中考备考知识点总结:分式混合运算法则
分式混合运算中的技巧

分式运算的技巧【精练】计算:【分析】本题中有四个分式相加减,如果采用直接通分化成同分母的分式相加减,公分母比较复杂,其运算难度较大.不过我们注意到若把前两个分式相加,其结果却是非常简单的.因此我们可以采用逐项相加的办法.【解】===【知识大串联】1.分式的有关概念设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M为不等于零的整式)3.分式的运算(分式的运算法则与分数的运算法则类似).(异分母相加,先通分);4.零指数5.负整数指数注意正整数幂的运算性质可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.分式是初中代数的重点内容之一,其运算综合性强,技巧性大,如果方法选取不当,不仅使解题过程复杂化,而且出错率高.下面通过例子来说明分式运算中的种种策略,供同学们学习参考.1.顺次相加法例1:计算:【分析】本题的解法与例1完全一样。
【解】===2.整体通分法【例2】计算:【分析】本题是一个分式与整式的加减运算.如能把(—a—1)看作一个整体,并提取“—”后在通分会使运算更加简便。
通常我们把整式看作分母是1的分式。
【解】==.3.化简后通分分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多.4.巧用拆项法例4计算:.分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a是整数),联想到,这样可抵消一些项.解:原式====5.分组运算法例5:计算:分析:本题项数较多,分母不相同。
因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便.解:=====【错题警示】一、错用分式的基本性质例1化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变",而此题分子乘以3,分母乘以2,违反了分式的基本性质。
分式的运算知识点总结

分式的运算知识点总结一、分式的含义和性质1. 分式的定义分式是指两个整数的比例,通常用a/b表示,其中a称为分子,b称为分母,b不等于0。
分式通常表示成有理数的形式,例如1/2、3/4等。
2. 分式的性质分式有以下性质:(1)分式的分母不可以为0,因为0不能作为除数。
(2)分式可以化简,即约分,将分子与分母的公因数约掉。
(3)分式可以相互转换,即通过乘以相同的数或者分式和分数的换算,可以将分式相互转换。
二、分式的加减法1. 分式的相加分式的相加即将两个分式的分子相加,分母不变,然后化简得到最简分式。
例如:1/2 + 1/3 = (1*3+1*2)/(2*3) = 5/6。
2. 分式的相减分式的相减即将两个分式的分子相减,分母不变,然后化简得到最简分式。
例如:2/3 - 1/4 = (2*4-1*3)/(3*4) = 5/12。
三、分式的乘除法1. 分式的相乘分式的相乘即将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,然后化简得到最简分式。
例如:1/2 * 2/3 = (1*2)/(2*3) = 2/6 = 1/3。
2. 分式的相除分式的相除即将两个分式的分子相除作为新的分子,分母相除作为新的分母,然后化简得到最简分式。
例如:3/4 ÷ 1/2 = (3*2)/(4*1) = 6/4 = 3/2。
四、分式的乘方和括号的运算1. 分式的乘方分式的乘方即将分式的分子和分母分别进行乘方运算,得到新的分子和分母,然后化简得到最简分式。
例如:(1/2)^2 = 1^2/2^2 = 1/4。
2. 分式的括号运算分式的括号运算即根据括号内的运算顺序进行计算,先乘除后加减,然后化简得到最简分式。
例如:(1/2 + 1/4) ÷ (1/2 - 1/4) = (2/4 + 1/4) ÷ (2/4 - 1/4) = 3/4 ÷ 1/2 = 3/4 * 2/1 = 3/2。
初中数学知识点总结:分式的运算

初中数学知识点总结:分式的运算知识点总结【一】约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:(1)分式的约分和通分都是依据分式的基本性质;(2)分式的变号法那么:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.3.求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
【二】分式的运算:1.分式的加减法法那么:(1)同分母的分式相加减,分母不变,把分子相加;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法那么进行计算。
分式的加减及混合运算

2 x −1 ( 2) 1 − ÷ x +1 x +1
2
要求:先独立完成, 要求:先独立完成,然后小组内 讨论交流, 讨论交流,最后选一个代表给大 家展示计算过程。 家展示计算过程。
x x −4 3x − • (3) ) x x −2 x + 2
2
(要求:用两种方法解答) 要求:用两种方法解答)
课堂小结: 课堂小结:
对于分式的混合运算,要注意运算顺 序,要注意运算的结果要化成最简。 在计算过程中能使用运算律的会使运算 简便。
作业:课本 页第 页第13题 作业:课本21页第 题
分式的混合运算
许永梅
占城镇中心学校
回忆: 回忆:我们学习了分式的哪 些运算? 些运算?
分式的乘除运算,分式的乘方运算,分式 的加减运算。 分式的乘除运算主要是通过约分进行的; 分式的加减运算主要是通过通分进行的。
分数的混合运算的法则是什么? 分数的混合运算的法则是什么?
●分数的混合运算法则是:先算乘方,
再算乘除,最后算加减,有括号的先 算括号里的。
分式的混合运算法则是什么? 分式的混合运算法则是什么?
●分式的混合运算法则是:先算乘方,
再算乘除,最后算加减,有括号的先ห้องสมุดไป่ตู้ 括号里的。
例题:计算 例题:
x + 2 ( 1) + x x − 2
2
4 x ÷ − 4 x + 4 x − 2
x−2 • x x−2 • x
x+2 4 = + 解:原式 x − 2 ( x − 2 )2
( x + 2 )( x − 2 ) 4 = + 2 (x − 2) (x − 2)2 x2 − 4 + 4 x − 2 = • 2 x (x − 2) x−2 x2 = • (x − 2)2 x x = x−2
2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
分式的混合运算

分式的混合运算分式是数学中常见的一种表达方式,它可以表示两个数之间的比值关系。
而混合运算则是指在一个算式中混合使用了不同的运算符号,如加减乘除等。
在本文中,我们将探讨分式的混合运算及其应用。
一、基本概念在进行分式的混合运算之前,我们需要先了解几个基本概念。
1. 分子与分母:分数由分子和分母组成,分子表示被分成的份数,分母表示总的份数。
例如,分数2/3中,2是分子,3是分母。
2. 真分数和假分数:当分子小于分母时,我们称该分数为真分数;当分子大于等于分母时,我们称该分数为假分数。
例如,分数2/3是一个真分数,而分数8/5是一个假分数。
3. 分式与整数:分式是由一个整数和一个分数组成的数学表达式,其中整数部分表示整体的数量,分数部分则表达整体中的一部分。
例如,分式3 1/4中,3是整数部分,1/4是分数部分。
二、分式的加减乘除运算分式的加减乘除运算与整数的运算类似,只需注意分子和分母的相应运算。
1. 加法运算:对于两个分式的加法运算,我们需要先求出它们的通分,然后将分子相加,分母保持不变。
例如,计算1/2 + 1/3:通分后得到3/6 + 2/6 = 5/6。
2. 减法运算:对于两个分式的减法运算,我们同样需要先求出它们的通分,然后将分子相减,分母保持不变。
例如,计算2/3 - 1/4:通分后得到8/12 - 3/12 = 5/12。
3. 乘法运算:对于两个分式的乘法运算,我们只需将分子相乘,分母相乘。
例如,计算2/3 * 3/4:得到6/12,可以化简为1/2。
4. 除法运算:对于两个分式的除法运算,我们将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
例如,计算2/3 ÷ 1/4:得到8/3,可以化简为2 2/3。
三、应用举例分式的混合运算在实际问题中有广泛的应用。
下面,我们通过一些实例来说明其具体应用场景。
1. 销售折扣:商场在促销活动中常常会提供折扣,以吸引顾客。
假设某商品原价为150元,现享受7折优惠,请计算折后价格。
数学分式的运算知识点

数学分式的运算知识点
其实数学和语文一样,需要记的东西都很多。
在记数学知识点的时候,要注意灵活运用。
下面是店铺给大家整理的一些关于数学分式的运算的知识点,希望对大家有所帮助。
运算法则
1.约分:
把一个分式的分子和分母的公因式约去的过程为约分。
2.分式的乘法法则:
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.异分母分式的加减法法则:
异分母的'分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
备注:异分母的分式可以化成同分母的分式,这一过程叫做通分。
如:3/2和2/3可化为9/6和4/6.即:3*3/2*3,2*2/3*2。
分式的运算法则包括了约分和加减乘除的四则运算。
【数学分式的运算知识点】。
分式的四则运算

分式的四则运算分式是数学中常见的一种表达形式,可以用于表示一部分与整体的比例关系。
在数学运算中,我们同样可以对分式进行四则运算,包括加法、减法、乘法和除法。
下面将分式的四则运算进行详细介绍。
一、分式的加法分式的加法可以通过以下步骤进行:步骤1:将两个分式的分母相同,如果分母不同,则需要进行通分。
通分的方法是将两个分母的最小公倍数作为共同的分母。
步骤2:将通分后的两个分式的分子相加,并保持分母不变。
步骤3:将相加后的分子化简为最简形式,即求分子与分母的最大公约数,然后将分子和分母同时除以最大公约数。
举例说明:假设有两个分式:a/b 和 c/d。
首先判断分母是否相同,如果不同,则需要进行通分。
假设最小公倍数为lcm(b, d)。
通分后的分式为:a*lcm(d/b) / b*lcm(d/b) 和 c*lcm(b/d) / d*lcm(b/d)。
将通分后的分子相加,得到:(a*lcm(d/b) + c*lcm(b/d)) /(b*lcm(d/b))。
最后化简为最简形式。
二、分式的减法分式的减法与加法类似,可以通过以下步骤进行:步骤1:将两个分式的分母相同,如果分母不同,则需要进行通分。
步骤2:将通分后的两个分式的分子相减,并保持分母不变。
步骤3:将相减后的分子化简为最简形式。
举例说明:假设有两个分式:a/b 和 c/d。
首先判断分母是否相同,如果不同,则需要进行通分。
假设最小公倍数为lcm(b, d)。
通分后的分式为:a*lcm(d/b) / b*lcm(d/b) 和 c*lcm(b/d) / d*lcm(b/d)。
将通分后的分子相减,得到:(a*lcm(d/b) - c*lcm(b/d)) / (b*lcm(d/b))。
最后化简为最简形式。
三、分式的乘法分式的乘法可以通过以下步骤进行:步骤1:将两个分式的分子相乘,同时将两个分式的分母相乘。
步骤2:将相乘后的分子和分母化简为最简形式。
举例说明:假设有两个分式:a/b 和 c/d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考备考知识点总结:分式混合运算法则
中考备考知识点总结:分式混合运算法则
中考是检验初中在校生是否达到初中学业水平的考试;它是初中毕业证书发放的必要条件,考试科目将国家课程方案所规定的学科全部列入初中学业水平考试的范围。
下面为大家带来了中考备考知识点总结:分式混合运算法则,欢迎大家参考阅读!
1、分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
2、分式方程的'解法步骤:
同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。
3、最简根式的条件:
最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。
4、特殊点的坐标特征:
坐标平面点(x,),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上为0,x为0在轴。
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反。
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于轴,点的横坐标仍照旧。
5、对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,x轴对称相反,轴对称x 相反;原点对称最好记,横纵坐标全变号。