PCM存储

合集下载

DRAM-PCM混合内存系统研究

DRAM-PCM混合内存系统研究

出的内容与将要写入的内容不同时,才对此位实施写操作。

磨损均衡
BS(Byte Shifting)
以字节的粒度进行周期性转换从而均匀对某行中所有字节
的写。如果是读操作,则数据仍保存到原来的位置;如果 是写操作,则数据要保存到此行的其他位置。
测试结果
PCM寿命从176天增加到22年 跟基于DRAM的内存架构相比, 功耗降低了65%
在此基础上,针对以下几个方面进行了思考
混合内存架构除了把DRAM作为大容量PCM的高速缓存这种方法之外,其他的组织方 式 为了提高系统性能、降低系统功耗,除了上面的内存管理方法,其他的管理方法 除了PCM之外,如果使用其他的非易失存储器例如flash、STT-RAM等构建系统内存 又该如何组织和管理
应用流它会访问大量数据但是几乎不会重用, 在PCM中存储这种应用的数据只会加快PCM 的磨损。在PLB方法中,操作系统使用一个
配置位来表示是否对此应用开启PLB,如果

开启,则此应用的所有页都不会写到PCM中。
FGWL(Fine-Grained Wear-Leveling):
为了保证PCM的磨损均衡,一个页的每个line在PCM中以一种旋转的方式存放。有一个旋转值, 如果每页有16个lines,则旋转值的取值为0到15之间的任意值。如果旋转值为0,则line0放到line0的位
PCM:有足够大的容量来存储程序执行过程中的所有页面 DRAM:与PCM相比读写速度较快,因此作为高速缓存
Lazy-Write架构
操作系统以页表形式管理PCM,而 DRAM由DRAM控制器进行管理,都 以页的粒度进行管理。 当产生缺页异常时,从磁盘中获取的页 仅写到DRAM cache中,此页的内容不 会写到PCM。

PCM

PCM

PCM现在的数字传输系统都是采用脉码调制(Pulse Code Modulation)体制。

P CM最初并非传输计算机数据用的,而是使交换机之间有一条中继线不是只传送一条电话信号。

PCM有两个标准即E1和T1。

我国采用的是欧洲的E1标准。

T1的速率是1.544Mbit/s,E1的速率是2.048Mbi t/s。

PCM:相变存储器(Phase-change memory,PCM)是由IBM公司的研究机构所开发的一种新型存储芯片,将有望来替代如今的闪存Flash和硬盘驱动器HDD。

PCM在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。

而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。

这种电的数字信号称为数字基带信号,由PCM电端机产生。

PCM可以向用户提供多种业务,既可以提供从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。

特别适用于对数据传输速率要求较高,需要更高带宽的用户使用。

PCM线路的特点:•PCM线路可以提供很高的带宽,满足用户的大数据量的传输。

•支持从2M开始的各种速率,最高可达155M的速率。

•通过SDH设备进行网络传输,线路协议简单。

与传统的DDN技术相比,PCM具有以下特点:•线路使用费用相对便宜。

•能够提供较大的带宽。

•接口丰富便于用户连接内部网络。

•可以承载更多的数据传输业务。

PCM (动力控制模块)汽车电控部分,电控单元的动力控制模块,有存储器、输入、输出。

PCM脉码调制数字音频格式:PCM脉码调制数字音频格式是70年代末发展起来的,80年代初由飞利浦和索尼公司共同推出。

PCM的音频格式也被DVD-A所采用,它支持立体声和5.1环绕声,1999年由DVD讨论会发布和推出的。

相变存储器

相变存储器

相变存储器(phase change memory),简称PCM,利用硫族化合物在晶态和非晶态巨大的导电性差异来存储数据的。

初次听到"相变"这个词,很多读者朋友会感到比较陌生.其实,相(phase)是物理化学上的一个概念,它指的是物体的化学性质完全相同,但是物理性质发生变化的不同状态.例如水有三种不同的状态,水蒸气(汽相),液态水(液相)以及固态水(固相)。

物质从一种相变成另外一种相的过程叫做…相变‟例如水从液态转化为固态。

在很多物质中相变不是大家想象的只有气,液,固,三相那么简单。

例如我们这里介绍的相变存储器就是利用特殊材料在晶态和非晶态之间相互转化时所表现出来的导电性差异来存储数据的。

所以我们称之为相变存储器。

相变材料制作的相变内存无论是在专利布局、芯片试产及学术论文上开始有优异的表现,已开始商业应用,其cell size于201 1年将小于NOR Flash,未来可望大规模取代NOR Flash市场。

NOR和NAND是现在市场上两种主要的非易失闪存技术。

Int el于1988年首先开发出NOR flash技术,彻底改变了原先由EPRO M和EEPROM一统天下的局面。

紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。

但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和NAND闪存。

相“flash存储器”经常可以与相“NOR存储器”互换使用。

许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。

而NAND则是高数据存储密度的理想解决方案。

NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash闪存内运行,不必再把代码读到系统RAM中。

N OR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。

相变存储器的原理和发展

相变存储器的原理和发展

相变存储器的原理和发展相变存储器,作为一种新型存储器,正在逐渐成为人们关注的热门话题。

相比于传统的存储器技术,相变存储器由于具有高密度、高可靠性、低功耗等特点,正在逐渐走向成熟。

在这篇文章中,我们将会探讨相变存储器的原理和发展。

一、相变存储器的原理相变存储器(Phase Change Memory,PCM)是一种通过将物质的状态从一个相转变到另一个相来实现存储和擦除信息的存储器。

它具有非易失性、快速读写、高密度、低功耗等优点,而且不会受到电磁干扰的影响。

相变存储器的基本原理是利用材料的相变来存储信息。

在相变存储器中,通过在材料中通入电流,可以将材料由非晶态(amorphous)转变为结晶态(crystalline),或者由结晶态转变为非晶态,从而实现信息的存储和擦除。

相变存储器由一个导电介质薄膜和一层相变材料薄膜组成。

当通入电流时,相变薄膜的温度会上升,从而引起相变。

相变后,材料的导电性和抗电性会发生明显变化,这种变化被采集和存储在导电介质薄膜中。

从而实现了信息的存储。

相变存储器的最大特点是它可以在非常短的时间内进行快速的写和读操作。

相变薄膜的相变速度很快,写入时间只需要几十纳秒,读取时间也只需要几纳秒。

同时,相变存储器还具有非常高的可靠性,因为相变材料可以进行无限次的相变。

二、相变存储器的发展相变存储器的历史可以追溯到上世纪60年代,但要真正进入实用化的阶段还有很长的路要走。

在过去的几十年中,相变存储器的研究一直处于实验室阶段。

直到近年来,随着存储技术的进一步发展,相变存储器才开始逐渐受到人们的关注。

在过去的几年中,相变存储器已经从实验室阶段进入了产品研发阶段。

英特尔公司已经推出了一款基于相变存储器的高速固态硬盘(SSD),号称可以提供比传统硬盘更快的读写速度和更高的可靠性。

同时,三星、东芝、半导体制造商Micron等公司也在积极推进相变存储器技术的研发。

相比于传统的NAND闪存存储器,相变存储器具有更高的存储密度和更快的访问速度。

相变存储器及其应用研究进展

相变存储器及其应用研究进展

相变存储器及其应用研究进展一、引言随着信息技术的快速发展,存储器作为计算机硬件的重要组成部分之一,越来越受到人们的关注。

相变存储器由于其存储密度高和功耗低等优点,成为了摆脱传统存储技术瓶颈的解决方案之一。

本文将从相变存储器技术的特点、应用、发展状况等方面进行讨论。

二、相变存储器的特点与原理相变存储器(Phase-change Memory,PCM)属于非易失性存储器。

相变存储器是利用相变物质(如GeSbTe、GeSbSe等)的物理性质,通过在相变物质中引入热脉冲或电脉冲,使相变物质从一种状态转变为另一种状态来实现存储的过程。

相变存储器的主要特点如下:1. 存储密度高。

相变存储器是一种三维存储结构,可以将多个存储单元集成在一个芯片中,从而实现更高的存储密度。

2. 速度快。

相变存储器读写速度可以达到纳秒级别,比传统的闪存存储器快很多。

3. 功耗低。

相变存储器的读写操作不需要外部电源,只需要少量电能激活相变物质即可,因此功耗非常低。

4. 非易失性。

相变存储器存储的数据具有非易失性,可以长期保存且不需要外部电源维持。

相变存储器的原理是通过在相变物质中施加电流或热脉冲,让相变物质的结构发生相变。

相变物质的电阻率随着结构状态的变化而变化,从而记录了数据。

相变材料的相变状态包括两种,一种是无序状态,另一种是有序状态。

在有序状态下,电阻率低,储存为0;在无序状态下,电阻率高,代表储存为1。

不同相变物质的相变状态转换温度不同。

通过控制施加电流或热脉冲的时间和强度,就可以实现相变存储器的读写操作。

三、相变存储器的应用研究进展相变存储器技术的应用潜力非常大,在计算机硬件领域具有广泛的应用前景。

下面将从相变存储器在计算机存储、人工智能和物联网等方面的应用以及相关技术的发展状况进行讨论。

1. 计算机存储相变存储器的高速读写和高存储密度等特点使其成为新一代计算机存储器的重要组成部分。

相变存储器不但可以替代传统磁盘驱动器、闪存盘等存储设备,还能够贡献于新型高速计算机的处理速度。

存储器的发展与技术现状

存储器的发展与技术现状

存储器的发展与技术现状存储器是计算机中非常重要的一部分,它用于存储和检索计算机程序和数据。

随着计算机技术的不断发展,存储器的性能和容量也在不断提高。

下面将从历史发展和技术现状两个方面对存储器进行详细介绍。

一、历史发展1.早期存储器早期计算机使用的是机械存储器,如孔卡、磁带等。

这些存储介质的容量较小,读写速度较慢,且易受到外界干扰影响。

2.随机访问存储器(RAM)1950年代,随机访问存储器(RAM)逐渐取代了机械存储器。

RAM可以在任意时间读写数据,读写速度快,容量较大。

早期的RAM包括磁芯存储器和基于电容的DRAM。

3.只读存储器(ROM)只读存储器(ROM)逐渐应用于存储不需要频繁修改的数据,如计算机固件、操作系统等。

ROM具有不易丢失数据、抗干扰能力强的特点。

4. 快速缓存存储器(Cache)为了提高计算机的运行速度,引入了快速缓存存储器(Cache)。

Cache存储器位于处理器和主存之间,可以暂时存储主存中的部分数据和指令。

当处理器需要访问数据时,会先在Cache中查找,如果找到则直接使用,否则再从主存中读取。

5.长期存储器随着计算机领域的发展,对存储容量的需求越来越大。

于是,硬盘驱动器、光盘、固态硬盘等长期存储介质应运而生。

它们容量大,但读写速度相对较慢,适用于长期存储大量数据。

二、技术现状1.DRAM和SRAM目前的RAM主要分为动态随机访问存储器(DRAM)和静态随机访问存储器(SRAM)。

DRAM的存储单元由电容和晶体管组成,容量大但读写速度相对较慢。

SRAM的存储单元由双稳态电路组成,读写速度快但容量较小。

2.闪存存储器闪存存储器是一种非易失性存储器,可分为NAND闪存和NOR闪存。

闪存存储器可以在断电后保持数据,适于用于移动设备和计算机存储器扩展。

3.相变存储器(PCM)相变存储器(PCM)是一种新型存储器技术。

它利用材料的相变特性存储数据。

PCM具有高速写入和读取、较低的功耗和较长的寿命等优点,备受关注。

相变存储器的工作原理

相变存储器的工作原理

相变存储器的工作原理相变存储器是一种新型的非易失性存储器,具有电阻式随机存取存储器(Resistive Random-Access Memory,RRAM)或相变存储(Phase-Change Memory,PCM)的别名。

相较于传统的存储器,它具有更高的存储密度、更快的读写速度和更低的功耗,被广泛认为是未来存储器的发展方向之一。

本文将详细介绍相变存储器的工作原理,并从相变材料、电阻调制和读取操作三个方面进行阐述。

一、相变材料相变存储器采用了特定的相变材料,最常见的是硫化锌(ZnS)和掺硅锗(Ge2Sb2Te5)。

这类材料是一种非晶态和结晶态之间可逆转变的物质,能够在电流的刺激下发生相变。

相变材料的特殊结构和成分决定了存储器的工作性能。

二、电阻调制相变存储器的工作原理基于相变材料在不同电阻状态下的相变特性,通过改变相变材料的电阻来实现数据的写入和存储。

具体来说,当相变材料处于非晶态时,其电阻较高,表示存储位为逻辑“0”;而当相变材料转变为结晶态时,其电阻较低,表示存储位为逻辑“1”。

这种电阻的调制过程是可逆的,能够实现多次读写操作。

三、读取操作相变存储器的读取操作是通过测量存储位的电阻来实现的。

一般来说,读取操作是非破坏性的,即不会改变存储位的状态。

通过在相变存储器上施加一定的电压,可以测量存储位的电阻大小,从而确定其状态。

例如,当读取操作的电压小于设定阈值时,可将存储位判定为逻辑“0”;反之,当读取操作的电压大于设定阈值时,可将存储位判定为逻辑“1”。

四、应用前景相变存储器具有许多优点,使其在未来的存储器应用中具有广阔的前景。

首先,相变存储器的存储密度非常高,可以将更多的存储单元集成在一个芯片上,提高存储器的容量。

其次,相变存储器的读写速度快,可以实现更快的数据传输和处理。

再次,相变存储器的功耗低,比传统存储器更加节能环保。

此外,相变存储器还具备较长的存储寿命和较高的工作温度范围,适用于各种场景的应用。

相变存储器的研究及其应用前景

相变存储器的研究及其应用前景

相变存储器的研究及其应用前景近年来,随着信息技术的不断发展,人们对存储器的需求也越来越高。

在传统存储器中,闪存的使用从逐步普及到广泛应用,成为最主要的非挥发性存储器。

但是,随着技术的进步,存储器的需求越来越高,业界出现了一种新型存储器——相变存储器。

相变存储器(PCM)是一种新型的非挥发性存储器,由Chikoos等人于2003年发明并推广。

它利用物质的相变和热电源作用实现信息的存储和逻辑运算,具有存储密度高、读写速度快、功耗小等特点,被认为是未来存储领域的一项重要技术。

相变存储器的研究和发展起步较早,但由于技术较为复杂,以及市场需求未成反响,一直处于较为低迷的状态。

直到近年来,随着数据量的急剧增长,相变存储器逐渐走向了大众视野。

PCM已经成为存储器领域一个热门领域,许多企业和研究机构加大了对这一领域的研究力度。

相变存储器的优点主要在于存储密度、读写速度和功耗等方面。

相比于传统的存储器,相变存储器的存储密度更高,可以实现 Tb/平方厘米级别的存储容量,远高于当前主流的NAND和DRAM存储器。

同时,它也可以实现十分快速的读写速度,相当于随机存储器速度,达到CD-DRIVE的传输速率。

此外,相变存储器使用的功耗也比传统存储器低得多,可以在不需要电源的情况下进行数据存储,因此具有较长的使用寿命。

除了以上的优点,相变存储器还有许多其他优势。

例如,相比于闪存,相变存储器的写入和擦除速度非常快,可以在数纳秒内完成。

它还继承了闪存的持久性、低功耗、结构简单、制作工艺成熟的特点,同时又没有闪存的局限性。

相变存储器的写入电量比闪存小多了,有望取代闪存成为移动设备的主要存储器。

在应用方面,相变存储器的前景十分广泛。

学者已经预测过,相变存储器未来的应用潜力是非常高的,尤其在高性能计算和数据中心等领域将会得到广泛的应用。

此外,相变存储器还具有很好的自适应特性,在机器学习、人工智能等领域也具有很大的应用前景。

相变存储器的出现将大大改变传统存储器的面貌,为存储器领域的发展带来了新希望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCM能否成为下一代存储技术标准?
2010-01-16 嵌入式在线收藏| 打印
作为一种新型的非易失性存储技术,PCM(相变存储技术)可谓风光占尽。

2007年初,瑞萨宣布携手日立开发出运行于1.5V电源电压的512KB(相当于4Mb)相变存储模块,2 009年恩智浦首席技术执行官Rene PenningdeVries在一场技术研讨会上也高调表示:PC M技术非常有前景,未来恩智浦将持续关注该技术发展。

今年的IIC-China 2009武汉站上,华中科技大学电子系教授缪向水也向笔者分析:下一代存储器技术既不是MRAM(磁阻式随机存储器),也不是FeRAM(铁电随机存储器),而是目前还正处于研发阶段的相变存储器。

而这其中最让人振奋的则是来自今年6月中旬恒忆和三星电子联手打造PCM标准的消息。

作为PCM技术的坚实拥护者,恒忆多年来一直积极推动相变存储技术的发展。

近日在北京举办的一场媒体发布会上,恒忆亚洲区嵌入式业务及渠道销售副总裁龚翊对与非网记者说和三星电子的结盟,能够发挥引导新技术入市时的领导作用与厘清功能。

“三星电子一直是存储产业的大鳄,其RAM和DRAM产品出货量占整个市场近30%、闪存市场长期以来近40%的份额也稳如泰山。

通过三星电子的支持来带动PCM技术的发展,从某种程度上来说,相变存储技术已经比同期的FeRAM、MRAM等NAND Flash技术领先一步,”她说。

缪向水也曾向笔者解释:FeRAM技术已经上市多年,但其应用市场一直有限,这也从一方面说明了该技术的局限性。

MRAM虽然才出现2-3年,但应用市场也非常有限,规模也上不去。

尽管这两种存储器都有很多超越闪存的优点,但其市场表现说明市场对这些新优势的需求并不是那么迫切。

“三星电子的推动意味着PCM更符合存储技术未来发展的需求。

作为受08~09经济衰退影响最大的领域,存储行业也是目前产业回暖之际最具发展潜力的市场之一。

领导型企业的任何动作都会带领中下游一大批厂商关注,在有关未来存储市场的争夺战中,谁也不敢掉以轻心。


PCM技术原型
“规范化的PCM技术还能有效的协助芯片厂商及整个产业体系中的其他厂商达成产品标准化,并且有助催生新一代的存储技术,使手机OEM、嵌入式系统、高级运算装置厂商和他们的客户从中受益,”龚翊补充道,“目前,我们的第一代45nm PCM产品已经交付用
户测试。


就在三星宣布力推PCM技术之后不久,英特尔研究人员就演示了在单裸片里堆叠多层PCM阵列的能力(恒忆是由英特尔和意法半导体联合成立的存储公司),公司负责存储技术发展的AlFazio在接受媒体访问时表示:堆叠多层PCMS的能力将使得PCM在保持性能优势的同时带来更高存储密度,将替代原有NAND Flash技术无法堆叠的缺憾。

而在今年4月初的IIC China北京站上,恒忆副总裁兼首席CTO Edward Doller先生也为我们介绍了PCM技术与DRAM、NOR、EEPROM以及NAND技术相比的优势所在。

他说:“与同类竞争技术相比,主要指闪存(包括NAND和NOR)以及DRAM技术,PCM 的读写性能要比目前的闪存快很多。

功耗的话,闪存和PCM都具备低功耗特点。

数据保存周期,PCM要比闪存快很多。

易用性方面PCM和DRAM都有优势。

而在用户比较敏感的成本方面,PCM和DRAM应该也在同一水平,但是因为闪存目前属于大规模生产,它的成本还是具备一定优势。


PCM技术与同类竞争技术比较图
对PCM上述特点,龚翊表示认同。

她说:“总的说来,PCM属于下一代存储产品。


着我们不断推出新制程,不断提高产品性能以后,从各方面的性能来讲会比闪存和DRAM 在存储技术方面更具优势。

”。

相关文档
最新文档