高中数学必修五第一章测试题-高中课件精选

合集下载

(典型题)高中数学必修五第一章《数列》检测卷(有答案解析)

(典型题)高中数学必修五第一章《数列》检测卷(有答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-3.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20475.在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开发的农产品、土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底街缴房租800元和水电费400元,余款作为资金全部用于再进货,如此继续,预计2020年小王的农产品加工厂的年利润为( )(取111275=..,121.29=)A .25000元B .26000元C .32000元D .36000元6.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈有2233n n S a =-,且112k S <<,则k 的值为( ) A .2或4B .2C .3或4D .67.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3928.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .89.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( )A .23n -B .23n -C .12n -D .12n -10.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( ) A .50B .51C .100D .10111.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27612.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.15.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列(x 、y 均不为0),则a cx y+=______. 18.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.等比数列{}n a 前n 项和为n S ,若634S S =,则96S S =______. 三、解答题21.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nn a 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 22.已知等差数列{}n a ,且55a =,515S =,首项为1的数列{}n b 满足112n n n n b a b a ++= (1)求数列{}n a 的通项公式及前n 项和n S ; (2)求数列{}n b 前n 项和n T .23.已知正项数列{}n a 的前n 项和为n S .若214,n n n a S S a +==+ (1)求证:数列是等差数列;(2)设n b =,求数列{}n b 的前n 项和n T . 24.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .25.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,11n n n c b b +=,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.A解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.D解析:D【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.5.C解析:C 【分析】设1月月底小王手中有现款为1(120%)10000120010800a =+⨯-=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,由题意可知16000 1.2(6000)n n a a +-=-,所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,求出12a 即得解. 【详解】设1月月底小王手中有现款为1(120%)1000080040010800a =+⨯--=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,则1 1.21200n n a a +=-,即16000 1.2(6000)n n a a +-=-, 所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,∴11126000480012a -=⨯,即1112480012600042000a =⨯+=,年利润为420001000032000-=元, 故选:C 【点睛】关键点睛:解答本题的关键是根据递推关系1 1.21200n n a a +=-构造数列{6000}n a -,求出新数列的通项关系.6.A解析:A 【分析】利用递推关系式求出{}n a 的通项公式,再求出{}n a 的前n 项和为n S ,即可求出k 的值. 【详解】对任意的*n N ∈有2233n n S a =-, 可得:1112233a S a ==- ,解得:1=2a -, 当2n ≥时:2233n n S a =-,112233n n S a --=- 两式相减得112233n n n n n S S a a a ---=-=,即12n n a a -=-, 所以{}n a 是首项为2-,公比为2-的等比数列,所以()2nn a =-,()()()212212123nn nS ⎡⎤-⨯--⎣⎦⎡⎤==---⎣⎦--, 所以211(2)123kk S ⎡⎤<=---<⎣⎦, 所以5(219)2k <-<, 当2k =和4k =时不等式成立,所以k 的值为2或4, 故选:A. 【点睛】本题主要考查了由递推公式求通项公式,考查了等比数列前n 项和公式,属于中档题.7.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.8.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案.【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.9.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-, ∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.10.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列,从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.14.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈, 解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.15.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②,②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576. 【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】由题意可得出代入计算可得出的值【详解】由题意可得出故答案为:【点睛】本题考查利用等差中项和等比中项求值考查计算能力属于中等题 解析:2【分析】由题意可得出2b ac =,2a bx +=,2b c y +=,代入计算可得出a c x y +的值.【详解】由题意可得出2b ac =,2a bx +=,2b c y +=,()()()()()222222224222a b c c a b ab ac bc a c a cab ac bc x y a b b c a b b c ab ac b bc ab ac bc +++++++∴+=+====+++++++++.故答案为:2. 【点睛】本题考查利用等差中项和等比中项求值,考查计算能力,属于中等题.18.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】 对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下: (1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.【分析】根据等比数列的性质得到成等比从而列出关系式又接着用表示代入到关系式中可求出的值【详解】因为等比数列的前n 项和为则成等比且所以又因为即所以整理得故答案为:【点睛】本题考查学生灵活运用等比数列的 解析:134【分析】根据等比数列的性质得到232,,n n n n n S S S S S --成等比,从而列出关系式,又634S S =,接着用6S 表示3S ,代入到关系式中,可求出96S S 的值. 【详解】因为等比数列{}n a 的前n 项和为n S ,则232,,n n n n n S S S S S --成等比,且0n S ≠,所以6396363--=-S S S S S S S ,又因为634S S =,即3614=S S ,所以6696666141144--=-S S S S S S S ,整理得96134=S S .故答案为:134. 【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。

高一数学高中数学必修5:第一章++解三角形+单元同步测试(含解析)

高一数学高中数学必修5:第一章++解三角形+单元同步测试(含解析)

答案 A
二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题
中横线上 )
13.在△ ABC 中, A=60°,C=45°,b=4,则此三角形的最小边是
____________.
解析 由 A+B+C=180°,得 B= 75°,∴c 为最小边,由正弦
定理,知 c=bssininBC=4ssinin7455°°=4( 3-1).
A.30° B.45° C.60°
D.90°
2
新课标 A 版·数学·必修 5
高中同步学习方略
解析 根据正弦定理,原式可化为
a2 c2
b
2R 4R2-4R2 =( 2a-b) ·2R,
∴ a2- c2=( 2a- b)b,∴ a2+ b2- c2= 2ab,
a2+b2-c2 2 ∴ cosC= 2ab = 2 ,∴ C=45°.
新课标 A 版·数学·必修 5
高中同步学习方略
第一章测试
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给
出的四个选项中,只有一项是符合题目要求的 )
1.在△ ABC 中, AB=5,BC=6,AC=8,则△ ABC 的形状是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.非钝角三角形
3

assininAB=
8×sin60 °8× 2 sin45 °= 2
=4
Hale Waihona Puke 6.2答案 C
→→ 4.在△ ABC 中, AB=5,BC=7,AC= 8,则 BA·BC的值为 ( )
1
新课标 A 版·数学·必修 5
高中同步学习方略
A.5 B.- 5 C.15

(常考题)北师大版高中数学必修五第一章《数列》检测题(有答案解析)

(常考题)北师大版高中数学必修五第一章《数列》检测题(有答案解析)

一、选择题1.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40422.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .353.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .44.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20475.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >6.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .28.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=9.已知等差数列{}n a 的前n 项和为n S ,满足28a =-,390n S -=,228n S =,则n =( ) A .10B .11C .12D .1310.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-11.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+12.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知等差数列{}n a 中,268,0a a ==,等比数列{}n b 中, 122123,b a b a a a ==++,那么数列{}n b 的前4项和4S =________14.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.15.在数列{a n }中,已知a 1=1,1(1)sin 2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______16.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 17.在数列{}n a 中,121a a ==,32a =,且数列1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,则n a =__________.18.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a12a =,则9m n-的最小值为___________. 19.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.20.设n S 是等比数列{}n a 的前n 项和,422n n n S S S +++=(*n ∈N ),且12S =,则20202021a a +=______.三、解答题21.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.22.已知公差不为零的等差数列{}n a 的前n 项和为n S ,525S =,1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若等差数列{}2log n b 的首项为1,公差为1,求数列{}n n a b 的前n 项和n T .23.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T . 24.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 25.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122n a n nb a +=+,求数列{}n b 的前n 项和为n T .26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn n a b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.2.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.3.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.4.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.5.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 8.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可.【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.9.C解析:C 【分析】根据数列是等差数列,结合等差数列的性质得313n n n S S a ---=,从而求得146n a -=,然后由121()()22n n n n a a n a a S -++==求解. 【详解】由题意得322890138n n S S --=-=, 所以13138n a -=. 所以146n a -=.所以121()()1922822n n n n a a n a a S n -++====, 解得12n =.故选:C 【点睛】本题主要考查等差数列的前n 项和公式和等差数列的性质的应用,属于中档题.10.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.11.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.320【分析】先求出等差数列的通项公式即可求出即可得通项再利用等比数列前项和公式求【详解】设等差数列的公差为则解得所以所以数列的公比为所以故答案为:320【点睛】本题主要考查了等比数列求和涉及等差数解析:320 【分析】先求出等差数列{}n a 的通项公式,即可求出1b ,2b ,即可得{}n b 通项,再利用等比数列前n 项和公式求4S【详解】设等差数列{}n a 的公差为d ,则2161850a a d a a d =+=⎧⎨=+=⎩,解得1102a d =⎧⎨=-⎩ , 1(1)10(1)(2)212n a a n d n n =+-=+-⨯-=-+ ,所以128b a ==,2123108624b a a a =+=++=+, 所以数列{}n b 的公比q 为213b b = , 所以448(13)32013S ⨯-==-.故答案为:320 【点睛】本题主要考查了等比数列求和,涉及等差数列通项公式,等比数列通项公式,属于基础题.14.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列, 可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭. 故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.15.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】 推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=, 43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010.【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.16.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的 解析:4256【分析】由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =,∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.17.【分析】由等比数列通项公式求出然后由累乘法求得【详解】∵为等比数列由已知∴∴时也适合此式∴故答案为:【点睛】本题考查等比数列的通项公式考查累乘法求数列通项公式如果已知则用累加法求通项公式如果已知则用 解析:()()2122n n --【分析】由等比数列通项公式求出1n na a +,然后由累乘法求得n a .【详解】∵1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,由已知211a a =,322a a =,32212a a q a a ==, ∴112n n na a -+=,∴2n ≥时,(2)(1)2212(2)3242112311122222n n n n n n n a aa aa a a a a a ---+++--=⨯⨯⨯⨯⨯=⨯⨯⨯⨯==,1n =也适合此式, ∴(2)(1)22n n na --=.故答案为:(2)(1)22n n --.【点睛】本题考查等比数列的通项公式,考查累乘法求数列通项公式.如果已知1()n n a a fn --=,则用累加法求通项公式,如果已知1()nn a f n a -=,则用连乘法求通项公式. 18.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=, 4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立,所以,9m n-的最小值为2. 故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.19.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:9 4【分析】分别求出{}n a、{}n b的通项,再构建新数列212n nnc-=,求出{}n c最大项后可得实数λ的最小值.【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=+-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,10n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.20.4或0【分析】设等比数列的公比为q化简已知得再分类讨论即得解【详解】由已知结合等比数列的性质及通项公式即可直接求解由可得即∴若则此时若则此时故或故答案为:4或0【点睛】本题主要考查等比数列的通项的求解析:4或0【分析】设等比数列{}n a的公比为q,化简已知得()22121n n n nq a a a a+++++=+,再分类讨论即得解.【详解】由已知结合等比数列的性质及通项公式即可直接求解.由422n n nS S S+++=可得422n n n nS S S S+++-=-,即4312n n n na a a a+++++=+,∴()22121n n n n qa a a a +++++=+,若210n n a a +++=则1q =-,此时()121n n a -=⋅-,若210n n a a +++≠,则1q =,此时2n a =, 故202020210a a +=或202020214a a +=. 故答案为:4或0 【点睛】本题主要考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.22.(1)21n a n =-;(2)()12326n n T n +=-⨯+.【分析】(1)由等差数列的前n 项和公式,等比数列的性质列出关于1a 和d 的方程组,解方程组后可得通项公式n a ;(2)由等差数列通项公式求得2log n b 后得n b ,然后由错位相减法求得和n T . 【详解】(1)设{}n a 公差为d ,则()()11211154525122124n a d a a n d a d a a d ⨯⎧+==⎧⎪⇒⇒=-⎨⎨=⎩⎪+=+⎩. (2)由题意2log 11(1)n b n n =+⨯-=,2n n b ∴=()2323252212n n T n =+⨯+⨯++-⨯,(1) ()2341223252212n n T n +=+⨯+⨯++-⨯,(2)(1)-(2)得:2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯118(12)2(21)212n n n -+-=+--⨯-,()12326n n T n +=-⨯+.【点睛】本题考查求等差数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(1)1n a n =+;(2)12n n n T -=. 【分析】(1)根据222n n n S a a =+-可得211122n n n S a a +++=+-,两式作差证明{}n a 为等差数列,由此求解出{}n a 的通项公式;(2)先根据232n nn a a b --=求解出{}n b 的通项公式,然后采用错位相减法进行求和,由此求解出n T . 【详解】(1)因为222n n n S a a =+-,所以211122n n n S a a +++=+-, 所以两式作差有:221112n n n n n a a a a a +++=+--,所以()()221111n n n n n n n n a a a a a a a a +++++=-=+-,且0n a >,所以10n n a a ++>,所以11n n a a +-=,所以{}n a 是公差为1的等差数列,且21111222S a a a ==+-,所以12a =或11a =-(舍),所以()2111n a n n =+⋅-=+; (2)因为232n n n a a b --=,所以122nn nb --=, 所以01211012...2222n n n T ---=++++,所以12311012 (22222)n n n T --=++++, 两式作差可得:012311111112+ (2)222222n n n n T ------=++++-, 所以11111222221212n nn n T --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭-⎝⎭=---,所以11112221222n n n n n n T ---⎛⎫-⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】思路点睛:满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法):(1)先根据数列的通项公式写出数列n S 的一般形式:123...nn S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S . 24.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式; (2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d S a n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n n n T n +⎛⎫=++++-- ⎪⎝⎭, 1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--,122233n n ++=-, 所以113n nn T +=-. 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。

高中数学必修五第一章测试卷

高中数学必修五第一章测试卷

高中数学必修五第一章复习测试卷一、选择题:1.在△ABC 中,一定成立的等式是 ( )A.a sinA=b sinBB.a cosA=b cosBC.a sinB=b sinAD.a cosB=b cosA2. .在△ABC 中,根据下列条件解三角形,则其中有两个解的是A .b = 10,A = 45°,B = 70° B .a = 60,c = 48,B = 100° ( )C .a = 7,b = 5,A = 80°D .a = 14,b = 16,A = 45°3. 在ABC ∆中,已知角,334,22,45===b c B 则角A 的值是( ) A .15° B .75° C .105° D .75°或15°4.在ABC ∆中,若2=a ,22=b ,26+=c ,则A ∠的度数是( )A .︒30B .︒45C .︒60D .︒75 5. 若c C b B a A cos cos sin ==则△ABC 为 ( )A .等边三角形B .等腰三角形C .有一个角为30°的直角三角形D .有一个角为30°的等腰三角形 6. 在ABC ∆中,已知,,8,45,60D BC AD BC c B 于⊥=== 则AD 长为( )A .1)34-(B .1)34+(C .3)34+(D .)334-( 7. 钝角ABC ∆的三边长为连续自然数,则这三边长为( )A .1、2、3、B .2、3、4C .3、4、5D .4、5、68.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( )A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶29. 在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A sin cos A A >B sin cos B A >C sin cos A B >D sin cos B B >二、填空题:1、已知在ABC △中,6,30a c A ===,ABC △的面积S .2.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.3.在平行四边形ABCD 中,已知310=AB ,︒=∠60B ,30=AC ,则平行四边形ABCD 的面积 .4.在△ABC 中,已知2cos B sin C =sin A ,则 △ ABC 的形状是 .三、解答题:1、已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且222a c b ac +-=.(Ⅰ)求角B 的大小;(Ⅱ)若3c a =,求tan A 的值.2.在四边形ABCD 中,AC 平分∠DAB ,∠ABC=600,AC=7,AD=6,S △ADC =2315,求AB 的长.3.如果△ABC 接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值.4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度.答案:一、1.C 2. D 3. D 4. A. 5. B 6. D 7. B 8.A二、1.36或33 2.22 3.3300 4.等腰三角形三、1.(1)由余弦定理得212cos 222=-+=ac b c a B , 且 π<<B 0, 3π=∴B(2)将a c 3=代入ac b c a =-+222,得 a b 7=, 由余弦定理得14752cos 222=-+=ac b c a B 1421cos 1sin ,02=-=∴<<A A A π 53cos sin tan ==∴A A A 2. △ADC 的面积 sin 21⋅⋅⋅=AC AD S ∠DAC 7621⨯⨯=sin ∠DAC 2315=. sin ∴∠DAC 1435=, 在△ABC 中,可求5=BC ,由余弦定理可求8=AB 。

(典型题)高中数学必修五第一章《数列》测试题(有答案解析)(1)

(典型题)高中数学必修五第一章《数列》测试题(有答案解析)(1)

一、选择题1.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .42.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20473.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭5.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( )A .64盏B .128盏C .192盏D .256盏9.已知数列{}n a 的通项公式为()*(1)1n a n N n n n n =∈+++,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4510.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27611.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.数列{}n a 的前n 项和为n S ,已知2(2)n a n n =+,则4S =___________.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知递增等比数列{}n a 的前n 项和为n S ,22a =,37S =,数列(){}2log 1+n S 的前n 项和为n T ,则122020111T T T +++=________.16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数03R =(注:对于01R >的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为______(注:初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……)18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.若数列}{n a2*3()n n n N =+∈,则n a =_______.20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. 22.在①119n n a a +-=-,②113n na a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 25.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ;(Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<. 26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1. C 解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.2.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=,又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q == 故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a qa ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.9.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B .【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.10.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】先化简再进行相加求解即可【详解】由知故答案为:【点睛】思路点睛:当数列的通项公式中分母是乘积形式求前n 项和时可以考虑裂项相消法即将数列拆分成两项的差的形式再进行求和 解析:1715【分析】 先化简112n a n n =-+,再进行相加求解即可. 【详解】 由21(2)12n a n n n n ==-++知,41234S a a a a =+++11111111111132435462561715⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-=+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:1715. 【点睛】思路点睛:当数列的通项公式中,分母是乘积形式,求前n 项和n S 时,可以考虑裂项相消法,即将数列拆分成两项的差的形式,再进行求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】首先根据等比数列的性质得到从而得到利用等差数列的求和公式得到再利用裂项法求的值即可【详解】因为所以即解得或又因为数列为递增数列所以所以因为所以故故答案为:【点睛】本题主要考查等差等比数列的求解析:40402021【分析】首先根据等比数列的性质得到21nn S =-,从而得到()2log 1+=n S n ,利用等差数列的求和公式得到()12n n n T +=,再利用裂项法求122020111+++T T T 的值即可.【详解】因为22a =,37S =, 所以31232227S a a a q q=++=++=,即22520q q -+=, 解得12q =-或2q .又因为数列{}n a 为递增数列,所以2q.所以11a =,122112nn n S -==--.因为()22log 1log 2+==nn S n ,()1122…+=+++=n n n T n ,所以()1211211⎛⎫==- ⎪++⎝⎭n T n n n n . 故122020111111112122320202021⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦T T T 140402*********⎛⎫=-=⎪⎝⎭ 故答案为:40402021【点睛】本题主要考查等差、等比数列的求和公式,同时考查裂项法求和,属于中档题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.1092【分析】由题意分析传染模型为一个等比数列可解【详解】由题意:所以第六轮的传染人数为所以前六轮被传染的人数为故答案为:1092【点睛】数学建模是高中数学六大核心素养之一在高中数学中应用题是常见解析:1092 【分析】由题意分析,传染模型为一个101,3a q R ===等比数列,可解. 【详解】由题意:101,3a q R ===所以1113n n n a a q --==第六轮的传染人数为7a所以前六轮被传染的人数为771131109213S a --=-=-.故答案为:1092 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n n n n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭.由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =; 2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n nn S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=-- 整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n nn S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式,综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法;(4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(Ⅰ)2nn a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明. 【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1n n a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b的变化特点.。

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1894.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 5.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .86.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏7.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或8.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .459.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.15.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 16.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3nn a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 17.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.18.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.19.若数列{}n a 满足:15n n a a n ++=,11a =,则2020a =________________. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列;(2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.在①242n n n S a a =+,②12a =,12n n na S +=这两个条件中任选一个,补充到下面横线处,并解答.已知正项数列{}n a 的前n 项和为n S , . (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足131log 12n n b a =-,且n n n c a b =,求数列{}n c 的前n 项和n M . 注:如果选择多个条件分别进行解答,按第一个解答进行计分.24.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+;(Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D . 25.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.26.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C.本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值6.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.7.B解析:B结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.8.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.9.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=,即116255204a b +=,当且仅当16b a a b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.14.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩.故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.15.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.16.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n nnc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.17.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.18.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.19.【分析】根据写出相减以后可得可以判断出数列是等差数列然后判断出首项和公差即可得【详解】两式相减得故是首项为公差为的等差数列的第项故故答案为:【点睛】要注意等差数列的概念中的从第项起与同一个常数的重要解析:5049. 【分析】根据15n n a a n ++=写出155n n a a n -+=-,相减以后可得115n n a a +--=,可以判断出数列{}2n a 是等差数列,然后判断出首项和公差,即可得2020a . 【详解】11555n n n n a a n a a n +-+=⇒+=-.两式相减,得115n n a a +--=.12254a a a +=⇒=.故2020a 是首项为4,公差为5的等差数列的第1010项, 故()202041010155049a =+-⨯=. 故答案为:5049. 【点睛】要注意等差数列的概念中的“从第2项起”与“同一个常数”的重要性,巧妙运用等差数列的性质,可化繁为简;如果1n n a a +-是常数,则{}n a 是等差数列,如果11n n a a +--是常数,则数列中的奇数项或者偶数项为等差数列,所以需要注意等差数列定义的推广应用.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,①()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)条件性选择见解析,2n a n =;(2)1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭.【分析】(1)若选①,先求出12a =,由242n n n S a a =+可得111242n n n S a a +++=+,两式相减可得()()1120n n n n a a a a +++--=,从而12n n a a +-=得出答案; 若选②,由12n n na S +=可得1(1)2n n n a S --=,两式相减可得11n n a n a n++=,由累乘法可得答案. (2)由(1)可得13log 1n b n =-,则113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,由错位相减法可求和得出答案. 【详解】(1)选①时,当1n =时,211142a a a =+,因为10a >,所以12a =, 由242n n n S a a =+,① 可得111242n n n S a a +++=+,②②-①得,22111422n n n n n a a a a a +++=-+-, 整理得2211220n n n n a a a a ++---=,所以()()1120n n n n a a a a +++--= 因为0n a >,所以12n n a a +-=,所以数列{}n a 是首项为2,公差为2的等差数列, 所以2n a n =; 选②时, 因为12n n na S +=①所以当2n ≥时,1(1)2n n n a S --=② ①-②得:1(1)n n na n a +=+,即11n n a n a n++= ①中,令1n =,得2124a a ==,212a a =适合上式 所以当2n ≥时,1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅12322212321n n n n n n n --=⋅⋅⋅⋅⨯⨯=--- 又1n =,1221a ==⨯ 所以对任意*N n ∈,2n a n = (2)因为13log 12nn a b =-即13log 1n b n =-所以113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭③2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭④ ③-④得231211111222222333333n nn M n -⎫⎫⎫⎫⎛⎛⎛⎛=+⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪⎪⎝⎝⎝⎝⎭⎭⎭⎭1111212333n nn -⎡⎤⎫⎫⎛⎛=⨯++⋯+-⨯⎢⎥ ⎪ ⎪⎝⎝⎭⎭⎢⎥⎣⎦1113221313nnn ⎫⎛- ⎪⎫⎛⎝⎭=⨯-⨯ ⎪⎝⎭-所以1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭【点睛】关键点睛:本题考查求数列的通项公式和应用错位相减法求数列的前n 项和,解答本题的关键是按照步骤求解,考查计算能力,由2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭,得出2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,两式相减再化简得出答案,属于中档题.24.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】(Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+. 所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解)25.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=,因为数列{}2n n a -是等差数列,且公差为2, 所以()22212n n a n n -=+-=,则22n n a n =+. (2)选①:设公比为q ,由3248a a -=,得24448qq -=, 解得4q =或3-,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选②:设公比为q ,由364a =,得2464q =,解得4q =±,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4n n a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3;【分析】 先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案.【详解】 设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212n n a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d =所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭ 所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得12k +>,由1232+<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.。

数学必修5第一章测试题及答案

数学必修5第一章测试题及答案

第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 等于( )A .06030或 B .06045或 C .060120或 D .015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。

5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。

三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。

(数学5必修)第一章 [基础训练A 组]一、选择题1.C 00tan 30,tan 302b b a c b c b a=====-=2.A 0,sin 0A A π<<> 3.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>4.D 作出图形5.D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或01506.B 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 二、填空题1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201cos ,12022b c a A A bc +-==-=3.26- 00sin 15,,4sin 4sin154sin sin sin a b b A A a A A B B ====== 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5. 4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC +sin )cos22A B A BA B +-=+= max 4cos 4,()42A BAC BC -=≤+=三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=。

(典型题)高中数学必修五第一章《数列》检测(有答案解析)(1)

(典型题)高中数学必修五第一章《数列》检测(有答案解析)(1)

一、选择题1.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40422.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .353.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .44.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >5.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .5B .6C .7D .86.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .47.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .88.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .129.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .910.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4511.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.设数列{}2()n n n a +是等比数列,且116a =,2154a =,则数列{3}n n a 的前15项和为__________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan9θ=,则点A 的坐标为________.15.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________.18.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.19.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 20.已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 三、解答题21.已知等差数列{}n a 满足,*n ∀∈N ,1n n a a +>,12a =且1a ,2a ,4a 成等比数列. (1)求{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n S .22.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 25.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足132a =,112n n a a -=-,2n ≥,*n N ∈.(1)证明:数列1{}1n a -为等差数列,并求数列{}n a 的通项公式; (2)若2n n na c n =⋅,记数列{}n c 的前n 项和为n T ,求证:314n T ≤<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.2.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.3.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.4.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.5.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A. 【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键6.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.7.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=,由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=. 故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.10.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【解析】等比数列首项为第二项为故是首项为公比为的等比数列所以所以其前项和为时为【点睛】本小题主要考查等比数列通项公式的求法考查利用裂项求和法求数列的前项和题目给定一个数列为等比数列并且给出和也就是要解析:1516【解析】等比数列首项为1123a =,第二项为2169a =,故是首项为13,公比为13的等比数列.所以()21111333n n n nn a -+=⋅=,所以211131n n a n n n n ==-++,其前n 项和为111n -+,15n =时,为11511616-=. 【点睛】本小题主要考查等比数列通项公式的求法,考查利用裂项求和法求数列的前n 项和.题目给定一个数列()2n n n a +为等比数列,并且给出1a 和2a ,也就是要用这两项求得给定数列的第一和第二项,根据前两项求得等比数列的通项公式,由此得到211131n n a n n n n ==-++,利用裂项求和法求得数列的前n 项和. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576. 【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-,故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.18.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.19.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的 解析:4256【分析】由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256.【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.20.【解析】试题分析:因为所以因为数列是等比数列所以即设①又+…+②①+②得所以考点:1等比数列的性质;2对数的运算;3数列求和【知识点睛】如果一个数列与首末两项等距离的两项之和等于首末两项之和(都相等解析:992【解析】试题分析:因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 考点:1、等比数列的性质;2、对数的运算;3、数列求和.【知识点睛】如果一个数列{}n a ,与首末两项等距离的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.如等差数列的前n 项和公式即是用此法推导的.三、解答题21.(1)2n a n =,n ∈+N ;(2)()2214n n S n +=-+.【分析】(1)根据题意可知2214a a a =,而12a =即可解出d ,从而得到{}n a 的通项公式; (2)由(1)知,2n a n =,所以22nn b n =⋅,根据错位相减法即可求出数列{}n b 的前n项和n S . 【详解】(1)因为1a ,2a ,4a 成等比数列,所以2214a a a =,()()21113a d a a d +=+.又因为12a =,解得2d =或0d =(舍),所以2n a n =,n ∈+N .(2)由(1)知,2n a n =,所以22nn b n =⋅.因为2222422nn S n =⨯+⨯+⋅⋅⋅+⨯,2312222422n n S n +=⨯+⨯+⋅⋅⋅+⨯21222222222n n n n S S n +-=⨯+⨯+⋅⋅⋅+⨯-⨯化简得()2214n n S n +-=--,即()2214n n S n +=-+.【点睛】本题主要考查等差数列通项公式的求法,以及错位相减法的应用,意在考查学生的数学运算能力,属于中档题.常见的数列求和方法:公式法,倒序相加求和法,分组求和法,裂项相消法,错位相减法,并项求和法等. 22.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式,故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n n n T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+,由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.25.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==.则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)证明见解析,21n n a n +=+;(2)证明见解析. 【分析】(1)根据已知,表示出1111111n n n n a a a a -----=-=,然后代入11111n n a a ----计算可得1,所以证明出数列1{}1n a -是等差数列,求出首项,利用等差数列通项公式计算;(2)表示出1211(1)22(1)2n n n n n c n n n n -+==-⋅+⋅⋅+⋅,然后利用裂项相消法计算前n 项和n T ,再判断出数列的单调性,即可证明. 【详解】(1)当132a =时,因为112n n a a -=-,1111111n n n n a a a a -----=-=,所以1111111111111111n n n n n n n a a a a a a a ---------=--==---, 所以数列1{}1n a -为首项为111a -,公差为1的等差数列. 又132a =,1121a =-,所以111n n a =+-,解得21n n a n +=+. (2)因为21n n a n +=+,所以1211(1)22(1)2nn n n n c n n n n -+==-⋅+⋅⋅+⋅. 所以121n n n T c c c c -=++⋅⋅⋅++1121111111112222322(1)2(1)2n n nn n n -=-+-+⋅⋅⋅+-=-⋅⋅⋅⋅+⋅+⋅, 即11(1)2n nT n =-+⋅,显然1n T <,另一方面,111111121(1)0(1)222(1)2(1)2n n n n n n nn T T n n n n n n ---+-=---=-=>+⋅⋅⋅+⋅⋅+⋅, 故数列{}n T 是递增数列,所以134n T T ≥=,因此,314n T ≤<. 【点睛】常见的数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. (4)裂项相消:用于通项为分式形式的数列的求和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五阶段测试一(第一章 解三角形)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.(2017·江西金溪一中月考)已知△ABC 中,a =2,b =3,B =60°,那么∠A =( ) A .45° B .90° C .130°或45° D .150°或30° 2.在△ABC 中,B =π3,AB =8,BC =5,则△ABC 外接圆的面积为( )A.49π3 B .16π C.47π3D .15π 3.(2017·黑龙江鸡西期末)已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30° 4.在△ABC 中,sin 2A =sin 2B +sin B ·sin C +sin 2C ,则A 等于( ) A .30° B .60° C .120° D .150°5.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且a >b >c, a 2<b 2+c 2,则∠A 的取值范围是( )A.⎝⎛⎭⎫π2,πB.⎝⎛⎭⎫π4,π2C.⎝⎛⎭⎫π3,π2D.⎝⎛⎭⎫0,π2 6.(2017·阆中中学质检)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,如果b cos C +c cos B -a sin A =0,那么△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B.2425 C .-725 D .±7258.(2017·青海师范大学附属中学月考)在△ABC 中,A =30°,B =60°,C =90°,那么三边之比a ∶b ∶c 等于( )A .1∶2∶3B .3∶2∶1C .1∶3∶2D .2∶3∶1 9.在△ABC 中,b =8, c =83, S △ABC =163,则∠A 等于( )A .30°B .60°C .30°或150°D .60°或120° 10.(2017·莆田六中期末)如图,已知A ,B 两点分别在河的两岸,某测量者在点A 所在的河岸边另选定一点C ,测得AC =50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A .50 3 mB .25 3 mC .25 2 mD .50 2 m 11.在锐角△ABC 中,B =2A ,则ACBC的取值范围是( )A .(-2,2)B .(2,2)C .(0,3)D .(2,3)12.A ,B 两地相距200 m ,且A 地在B 地的正东方.一人在A 地测得建筑C 在正北方,建筑D 在北偏西60°;在B 地测得建筑C 在北偏东45°,建筑D 在北偏西15°,则两建筑C 和D 之间的距离为( )A .200 2 mB .1007 mC .100 6 mD .100(3-1)m 二、填空题(本大题共4小题,每小题5分,共20分)13.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.14.(2017·唐山一中月考)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________.15.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为________.16.已知△ABC 的面积为32,AC =3,∠ABC =π3,则△ABC 的周长等于_________. 三、解答题(本大题共6小题,共70分)17.(10分)在四边形ABCD 中,AD ⊥CD ,AD =5,AB =7,∠BDA =60°,∠CBD =15°,求BC 的长.18.(12分)(2017·贵州铜仁期中)设a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,S 是△ABC 的面积,已知a =4,b =5,S =5 3.(1)求角C ;(2)求c 边的长度.19.(12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且b 2+c 2-a 22=83S △ABC (其中S △ABC 为△ABC 的面积).(1)求sin 2B +C2+cos2A ; (2)若b =2,△ABC 的面积为3,求a .20.(12分)(2017·河北开滦一中期末)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .21.(12分)(2017·山西省朔州期末)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且a =4,cos A =34,sin B =5716,c >4.(1)求b ; (2)求证:C =2A .22.(12分)如图所示,一辆汽车从O 点出发,沿海岸一条直线公路以100 km/h 的速度向东匀速行驶,汽车开动时,在O 点南偏东方向距O 点500 km ,且与海岸距离为300 km 的海上M 处有一快艇,与汽车同时发出,要把一件重要物品递送给这辆汽车的司机,问快艇至少必须以多大的速度行驶,才能把物品送到司机手中,并求快艇以最小速度行驶的行驶方向与OM 所成的角.答案与解析1.A 由正弦定理a sin A =bsin B ,得sin A =a sin B b =2sin60°3=22.又a <b ,∴A <B ,∴A =45°.2.A 由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =64+25-2×8×5×12=49,∴AC=7.由正弦定理得AC sin B =2R (R 为△ABC 外接圆的半径),∴R =AC 2sin B =72×32=733.∴△ABC外接圆的面积S =πR 2=49π3.3.B S △ABC =12BC ·CA ·sin C ,∴12×4×3·sin C =33, ∴sin C =32, 又△ABC 是锐角三角形,∴C =60°,故选B. 4.C 由正弦定理,得sin A =a 2R , sin B =b 2R , sin C =c2R(其中R 为△ABC 外接圆半径),代入sin 2A =sin 2B +sin B ·sin C +sin 2C ,得a 2=b 2+bc +c 2=b 2+c 2+bc ,即b 2+c 2-a 2=-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.又0°<∠A <180°,∴∠A =120°.故选C. 5.C 解法一:cos A =b 2+c 2-a 22bc ,∵a 2<b 2+c 2, a >b >c, cos A <a 2+c 2-a 22bc =c 2b <b 2b =12,∴cos A >0,且cos A <12. ∴∠A 的范围为⎝⎛⎭⎫π3,π2,故选C.解法二:∵a >b >c, ∴a 为最长边,∠A >π3.又a 2<b 2+c 2, ∴∠A <π2. ∴π3<∠A <π2.故选C.6.A b cos C +c cos B -a sin A =0, ∴sin B cos C +sin C cos B -sin 2A =0. ∴sin(B +C )-sin 2A =0.∴sin A -sin 2A =0,∴sin A =0(舍去)或sin A =1,∴A =π2.故选A.7.A ∵C =2B ,∴sin C =sin2B =2sin B cos B .又∵8b =5c ,c sin C =b sin B ,∴c b =sin C sin B =85.∴cos B =sin C 2sin B =12×85=45.∴cos C =cos2B =2cos 2B -1=2×⎝⎛⎭⎫452-1=725. 8.C a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2,故选C.9.C ∵S △ABC =12bc sin A, ∴sin A =2S △ABC bc =12.∴∠A =30°或150°,经检验均满足已知条件,故选C.10.D ∠CBA =180°-∠ACB -∠CAB =180°-45°-105°=30°, ∴AB sin ∠BCA =AC sin ∠CBA ,∴AB =AC ·sin ∠BCA sin ∠CBA=50×sin45°sin30°=50 2 m .故选D.11.D ∵B =2A ,∴AC BC =sin B sin A =sin2Asin A =2cos A , ∵△ABC 是锐角三角形,∴⎩⎨⎧2A <π2,π-3A <π2,∴π6<A <π4, ∴2<2cos A <3,故选D.12.C 由题可知△BCA 是等腰直角三角形, ∴AB =AC =200,BC =2002, ∠DBC =15°+45°=60°, ∵∠DAB =90°-60°=30°, ∴∠BDA =45°,∴AB sin45°=DB sin30°.∴DB =AB ·sin30°sin45°=1002,∴DC 2=DB 2+BC 2-2DB ·BC ·cos60°=(1002)2+(2002)2-2×1002×2002×12=6×1002,∴DC =100 6 m ,故选C.13.2π3解析:由3sin A =5sin B ,得3a =5b . 又b +c =2a ,∴a =5c 7,b =3c7.在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =-12.∴C =2π3.14.4解析:b a +ab =6cos C ,∴b 2+a 2=6ab cos C =3(a 2+b 2-c 2),∴3c 2=2a 2+2b 2.tan C tan A +tan Ctan B=tan C ⎝⎛⎭⎫cos A sin A +cos B sin B = sin C cos C sin (A +B )sin A sin B =sin 2C cos C sin A sin B =c 2ab cos C =23(a 2+b 2)16(a 2+b 2)=4.15.40 3解析:设另两边分别为8t,5t (t >0),则由余弦定理得 142=(8t )2+(5t )2-2·8t ·5t ·cos60°, ∴t 2=4, ∴t =2.∴S △ABC =12×16×10×32=40 3.16.3+ 3 解析:由已知得32=12AB ·BC sin π3,∴AB ·BC =2.又AC 2=AB 2+BC 2-2AB ·BC cos B =AB 2+BC 2-AB ·BC =(AB +BC )2-3AB ·BC =(AB +BC )2-6.又AC =3,∴AB +BC =3.∴AB +BC +AC =3+ 3.17.解:在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos60°,又AD =5,AB =7,∴BD 2-5BD -24=0,解得BD =8.在△BCD 中,∠BDC =30°,∠BCD =135°,由正弦定理得BC =BD sin ∠BDC sin ∠BCD =8sin30°sin135°=4 2.18.解:(1)由题知S =53,a =4,b =5. 由S =12ab sin C 得,53=12×4×5sin C ,解得sin C =32, 又C 是△ABC 的内角,所以C =π3或C =2π3.(2)当C =π3时,由余弦定理得c 2=a 2+b 2-2ab cos π3=16+25-2×4×5×12=21,解得c=21;当C =2π3时,c 2=a 2+b 2-2ab cos 2π3=16+25+2×4×5×12=61,解得c =61.综上得,c 边的长度是21或61.19.解:(1)由已知得2bc cos A 2=83×12bc sin A ,即3cos A =4sin A >0,又∵sin 2A +cos 2A =1,∴sin A =35,cos A =45.sin 2B +C 2+cos2A =1+cos A 2+cos2A =2cos 2A +cos A 2-12=2×1625+42×5-12=5950.(2)由(1)知sin A =35,S △ABC =12bc sin A =3,b =2,∴c =5.又∵a 2=b 2+c 2-2bc cos A , ∴a 2=4+25-2×2×5×45=13,∴a =13.20.解:(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°,∴cos ∠CBE =cos(45°-30°)=6+24. (2)在△ABE 中,AB =2,由正弦定理得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°cos15°=2×126+24=6- 2.21.解:(1)∵cos A =34,可得sin A =1-cos 2A =74, ∴由正弦定理可得b =a ·sin Bsin A =4×571674=5.(2)证明:∵由(1)可得a =4,cos A =34,b =5,∴由余弦定理可得16=25+c 2-2×b ×c ×34,整理可得2c 2-15c +18=0, ∴解得c =6或32(c >4,故舍去),∴由正弦定理可得sin C =c sin Aa =6×744=378. 又∵sin2A =2sin A cos A =2×74×34=378, ∴可得sin C =sin2A , ∵C ∈(0,π),2A ∈(0,π),∴C =2A ,或C +2A =π(A ≠B 故舍去). ∴C =2A ,得证.22.解:如图,设快艇从M 处以v km/h 的速度出发,沿MN 方向航行,t 小时后与汽车相遇.在△MON 中,MO =500, ON =100t, MN =v t .设∠MON =α.由题意知sin α=35,则cos α=45.由余弦定理知MN 2=OM 2+ON 2-2OM ·ON ·cos α, 即v 2t 2=5002+1002t 2-2×500×100t ·45.v 2=5002·1t 2-2×500×80·1t +1002=⎝⎛⎭⎫500·1t -802+3 600.当1t =80500,即t =254时, v 2min =3 600,即快艇必须至少以60 km/h 的速度行驶.此时MN =60×254=15×25.MQ 是M 到ON 的距离,且MQ =300,设∠MNO =β, ∴sin β=30015×25=45.∴α+β=90°, ∴MN 与OM 成直角.∴快艇至少必须以60 km/h 的速度行驶,才能把物品送到司机手中,其行驶方向与OM 成直角.。

相关文档
最新文档