探究了数字之间的整除关系及其相关性质。
本文将探究多项式函数与整除性理论的关系,以及多项式函数在整除性理论中的应用。
1. 多项式函数的定义及性质多项式函数是指以自变量x为变量,系数为任意实数或复数的一次或多次幂的和。
即P(x)=a0+a1x+a2x^2+…+anxn,其中a0,a1,a2,…,an为实数或复数。
多项式函数的阶次为最高幂的次数,而且一般情况下只考虑最高幂的系数不为零的多项式函数。
多项式函数具有以下性质:(1)多项式函数加法和乘法都满足结合律、交换律和分配律。
(2)多项式函数的导数是其各项系数与下标同时减一的多项式函数。
(3)多项式函数的零点是指使其取值为零的自变量值。
每个n 次多项式函数最多有n个不同的零点。
2. 整除性理论中的多项式函数应用整除性理论探究了数字之间的整除关系及其相关性质,其应用范围覆盖了数论、代数及解析几何等许多分支。
在整除性理论中,多项式函数有着重要的应用。
(1)多项式的因式分解与整数相似,多项式也可以进行因式分解。
多项式的因式分解指的是将一个多项式表示成若干个一次或多次幂的乘积的形式,即P(x)=a(x-b1)(x-b2)…(x-bn),其中b1,b2,…,bn为多项式的根。
(2)最大公因数和最小公倍数多项式的最大公因数是指可以整除每个给定的多项式的最高公共因式。
最小公倍数是指可以被每个给定的多项式除尽的最小公倍式。
(3)整处关系的判定多项式的整除关系也可以像整数一样判定。
如果一个多项式f(x)能够被另一个多项式g(x)整除,则在f(x)除以g(x)的余数为零的情况下,f(x)可以表示为g(x)与余数r(x)的乘积。
即f(x)=g(x)⋅q(x)+r(x),其中q(x)为商,r(x)为余数。
如果r(x)为零,则f(x)能够被g(x)整除。
多项式的整除性和带余除法

多项式整除性理论主要讨论任给两个多项式 f(x),g(x), 是否有 g(x) 整除f(x)以及与此相关的多项式的最大公因式, 多项式的因式分解等问题. 在讨论一元多项式的整除性理论时,带余除法是 一个重要定理, 它给出了判断多项式 g(x)能否整除多项式f(x)的一个有效方法; 并且是讨论一元多项式的最大公因式及多项式根的理论基础.
如果f(x)|g(x),f(x)|h(x),则对任意多项式u(x),v(x) 都有f(x)|(u(x)g(x)+v(x)h(x));
为什么?
多项式的整除不是运算, 它是F[x]元素间的一种关系, 类似于实数集 R 元素间的大小关系, 相等关系; 多项式的整除性是不因数域的扩充而改变的.即当数域扩充时, 作为扩充后的数域上的多项式 f(x)和g(x), g(x)
g(x)≠0, g(x)│f(x)等价于 g(x)除 f(x)的余式零.
q(x)和r(x)的求法与中学的方
法基本相同. 在做除法时, 可
由定义不难看出 零多项式被任意一个多项式整除; 零多项式不能整除任意非零多项式; 任意多项式一定整除它自身. 零次多项式(非零常数)整除任意多项式. 当g(x)≠0时,由带余除法定理得到 Theorem1.对于P[x]中任意两个多项式f(x)与g(x),其中g(x)≠0, 则g(x)|f(x)的充分必要条件是g(x)除f(x)的余式为零.
多项式的整除性和带余除法
带余除法定理:对于P[x]中任意两个多项式f(x)与g(x),其中(g(x)≠0,一定有P[x]中的多项式q(x)和r(x)存在,使得
Definition5.(整除的定义)
称P[x]上的多项式g(x) 整除f(x),如果存在P[x]上的多项式h(x), 使得
关于多项式的综合算式练习题

关于多项式的综合算式练习题题一:多项式的整除性质已知多项式$P(x) = x^3 - 3x^2 + 2x - 4$,求:1. $P(2)$的值;2. $P(-1)$的值;3. 化简$P(2x)$。
解析:1. 将$x$替换为2,得到:$P(2) = 2^3 - 3(2^2) + 2(2) - 4 = 8 - 12 + 4 - 4 = -4$。
2. 将$x$替换为-1,得到:$P(-1) = (-1)^3 - 3(-1)^2 + 2(-1) - 4 = -1 - 3 + (-2) - 4 = -10$。
3. 化简$P(2x)$,将$x$替换为$2x$,得到:$P(2x) = (2x)^3 - 3(2x)^2 + 2(2x) - 4 = 8x^3 - 12x^2 + 4x - 4$。
题二:多项式的运算已知多项式$Q(x) = 3x^2 - 5x + 2$和$R(x) = 2x^2 - x + 3$,求:1. $Q(x) + R(x)$的结果;2. $Q(x) - R(x)$的结果;3. $Q(x) \cdot R(x)$的结果。
解析:1. 将$Q(x)$和$R(x)$对应的系数相加,得到:$Q(x) + R(x) = (3x^2 - 5x + 2) + (2x^2 - x + 3) = 5x^2 - 6x + 5$。
2. 将$Q(x)$和$R(x)$对应的系数相减,得到:$Q(x) - R(x) = (3x^2 - 5x + 2) - (2x^2 - x + 3) = x^2 - 4x - 1$。
3. 将$Q(x)$和$R(x)$进行乘法运算,得到:$Q(x) \cdot R(x) = (3x^2 - 5x + 2) \cdot (2x^2 - x + 3) = 6x^4 - 11x^3 + 4x^2 - 14x + 6$。
题三:多项式的因式分解已知多项式$S(x) = x^3 - 6x^2 + 9x$,求其因式分解。
多项式整除

例3.求实数 m , p, q 满足什么条件时多项式
x mx 1 整除多项式 x 3 px q.
2
附:整数上的带余除法
对任意整数a、b(b≠0)都存在唯一的整数q、r, 使 a=qb+r,
其中 0 r b .
q x g x r x q x g x r x
即
q x -q x g x =r x -r x .
若q x q x ,由g x 0, 有r x -r x 0
4 2i 5 2i
9 8i 9 8i
1 有
f ( x ) g( x ) x 2 2ix 5 2i 9 8i .
例2.
把 f ( x ) x 表成 x 1的方幂和.
5
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1= c0 2 3 4 1 2 3 4 5= c1 1 1 1 3 6 3 6 10= c2 1 1 1 4 4 10= c3 1 1 1 1 5= c4 x 5 ( x 1)5 5( x 1)4 10( x 1)3 10( x 1)2 5( x 1) 1
g( x ) | f ( x ) h2 x 使得 f ( x ) g ( x )h2 x .
f ( x ) h1 x h2 x f ( x ).
若 f ( x ) 0,
则 g ( x )=0,
f ( x )=cg( x ),c P ,c 0
② g ( x ) 不能整除 f ( x ) 时记作: g ( x ) | f ( x ).
5:域的特征和多项式的整除性

作业:253页,1,7
3. 设F是一个域。求证:多项式环F(x,y)中所有 常数项为0的多项同式作成一个理想,不是主理 想。 证明:设所有常数项为0的多项式集合为N。 (1)若f,g N,则f-g常数项仍为0,故f-g N (2)取 fN,任取gF(x,y),则g· f常数项仍为0, 故g· fN。因而N为理想。 现证N不是主理想,
第七章
多项式
有限域 素域
§7.1
域的特征
1、 若有壹交换无零因子环的任意理想是 主理想,则称主理想环。 试证整数环I是主理想环。 (主理想是理想,但理想未必是主理想。 例如:所有两个文字的多项式,按多项式加乘是 环,所有常数项为0多项式是理想。但不是主理 想,所有各项中均有文字x的多项式是主理想 Xf[X,Y])
6、域F中任意非零元在加群中周期也是P 见性质6.6.13。
例:{ 因为
0,1, 2, 3, 4 }之特征为5
11111 0
。
22222 442 32 0 33333 113 0 44444 334 14 0
7、(定理7.1.1) 任意域F的特征P是零或一质数。 证:若P0, 往证P是质数。 若不然P=hk, 1<h<p ,1<k<p 则 (he)(ke)=(hk)e=pe=0 因域中 无零因子,则(he),(ke)必有一 为 零 , 但 P 为 周 期 , 而 k<p , h<p , 矛盾
1. 在R17中3/4等于什么?
解:在R17中4131(mod17), 故4-1=13,所以3/4=34-1=313=5。
§7.2
多项式的整除性
我们取定一个域F而研究F上面的一个文字的多项 式。一个文字х是一个抽象的符号,F上面一个 文字х的多项式就是呈如下形式的式子: a0хn + a1хn-1 + … + an-1х + an (1) 其中n,n-1,…是非负整数,而系数a0,a1,…, an都在F内。 х的多项式可以用ƒ(х),g(х)等代表。 在(1)式中,若n=0,则此多项式只有一个“常 数项”a0,这时,可将其看作是F中的元素a0。 多项式中,系数是0的项可以删去。另一方面,也 可以添上一些系数是0的项。例如,2х2+0х-1 可以写成2х2-1,0х3+2х2-1,等等。
多项式的整除性和带余除法-课件(PPT演示)PPT16页

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
多项式的整除性和带余除法-课件(PPT 演示)
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
原题目:多项式的整除性质

原题目:多项式的整除性质
多项式的整除性质
在代数学中,多项式的整除性质是一种非常重要的属性。
它描
述了多项式之间的除法关系。
本文将介绍多项式的整除性质及其应用。
定义
设A(x)和B(x)是两个多项式,如果存在另一个多项式C(x),
使得A(x) = B(x) * C(x),则称B(x)可以整除A(x),记作B(x) | A(x)。
整除定理
多项式的整除性质可以通过整除定理来描述。
整除定理指出,
当B(x)是一个一次多项式,即B(x) = ax + b,并且B(x)整除A(x)时,A(x)在x = -b/a时取值为零。
应用
多项式的整除性质在代数学和计算学中有广泛的应用。
一些重要的应用包括:
1. 确定多项式的公因式:如果B(x)整除A(x),则B(x)是A(x)的一个公因式。
这可以用来简化多项式、分解多项式或找到多项式的根。
2. 带余除法:根据整除性质,可以使用带余除法来将一个多项式除以另一个多项式。
带余除法是一种有效的算法,可以用于多项式的除法运算。
3. 多项式的因式分解:利用多项式的整除性质,可以将一个多项式因式分解为较低次数的多项式乘积的形式。
这在代数学和数值计算中都是非常重要的操作。
4. 多项式的最大公因式:通过利用多项式的整除性质,可以求解多项式的最大公因式。
最大公因式是两个或多个多项式共有的最高次数的公因式。
总结
多项式的整除性质是一种重要的代数属性,它描述了多项式之间的除法关系。
整除定理提供了判断多项式整除性的方法,而多项式的整除性质在代数学和计算学中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 多项式的整除性教学内容:4.3多项式的整除性教学目标:正确理解多项式的整除概念及性质。
理解和掌握带余除法。
授课时数:2学时教学重点:多项式整除的概念及基本性质教学难点:带余除法定理及证明(定理4.3.1及证明)教学过程:在][x F 中除法不是永远可以实施的,因此多项式整除性的研究在多项式理论中占有重要的地位。
一、多项式整除的概念及性质1. 定义定义 1 设][)(),(x F x g x f ∈.如果存在][)(x F x h ∈,使得)()()(x h x f x g =,则称)(x f 整除(能除尽))(x g ,记作)(|)(x g x f 。
此时说)(x f 是)(x g 的因式,)(x g 是)(x f 的倍式。
如果满足条件的)(x h 不存在,即对任意)()()(],[)(x h x f x g x F x h ≠∈,则称)(x f 不能整除)(x g , 记作()|()f x g x .由定义1知:1︒0|)(],[)(x f x F x f ∈∀;特别地,0|0.2︒)(|,x f c F c ∈∀.3︒,c d F ∀∈,0≠c ,有d c |.如2|0。
4︒高次多项式不能整除低次多项式。
课堂思考题:1)能整除任何多项式的多项式是什么?2)能被任何多项式整除的多项式是什么?2. 整除的基本性质我们可以将整数的整除性质平移过来1) 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f ;2) 若)(|)(),(|)(x g x h x f x h ,则))()((|)(x g x f x h ±;3) 若)(|)(x f x h ,则对任意)(x g ,有)()(|)(x g x f x h ;4) 若)(x h |i f )(x ,()(),1,2,3,,,i c x F x i n ∀∈= 则|)(x h ∑=n i i i x f x c 1)()(; (整除倍式和)5) 对任一多项式(),()|(),|()(0,)f x cf x f x c f x c c F ≠∈;6) 若),(|)(),(|)(x f x g x g x f ,则存在0,≠∈c F c ,使)()(x cg x f =.二.带余除法⒈ 实例(中学中的多项式除多项式)例2 322()26,()1f x x x x g x x x =+++=++,求()g x 除()f x 所得商式()q x 及余式()r x 。
由中学的知识,得121()()(),()()()()1f x f x g x x r x f x f x g x =-⋅==-⋅,()()()()1()(1)()f x g x x r x g x g x x r x =++=++。
故()1,()5q x x r x x =+=-+, (())(())r x g x ∂︒<∂︒。
我们将此结果一般化。
⒉ 带余除法定理定理4.3.1 (带余除法定理)设0)(],[)(),(≠∈x g x F x g x f ,那么在][x F 中存在唯一的一对多项式),(),(x r x q ,使得)()()()(x r x q x g x f += (Ⅰ)这里0)(=x r 或者(())(())r x g x ∂︒<∂︒。
分析:存在性1) 若0)(=x f 或(())(()),f x g x ∂︒<∂︒取)()(,0)(x f x r x q ==即可;2) 若(())(()),f x g x ∂︒≥∂︒用例题中的降次方法得)()(x g x f =11()(),q x f x +0)(1=x f 或1(())(())f x f x ∂︒<∂︒1︒ 若,0)(1=x f 则取0)(),()(1==x r x u x q2︒ 若,0)(1≠x f 且),()(010g f ∂<∂则取).()(),()(11x f x r x u x q ==3︒ 若,0)(1≠x f 且 )),(())((010x g x f ∂≥∂再对)(1x f 进行同样的讨论可得122()()()()f x g x q x f x =+由于现在限步后,必有)(x f k 适合或0)(=x f k 或(())(()),k f x g x ∂︒<∂︒这样可得一串等式,相加后即得证。
唯一性证明类似整数的带余除法。
证 1)若()0f x =或者(())(())f x g x ∂<∂,则有()()0().f x g x f x =+于是,现在设(())(()),f x g x ∂≥∂记为10111011(),().n n n n m m m m f x a x a x a x a g x b x b x b x b ----=++++=++++这里000,0,a b ≠≠并且.n m ≥令1100()()(),n m f x f x g x a b x --=-⋅则1()0f x =,或1(())(())f x f x ∂︒<∂︒。
若1100()0,()()n m f x f x g x a b x --==⋅,则100()n m q x a b x --=,而()0r x =。
若1()0f x ≠,而1(())(())f x g x ∂︒<∂︒,由1001()()(),n m f x g x a b xf x --=⋅+ 知100()n m q x a b x --=,1()()r x f x =。
若1()0f x ≠,且1(())(())f x g x ∂︒≥∂︒。
设1111110111,(1)11(),n n n n f x a x a x a x a n n m --=++++>≥。
令1121100()()(),n m f x f x g x a b x --=-⋅则1()0f x =,或21(())(())f x f x ∂︒<∂︒。
重复对1()f x 的同样讨论,由于12(())(())(())f x f x f x ∂︒>∂︒>∂︒>,而(())f x ∂︒有限,因此在进行了有限步后,必有()k f x 适合()0k f x =或(())(())k f x g x ∂︒<∂︒。
这里我们可得到一串等式:111001*********,00()()(),()()(),()()(),k n m n m n m k k k f x g x a b x f x f x g x a b x f x f x g x a b x f x ----------⋅=-⋅=-⋅=将这串等式加起来,就有11111001001,00()()()()k n m n m n m k k f x g x a b x a b x a b x f x --------=++++。
于是有11111001001,00(),()()k n m n m n m k k q x a b x a b x a b x r x f x --------=+++=适合式(1),并且0)(=x r ,或(())(())r x g x ∂︒<∂︒。
3) 设还能找到[]F x 的多项式11(),()q x r x ,使11()()()()f x g x q x r x =+ (2)或1()0r x =,或1(())(())r x g x ∂︒<∂︒。
由(1)-(2),得1(()(()())(())g x q x q x g x ∂︒-≥∂︒11()(()())()()g x q x q x r x r x -=-。
若1()()0r x r x -≠,则1()()0q x q x -≠。
但1(()(()())(())g x q x q x g x ∂︒-≥∂︒,而显然有1(()())(())r x r x g x ∂︒-<∂︒,这是一个矛盾。
因此,1()()0r x r x -=,即1()()r x r x =。
由()0g x ≠,得1()()0q x q x -=,即1()()q x q x =。
这样唯一性也得到证明。
(证毕) 定理4.3.1中的(),()q x r x 分别叫以()g x 除()f x 的商式和余式。
3.分离系数法多项式0111)(a x a x a x a x h n n n n ++++=-- 与1+n 元向量之间有一个一一对应。
我们在施行带余除法时,用向量代替多项式,这样操作起来较为方便。
4.带余除法的推论推论1 设(),()[]f x g x F x ∈。
1)()0g x =,()|()g x f x 的充分必要条件是()0f x =;2)()0g x ≠,()|()g x f x 的充分必要条件是)(x g 除)(x f 所得的余式0)(=x r 。
* 用了带余除法的唯一性。
例1 试求332x px q -+能被222x ax a ++整除的条件。
解 用222x ax a ++去除332x px q -+,得商式和余式分别为 23()2,()3()2()q x x a r x a p x q a =-=-++。
而222x ax a ++能整除332x px q -+的条件是()0r x =,即 233()2()0a p x q a -++=,从而20a p -=与30q a +=,即23,p a q a ==-。
补充例题 设n d ,为正整数。
证明:1-d x 整除1-nx 当且仅当d 整除n 。
* 与前面补充例方法完全一样。
提示必要性。
问题:多项式的整除性与数域的扩大是否有关系?定理 4.3.2 设],[)(),(x F x g x f ∈F 是数域,并且F F ⊆。
则在][x F 中,()|()g x f x 当且仅当在[]F x 中()|()g x f x 。
换句话说,两个多项式之间的整除关系不随数域的扩大而改变。
(*反之不然)证 若()0g x =[]F x 里()|()g x f x ,就有()0.f x ≠因此,在[]F x 里()g x 仍然不能整除();f x 若()0g x ≠,则在[]F x 里有()()f x g x =()()q x r x +成立,且()0.r x ≠但是()q x 与()r x 都是[]F x 的多项式,因而在[]F x 里一等式仍然成立。
由()r x 的惟一性可得,在[]F x 里仍然有()|g x().f x反之,设在[]F x 中[]()g x f x ,即存在()[],h x F x ∈使()()f x g x =()h x 成立,这一等式在[]F x 里也成立。