(完整版)有理数及其运算知识点汇总

合集下载

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

(完整版)有理数的性质及其运算知识点汇总

(完整版)有理数的性质及其运算知识点汇总

(完整版)有理数的性质及其运算知识点汇总有理数的性质及其运算知识点汇总一、有理数性质有理数是可用两个整数的比表示的数,包括正整数、负整数和零。

有理数的性质如下:1. 有理数可以进行加法、减法、乘法和除法运算。

2. 有理数的加法和乘法满足交换律和结合律。

3. 有理数的乘法满足分配律。

4. 有理数的加法、减法和乘法仍然是有理数。

5. 有理数可以用小数形式表示。

二、有理数运算知识点1. 有理数的加法有理数的加法满足以下规则:- 两个正有理数相加,结果仍为正有理数。

- 两个负有理数相加,结果仍为负有理数。

- 正有理数和负有理数相加,结果为它们的差的绝对值的符号与较大绝对值的符号相同。

2. 有理数的减法有理数的减法可以转化为加法运算,规则如下:- 减去一个有理数等于加上这个有理数的相反数。

3. 有理数的乘法有理数的乘法满足以下规则:- 正有理数乘以正有理数,结果仍为正有理数。

- 负有理数乘以负有理数,结果仍为正有理数。

- 正有理数乘以负有理数,结果为它们的积的符号为负。

- 任何数乘以零,结果为零。

4. 有理数的除法有理数的除法可以转化为乘法运算,规则如下:- 除以一个有理数等于乘以这个有理数的倒数(除数不为零)。

5. 有理数的运算顺序有理数的运算顺序遵循以下规则:1. 先计算括号中的内容。

2. 然后按照先乘除,后加减的顺序计算。

3. 如果有多个乘法或除法,按照从左到右的顺序进行。

6. 有理数的小数形式表示有理数可以用小数形式表示,其中:- 有限小数是按照小数位数为限的。

- 循环小数是具有重复循环数字的。

以上是有理数的性质及其运算知识点的汇总,希望对你有所帮助。

七年级上册第二章有理数知识点汇总

七年级上册第二章有理数知识点汇总

第二章有理数及其运算一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3, 5.2也可写作+3,+5.2;零既不是正数,也不是负数。

或2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线; 数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a )右边的数总比左边的数大,b )正数都大于零,c )负数都小于零,d )正数大于一切负数3. 相反数知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值知识点:数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作∣a ∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a. 若a=0,则∣a∣=0. 若a<0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算1. 有理数的加法知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

(完整版)有理数及其运算知识点汇总

(完整版)有理数及其运算知识点汇总

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总 1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥09、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

10、绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

有理数及其运算要点整理

有理数及其运算要点整理

有理数及其运算要点整理1. 有理数的定义有理数是指可以表示为两个整数的比值的数,它们可以是正数、负数或零。

有理数包括整数、分数和小数。

2. 有理数的运算2.1 加法与减法有理数的加法和减法遵循以下规则:- 同号相加:两个正数相加,结果仍为正数;两个负数相加,结果仍为负数。

- 异号相减:一个正数减去一个负数,相当于两个正数相加;一个负数减去一个正数,相当于两个负数相加。

- 异号相减取相反数:减去一个数,等于加上这个数的相反数。

2.2 乘法与除法有理数的乘法和除法遵循以下规则:- 同号相乘:两个正数相乘,结果仍为正数;两个负数相乘,结果仍为正数。

- 异号相乘:两个不相等的有理数相乘,结果为负数。

- 除法是乘法的逆运算:一个数除以另一个数,等于将被除数乘以除数的倒数。

3. 有理数运算的要点3.1 加法与减法的要点- 将有理数按照同号、异号分类进行计算,遵循同号相加、留号不变;异号相减,取相反数相加的原则。

- 确保有理数的运算过程中,将同种类型的数进行运算,如整数与整数相加,分数与分数相加,小数与小数相加。

3.2 乘法与除法的要点- 乘法的结果符号由乘数和被乘数决定,同号得正,异号得负。

- 除法的结果符号由被除数和除数决定,同号得正,异号得负。

- 乘法和除法都要注意化简分数,使结果尽量简化。

4. 示例4.1 加法与减法示例例1:计算 -5 + (-3)。

解:两个负数相加,结果仍为负数,所以 -5 + (-3) = -8。

例2:计算 -4 - 2。

解:一个负数减去一个正数,相当于两个负数相加,所以 -4 -2 = -6。

4.2 乘法与除法示例例3:计算 -2 × 3。

解:两个不相等的有理数相乘,结果为负数,所以-2 ×3 = -6。

例4:计算 12 ÷ (-4)。

解:一个正数除以一个负数,结果为负数,所以 12 ÷ (-4) = -3。

以上是有理数及其运算的要点整理,希望对你理解有理数的运算有所帮助。

有理数及其运算知识归纳及练习

有理数及其运算知识归纳及练习

第二章 有理数及其运算班级**〔一〕有理数知识点1:正数和负数1、设上升为正,上升200米记作米,则下降300米应记作,不升不降应记作.200+2、〔2021·〕如果零上记作,则零下可记作〔 〕.5C o 5C +o 7C oA. B. C. D. 7C -o 7C +o 12C +o 12C -o知识点2:有理数及其分类3、大于零的数叫______,在正数前面加上“﹣〞〔读作负〕的数叫______;____既不是正数,也不是负数。

4、〔2021•〕如果收入50元,记作+50元,则支出30元记作( )元. A.+30 B.-30 C.+80 D.-805、把以下各数填在相应的大括号:1,-0.1,-789,25,0,-20,-3.14,52正整数集{…};非负整数集{ …}正分数集{…};负分数集{ …}正有理数集{ …};负有理数集{ …}〔二〕数轴知识点1:数轴的定义6、数轴的三要素:______,________,_________.知识点2:数轴上的点与有理数的关系7、比拟有理数的大小: ①数轴上右边的数总比左边的数__;②正数都______零;③负数都_____零;④正数______一切负数.8、〔1〕数轴上和原点距离等于4.3个单位的点所表示的数是________;〔2〕和表示的点距离等于4个单位的点所表示的数是_________;5-9、〔2001•呼和浩特〕在数轴上,原点及原点右边的点表示的数是〔 〕A .正数B .负数C .非正数D .非负数10、〔2021•莱芜〕如图,在数轴上点A 表示的数可能是〔 〕A .1.5B .-1.5C .-2.4D .2.411、数轴上A 、B 两点表示的数分别为a 、b ,且点A 在点B 的左边,以下结论正确的选项是( )A .a +b <0B .a +b >0C .a -b <0D .a -b >012、以下说法错误的选项是〔 〕A .数轴是一条直线 B .数轴上的原点表示数0C .数轴上表示数-a 的点在原点的左边 D .0是正数与负数的分界点〔三〕绝对值知识点1:相反数13、只有符号不同的两个数互为_______;数轴上表示互为相反数的两个点到原点的距离且分别在原点的两边;0的相反数是___;a 的相反数是_____;互为相反数的两个数相加和为_____.14、〔2005•〕如果□+2=0,则“□〞应填的实数是〔 〕A .﹣2B . C. D.2212115、以下关于相反数、数轴的说法,不正确的选项是〔 〕A .符号相反的两个数互为相反数 B .假设a=-a ,则数轴上表示a 的点是原点C .数轴上关于原点对称的两个点表示相反数 D .假设a +b=0,则a 、b 互为相反数16、写出以下各数的相反数,并在数轴上把这些相反数表示出来:知识点2:绝对值17、(1)数a 的点与原点的距离叫做,数a 的绝对值记作∣a∣;(2)意义:假设a >0,则∣a∣=. 假设a =0,则∣a∣=____. 假设a <0,则∣a∣=___ ;两个负数比拟大小,绝对值越大的负数反而____;两个点a 与b(a <b)之间的距离为:______。

有理数及其运算知识点

有理数及其运算知识点

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

※绝对值的性质:①对任何有理数a ,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇

1. 有理数的除法规则
- 有理数除以非零有理数,除数不为负时,商为正,除数为负时,商为负。

2. 有理数的除法步骤
- 将除法转化为乘法:除法问题可以转化为乘法问题,即将除数的倒数与被除数相乘。

- 计算乘积:将除数的倒数与被除数相乘,并化简答案。

3. 有理数的除法性质
- 除法的运算交换律:a ÷ b = b ÷ a
- 除法的运算结合律:(a ÷ b) ÷ c = a ÷ (b × c)
- 除法的运算分配律:a ÷ (b + c) = a ÷ b + a ÷ c
4. 有理数的除法运算技巧
- 将除数写成一个最简分数或小数,有助于计算时减小出错概率。

- 当除数很接近被除数时,可通过调整被除数变成除数的倍数,从而简化除法计算。

5. 有理数除法应用
- 有理数的除法在实际生活中有广泛应用,比如计算货币兑换、计算长短时间等。

6. 实例演算
以下是一个有理数的除法示例演算过程:
例如:计算-0.5 ÷ 0.2
从上述示例可见,有理数的除法运算需要注意符号、化简答案
和特殊情况的处理。

以上是有理数的除法及其运算知识点的汇总。

希望对您有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)
0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总
1、
2、数轴的三要素:原点、正方向、单位长度(三者缺一不可).
3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)
4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.(0的相反数是0)
5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边.
6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作|a |.
7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0.
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
9、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小"做出正确的判断。

10、绝对值的性质:
①对任何有理数a ,都有|a|≥0
②若|a |=0,则|a|=0,反之亦然
③若|a |=b ,则a=±b
④对任何有理数a ,都有|a |=|-a |
11、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

12、加法的交换律、结合律在有理数运算中同样适用。

灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加.
13、有理数减法法则: 减去一个数,等于加上这个数的相反数。

有理数减法运算时注意两“变”:①改变运算符号;
越来越大
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变":被减数与减数的位置不能变换,也就是说,减法没有交换律。

14、有理数的加减法混合运算的步骤:
①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。


15、有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1.(如:-2与21 、 3
553与…等) 16、乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。

乘积为1的两个有理数互为倒数。

注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置.一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

17、有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。

0不可作为除数,否则无意义。

18、有理数的乘方
注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

19、乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤—1的偶次幂得1;—1的奇次幂得—1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值.
20、有理数混合运算法则:①先算乘方,再算乘除,最后算加减.
②如果有括号,先算括号里面的。

=⨯⨯⨯⨯
a n a a a a 个。

相关文档
最新文档