电机起动方式的选择(一)
他励直流电动机起动方法(一)

他励直流电动机起动方法(一)他励直流电动机起动1. 简介•了解他励直流电动机起动的基本原理•探讨为什么需要使用他励直流电动机2. 常见起动方法钥匙启动•使用钥匙来启动他励直流电动机•需要先将钥匙插入启动开关,然后拧动键位来启动电动机按钮启动•使用按钮来启动电动机•按下按钮后,电动机会被启动,可以通过调节按钮的位置来调整启动电流和加速度脚踏启动•使用脚踏来启动电动机•脚踏启动器通常连接到电动机控制台的底部,通过踩踏脚踏来启动电动机3. 特殊起动方法遥控启动•使用遥控器来启动电动机•遥控启动器通常是通过无线方式与电动机控制台连接,通过按下遥控器上的按钮来启动电动机变频起动•使用变频器来启动电动机•变频器可以调节电动机的转速和起动过程中的电流变化,提供更精确的控制感PLC控制启动•使用PLC(可编程逻辑控制器)来启动电动机•通过编写PLC程序,控制电动机的启动过程,可以根据实际需求进行灵活调整和自动化控制4. 结论•了解不同的他励直流电动机起动方法•根据实际需求选择合适的起动方式•在电动机起动过程中,注意安全和效率的平衡以上是针对”他励直流电动机起动”的相关内容介绍,希望可以对您有所帮助。
5. 选用适当的起动方法在选择适当的起动方法之前,需要考虑以下几个因素:动力需求•评估所需的起动电流和加速度•不同起动方法对电动机的动力需求有所不同,根据实际情况选择合适的方法控制要求•考虑是否需要对起动过程进行精确的控制•如果需要精确控制电动机起动过程中的转速和电流变化,可以选择使用变频器或PLC控制启动方便性和安全性•考虑操作的方便性和安全性•钥匙启动和按钮启动较为常见,操作简单方便,但可能缺乏精确控制•脚踏启动需要特定的脚踏装置,操作相对不太方便•遥控启动可以远程操作,但需要有相应的遥控器和接收器自动化需求•考虑是否需要自动化控制电动机的起动过程•如果需要自动化控制,可选择使用PLC控制启动,并根据实际需求编写相应的PLC程序综合考虑这些因素,选择适合自己需求的起动方法是关键。
电动机的启动方式与起动装置选择

电动机的启动方式与起动装置选择电动机是一种将电能转换为机械能的设备,广泛应用于工业生产和日常生活中。
在电动机运行前,需要选择适当的启动方式和起动装置来确保电动机能够有效、安全地启动。
本文将探讨电动机的启动方式以及起动装置的选择。
一、电动机的启动方式1. 直接起动方式直接起动是最简单、最常用的启动方式。
它的原理是将电源直接接入电动机,通过控制电源的开关来启动和停止电动机。
直接起动适用于小型电动机或对起动时间无特殊要求的场合。
这种方式简单可靠,成本低,但对电源的冲击较大,容易引起电网电压的瞬间下降。
2. 限流起动方式限流起动方式通过限制电动机的电流来达到缓慢启动的目的。
其中一种常见的方法是使用启动电阻,通过逐步减小电阻的方式来限制电流增长的速度,从而使电动机实现缓慢启动。
限流起动方式适用于启动负载较重或对电源冲击要求较高的电动机。
3. 自耦变压器起动方式自耦变压器起动方式是通过自耦变压器来降低电源电压,从而使电动机实现缓慢启动。
使用自耦变压器能够减小启动时电动机对电源的冲击,提高起动过程的平稳性。
这种方法适用于起动大功率电动机或对启动冲击要求较低的场合。
4. 频率变换器起动方式频率变换器起动方式是通过改变电源频率来控制电动机的启动和停止。
频率变换器将电源的交流电转换为直流电,再通过中间环节将其转换为对应频率的交流电供给电动机。
这种方式适用于对电动机启动的平稳性和精度要求较高的场合。
二、起动装置的选择1. 起动电阻器起动电阻器主要用于限制电动机的起动电流,减少启动时对电源的冲击。
它适用于小型电动机或起动冲击要求较高的电动机。
起动电阻器可以通过调节电源电阻来控制启动电流的大小,从而实现缓慢启动的效果。
2. 软起动器软起动器是一种智能化的起动装置,它通过电子元件来实现对电机的启动和停止控制。
软起动器具有启动过程的平稳性好、启动电流小、调速性能好等优点。
它适用于对电动机起动和停止过程要求较高的场合。
3. 磁力启动器磁力启动器是一种通过电磁力来实现对电动机启动和停止的装置。
电动机启动方式的选择-解析

电动机启动方式的选择-解析电动机启动方式的选择-解析电机启动方式的选择笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析? 笼型感应电动机全压起动星三角换接起动自耦变压器降压起动起动电流起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。
笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择1 全压起动1.1 全压起动的优点及允许全压起动的条件全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。
全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。
为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。
所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。
有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。
尤其是消防泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。
交流电动机起动时,其端子上的计算电压应符合下列要求(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?对于低压电动机,还应保证接触器线圈的电压不低于释放电压。
电机常用启动方式介绍

电机常用启动方式介绍电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压启动,Y-Δ 降压启动,软启动器启动,变频器启动等等方式。
那么他们之间有什么不同呢?1、全压直接启动在电网容量和负载两方面都允许全压直接启动的情况下,可以考虑采用全压直接启动。
优点是操纵控制方便,维护简单,而且比较经济。
主要用于小功率电动机的启动,从节约电能的角度考虑,大于11kW 的电动机不宜用此方法。
2、自耦减压启动利用自耦变压器的多抽头减压,既能适应不同负载启动的需要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。
它的最大优点是启动转矩较大,当其绕组抽头在80%处时,启动转矩可达直接启动时的64%。
并且可以通过抽头调节启动转矩。
至今仍被广泛应用。
3、Y-Δ启动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。
这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。
采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。
如果直接启动时的启动电流以6~7Ie 计,则在星三角启动时,启动电流才2~2.3 倍。
这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接启动时的1/3。
适用于无载或者轻载启动的场合。
并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。
此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
4、软启动器这是利用了可控硅的移相调压原理来实现电动机的调压启动,主要用于电动机的启动控制,启动效果好但成本较高。
因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。
另外,电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。
电动机的5种启动方式(图文)

软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
软启动,变频器,减压启动综合分析
价格问题自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。对于 投入较小的项目,经济性就会成为首选; 可控问题 Y-Δ、自耦减压启动简单,但仅仅只是启动。但在自动化程度高的 场合,估计就会使用得较少,甚至软起也少。而通过变频器调控 电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。 所以变频器在大型或自动化程度高的生产线就是首选了。
这是利用了可控硅的移相调压 原理来实现电动机的调压起动,主 要用于电动机的起动控制,起动效 果好但成本较高。因使用了可控硅 元件,可控硅工作时谐波干扰较大, 对电网有一定的影响。
另外电网的波动也会影响可控 硅元件的导通,特别是同一电网中 有多台可控硅设备时。因此可控硅 元件的故障率较高,因为涉及到电 力电子技术,因此对维护技术人员 的要求也较高适用于无载或者轻载起动的场合。并且同任何别的减压 起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时, 可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹 配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
循环水泵站电机起动方式的选择

循环水泵站电机起动方式的选择摘要:在高炉循环水系统中水泵电机台数多,根据电机起动时对电网影响大,通过对不同启动方式的选择,使电机在启动过程中能够稳定,经济的运行。
本文主要介绍循环水系统中水泵电机启动方式的选择,及在实际使用中的效果。
关键词:高低压交流电机电机起动软启动器钢铁企业高炉用水量大,要求给排水设施安全可靠性较高,技术较复杂。
主要是高炉系统炉壁、风口、热风阀等冷却用水及高炉区所有液压站、除尘风机、助燃风机、TRT余压发电装置、空调冷却等冷却水的处理及供应。
高炉鼓风机、发电机组的冷却用水量同样大。
涉及到的电机型号繁多,其中低压电机11台,高压电机18台。
电机功率由22 kW至1400 kW,采用何种起动方式能够保证设备的稳定运行,同时又能够经济高效。
1 小功率电机的启动方式选择如果泵站内全部采用全压直接启动时,启动电流会达到额定电流的5~7倍,全压启动时所在电网系统压降非常大,这回破坏同网其他设备的正常运行,严重时甚至会引起电网失去稳定,产生系统故障跳闸。
直接启动,也会产生较高的峰值转矩,从而对电动机及整个机械装置造成有害的冲击。
但全压直接启动维护简单,投资少,比较经济。
下面对小功率低压电机选择启动方式进行论述:我厂高炉中心泵站和鼓风机泵站小功率低压电机主要是3台综合泵电机和2台过滤泵电机,他们的功率分别是55 kW和22 kW。
泵站的变压器容量分别为1600 kV A和630 kV A,根据经验公式(其中Ist 为电机全压起动电流,In为电机额定电流,P为电机功率,S为变压器容量)计算,全压起动电流按照7倍计算,根据计算结果可以看出符合要求,故上述电机均可以直接全压起动。
同时全压起动可以减少电气设备,线路简单维修量小等特点,符合经济稳定运行的目的。
从而上述4台低压电机采用全压起动的方式。
2 大功率高压、低压电机的启动方式选择高炉中心泵站和鼓风机泵站仍有其他大功率电机其中包括160 kW增压泵低压电机3台,90 kW低压炉顶泵电机3台,500 kW二次泵高压电机3台,800 kW软水中压泵电机3台,630 kW软水高压泵电机3台,1000 kW软水主供电机3台,鼓风机泵站的1400 kW外供泵高压电机6台。
排涝泵站电机启动方式的选择与探讨

排涝泵站电机启动方式的选择与探讨1.电动机的启动方式1.1全压启动全压启动是最简单启动方式,它是将电动机的定子绕组直接接入额定电压启动,因此也称为直接启动。
全压启动的启动电流大,鼠笼式异步电动机的启动电流一般为额定电流的4~7倍,启动转矩为额定转矩1.2~2.0倍。
全压启动具有启动转矩大、启动时间短、启动设备简单、操作方便、易于维护、投资省和设备故障率低等优点。
采用全压启动,如果电动机的功率较大,电动机的启动电流将会引起配电系统的电压显著下降,导致其他设备低电压保护跳闸,或其他电机因驱动转矩下降而堵转。
要保证电网电压正常工作,往往要加大配电变压器的容量。
对于中小型泵站的电机,允许直接启动的最大容量,一般不宜超过变压器容量的35%。
这样一方面造成设备投资的增加;另一方面增加了变压器铜损和铁损,造成不必要能源损耗,电费增加。
1.2降压启动1.2.1星-三角降压启动采用星-三角型降压启动,电动机启动电压为额定电压的0.58倍,启动电流降为三角形接法的启动电流的0.33倍,启动转矩也降为三角形接法的启动电流的0.33倍。
此种启动方式适用于定子绕组额定电压380v,正常运行时三角形接法,且启动过程中负载转矩一直保持很小的中小型容量的电动机的启动。
星一三角型降压启动设备简单,价格低,维修方便。
启动电流小,启动转矩也小,可以频繁启动。
是小型泵站经常采用的启动方式,大型异步电机不能重载启动。
1.2.2电阻降压启动笼形异步电动机定子回路串电阻启动,是在电动机启动时,在三相定子回路中串接对称三相电阻,由于串联了电阻,使加在电动机绕组上的电压低于电网电压,待启动后,再将电阻短路,电动机在额定电压下正常运行。
定子回路接入对称电阻的这种启动方式的启动电流较大,而启动转矩较小。
如启动电压降至额定电压的80%,启动电流为全压启动电流的80%,而启动转矩仅为全压启动转矩的64%,且启动过程中消耗的电能较大,如果频繁启动,则电阻的温升很高,对精密的生产机械有一定的影响。
电机的启动方式有什么

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。
那么他们之间有什么不同呢?1、全压直接起动在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。
优点是操纵控制方便,维护简单,而且比较经济。
主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。
2、自耦减压起动利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。
它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。
并且可以通过抽头调节起动转矩。
至今仍被广泛应用。
3、Y-Δ起动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。
这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ起动)。
采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。
如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。
这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。
适用于无载或者轻载起动的场合。
并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。
此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
4、软起动器这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。
因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。
另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机起动方式的选择(一)
笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析?笼型感应电动机全压起动星三角换接起动自耦变压器降压起动起动电流起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。
笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择
1全压起动
1.1全压起动的优点及允许全压起动的条件
全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。
全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。
为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。
所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。
有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。
尤其是消防
泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?
全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。
交流电动机起动时,其端子上的计算电压应符合下列要求
(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%
(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%
(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?
对于低压电动机,还应保证接触器线圈的电压不低于释放电压。
对于自设变压器的高压用户,较容易满足上述电压波动值的限制,很可能允许全压起动,这正是本文要讨论的主要问题之一
需要注意的是,《规范》中规定的电压是电动机端子上的计算电压,其真正目的却是为了限制电动机起动时配电系统的电压降,以免影响其他设备的运行。
过去曾规定“电源母线”电压波动值,由于“母线”的含义对于多级配电系统来说,其位置不太明确,设计者不易掌握。
现规定
电动机端子电压,既易满足配电系统的要求,又顾及到了相同条件下的其他电动机。
《规范》规定电动机端子上的计算电压,实际上是配电系统电压的参考点,随着配电变压器容量的不断增大,电动机的起动电流占变压器额定电流的比例越来越小,电动机起动时引起的压降也越来越小,采用全压起动的电动机也就越来越多?
1.2电动机起动时的压降及允许全压起动的电动机最大功率
为控制电动机起动时配电系统的压降,需要进行压降的分析与计算。
如果电动机的电源是从变电所低压柜以专线放射式引来,电动机起动引起配电系统的压降就接近变压器出线端的压降,而影响此压降的主要因素是变压器的内阻抗,其表现形式是变压器的阻抗电压百分数。
根据电动机的起动电流、变压器容量及其阻抗电压百分数,可以估算电动机起动时配电。