现代发酵工程技术

合集下载

发酵工程原理与技术

发酵工程原理与技术

第一节
发酵工业微生物菌种的选育
一、工业微生物的特点 工业微生物是指在发酵工业上已经应用的或
具有潜在应用价值的微生物,其范围随科学
技术的发展而不断扩展。
工业微生物的特点:个体小、种类多、繁殖
快、分布广、代谢能力强、易变异改造。
二、发酵工业常用微生物菌种及要求
(一)发酵工业对菌种的要求
1、能在廉价原料制备的培养基上迅速生长并生 成所需的代谢产物,且产量高; 2、培养条件易于控制;
原理二:
生物体中都存在两个以上的DNA修复基因,如果一 个DNA修复基因损伤或变异,通常仍能存活,但对能引 起DNA损伤的化合物十分敏感,易发生死亡,所以可以
利用DNA修复能力突变株筛选抗肿瘤药物。
实践中常使用大肠杆菌或枯草芽孢杆菌的重组缺
失DNA修复基因突变株和亲株作为测试菌来筛选抗肿瘤
三、发酵工业微生物菌种的分离和选育
(一)微生物菌种的分离
1、施加选择压力分离法 施加选择压力分离法是利用不同种类的微生物的
生长繁殖对环境和营养(如温度、pH、渗透压、氧气、
碳源、氮源等)的要求不同,人为控制这些条件,使
之利于某类或某种微生物生长,而不利于其它种类微
生物的生存,以达到使目的菌种占优势,而得以快速 分离纯化的目的。
放线菌是介于细菌与丝状真菌之间而又 接近于细菌的一类丝状单细胞原核生物。 因菌落呈放射状而得名
抗生素有60%以上是放线菌产生的 工业生产常用的放线菌主要来自以下 几个属:链霉菌属、小单孢菌属、诺卡菌属
3、酵母菌(Yeast) 酵母菌是单细胞真核生物,
常以出芽方式进行无性繁殖。 根据产生孢子的能力,可将酵母分成三类: a 、形成子囊孢子的株系属于子囊菌门
发酵原料的预处理

发酵工程技术概论

发酵工程技术概论

二、自然育种
※定义:不经人工处理,利用微生物的自然突变进
行菌种选育的过程。
自然状态下,碱基对发生自然突变的机率为10-8~ 10-9,一种是我们生产上所不希望看到的,表现为 菌株的衰退和生产质量的下降,这种突变成为负突 变。 另一种是我们生产上希望看到的,对生产有利,这 种突变成为正突变。
问题:高产菌株是正突变还是负突变?
第七章 发酵工程技术概 述
本章重点:优良菌种的选育 发酵工艺的控制
内容
第一节 概述 第二节 优良菌种的选育 第三节 发酵的基本过程 第四节 发酵方式 第五节 发酵工艺控制 第六节 发酵产物的提取 第七节 发酵设备 第八节 发酵工程产品的制造实例 第九节 基因工程在发酵中的应用 第十节 发酵工程的发展展望
融合子进一步试验、保藏。 (6)生产性能筛选。
2.影响因素 (1)菌龄:一般采用对数前期的菌体进行酶解。 (2)培养基组分:限制性培养基上比在完全培养
种保藏部门索取或购买; 从大自然中分离筛选新的微生物菌种。
从自然界筛选
菌株选育、分子改造
目的
防止菌种退化 解决生产实际问题
提高生产能力
提高产品质 量 开发新产品
菌种选育方法有: 自然选育、诱变选育、杂交育种等,还包括控制
杂交育种、原生质体融合、基因工程育种等。
一 、菌种选育的物质基础
生素是链霉素。
青霉素工业化成功推动了发酵工业的发展,主 要标志有:深层发酵、生产大规模化、多种抗 生素、氨基酸、核酸发酵成功,甾体的微生物 转化。
谷氨酸发酵的生产实例
谷 氨 酸 钠 是 味 精 的
谷氨酸棒状杆菌合成谷氨酸的途 径
在工厂里是 怎样应用谷氨酸 棒状杆菌来生产 谷氨酸的?

现代发酵工程技术在食品领域的应用研究进展

现代发酵工程技术在食品领域的应用研究进展

现代发酵工程技术在食品领域的应用研究进展摘要:随着科学技术的不断进步,人们对生活的需求也逐渐增加。

目前,生物技术的发展已成为人们关注的话题。

生物工程主要由细胞工程、基因工程、酶工程和发酵工程等组成,在现实生活中得到广泛应用。

发酵工程是基因工程和细胞工程的产物。

实际应用在食品工业、工业发展、医药研发等方面具有不可替代的作用。

论述了发酵工程在我国食品工业中的应用和发展。

关键词:发酵工程;食品领域;应用研究前言:现代生物技术是利用微生物生长和相应的代谢活动在生产各种有用材料的一种工程,发酵工程在整个生物工程技术中占有重要地位,主要包括培育优良的菌种和发酵生产。

谢产品,微生物的生产,天然物质的转化,等等。

发酵工程微生物有效地应用于高新技术的工业生产过程中,现代生物技术的影响非常广泛,如新食品、饮料配料、稳定剂、制造或相关领域的衍生物等。

1发酵工程的发展阶段1.1农产手加工因为在过去,社会经济不发达,人们主要是农业生产,然后发酵工程只在家里或作坊里发酵,发酵生产也就是我们所说的自然手工加工。

当时,因为科技不发达,人们只能通过存在于微生物的性质,进行了处理,但这种方法只用于生产,因为微生物纯自然的许多问题,如萃取效率高,存活率低,甚至可能是生病了,等等。

这也极大地制约了食品领域发酵工程的发展。

1.2近代发酵工程20世纪20年代,由于技术的兴起,工业、食品和医药的需求,传统的生产方式并不满足。

因此,人们使用化学和化学工程技术从农业化学和化学工程中学习来规范发酵过程。

采用机械生产和化学训练,代替传统的手工操作,不仅提高了生产效率,还使发酵工程在发酵生产中取得了第一个历史性的进步。

1.3现代发酵工程通过发酵工程的不断发展,人们逐渐意识到化学工程的模式处理发酵工业生产的问题,玩很难达到预期的效果,化学可能生产的微生物对人体有害的化学物质,严重影响了人们的健康。

因此,它很快被生物工程所取代。

这种生物工程技术是利用微生物的基因,有效地改造它,达到人们想要的效果,满足人们生活的需要。

10 现代生物技术_发酵工程

10 现代生物技术_发酵工程

1.2.2基因组学的应用 基因诊断 基因治疗 新药开发 农业育种 1.3生物芯片技术 定义:生物芯片的概念源于计算机芯片。是 指包被在固相载体如硅片、玻璃、塑料和尼 龙膜上的DNA微阵列、寡核苷酸微阵列和蛋 白质微阵列。 1.4 胚胎干细胞
cDNA microarray expression patterns of small (S) and large (L) neurons
• 2.4 生物技术制药
2.4.1 利用发酵工程制药 2.4.2 基因工程药物 2.4.3 细胞工程制药
• 2.5 基因治疗疾病 • 2.6 生物技术与疾病诊断
3.生物技术与农林业
3.1植物生物技术
3.1.1植物育种 3.1.2植物的抗逆性研究 3.1.3生物农药及生物控制 3.1.4植物再生(快繁)、人造种子 利用组织培养将植物组织培养成有生根发 芽的胚状体,然后再用一种聚合物包裹作为人 造种皮,制成像小鱼肝油一样的人造种子。 3.1.5生物固氮
3.2 微生物发酵过程
根据微生物的种类不同(好氧、厌氧、 兼性厌氧),可以分为好氧性发酵、厌氧性 发酵和兼性发酵三大类: (1)好氧性发酵,如柠檬酸发酵,谷氨酸发酵。 (2)厌氧性发酵,如乳酸发酵,丙酮、丁醇发 酵。 (3)兼性发酵,如酵母菌却氧条件下发酵生产 酒精,有氧条件下繁殖菌体。
工业生产常用微生物
发酵的一般过程
发酵工艺多种多样,但基本上包括以下几个过 程: 1、菌种制备 2、种子扩大培养
是指将保存的生产菌种逐级扩大培养而获得一定数 量和质量的纯种的过程。
3、发酵,是微生物合成大量产物的过程。 4、下游处理
发酵结束后,要对发酵液和生物细胞进行分离和 提纯精制,将发酵产物制成合乎要求的产品。

发酵工程关键技术

发酵工程关键技术

发酵工程关键技术
发酵工程是利用微生物进行发酵过程的工程化应用,在发酵工程中,关键技术主要包括以下几个方面:
1. 微生物菌种的筛选和改良:选择适合的微生物菌种是发酵工程成功的关键,菌种的筛选需要考虑其产酶活性、抗污染性、生长速度等因素,并且通过基因工程等方法对菌种进行改良,提高其产酶效率和稳定性。

2. 发酵培养基的优化:发酵培养基是提供微生物生长和代谢所必需的营养物质的介质,培养基的配方需要包括碳源、氮源、无机盐和生长因子等成分,通过优化培养基的配方,可以提高菌种的产量和产酶效率。

3. 发酵过程的控制:发酵过程需要控制温度、pH值、通气速
率等因素,以保证微生物在最适合的环境条件下生长和代谢,控制发酵过程可以通过自动化控制系统来实现。

4. 发酵过程的监测和分析:监测发酵过程中微生物的生长情况、代谢产物的积累情况等,可以通过测量生物量、酶活性、代谢产物浓度等指标进行,通过监测和分析可以及时调整发酵过程,提高产量和产酶效率。

5. 发酵产物的提取和纯化:发酵产物的提取和纯化是发酵工程中的关键步骤,包括固液分离、浸提、溶液分离、蒸馏、结晶等操作,通过这些操作可以从发酵液中提取纯净的产物,以便后续的应用和加工。

通过不断改进和创新这些关键技术,可以提高发酵工程的效率和产量,推动相关产业的发展和应用。

02【课堂笔记】《发酵工程》现代固体发酵技术部分

02【课堂笔记】《发酵工程》现代固体发酵技术部分

第一章微生物的现代发酵技术1.1固态发酵按照培养基物理性状的不同,分为固体发酵和液体发酵1)固态发酵是以气相为连续相的生物反应过程2)液态发酵是以液相为连续相的生物反应过程固体发酵:微生物在固态培养基上生长和代谢的一种发酵方式。

是指没有或几乎没有自由水存在,在有一定湿度的水不溶性固态基质中,用一种或多种微生物进行的一个生物反应过程。

固态发酵(曲法培养):分为浅盘固体培养和深层固体培养此法最大的特点是:酶活力高1.1.1固态发酵的特点1)热量传递困难2)存在明显的营养梯度3)并无大量有机废水产生4)氧气、二氧化碳扩散比较容易1.1.2固体培养的优点1)原料多是谷物和农业废物,来源广泛,成本低廉2)防止污染:霉菌在水分较低的基质表面可以增殖3)通气:使用循环的冷却增湿无菌空气调控温度1.1.3固液发酵的比较1.1.4传统固态发酵与现代固态发酵根据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与1.1.5固态发酵分类1.1.5.1按微生物的情况和形成的产品条件自然富集固态发酵强化微生物混合固态发酵限定微生物混合固态发酵单菌固态纯种发酵1.1.5.2按固态发酵固相的性质分类固体底物基质固态发酵惰性载体吸附固态发酵1.1.6适合固态发酵的微生物固态发酵的最佳微生物即为丝状微生物,即为真菌或放线菌1)能够利用多糖的混合物2)有完整的酶系3)能够深入到料层中,也能够穿入基质细胞内4)不容易孢子化5)生长迅速,染菌较少6)可以在含水量比较低的基质中生长7)能够耐受高浓度的营养盐8)耐受基质预处理中产生的苯类等有毒物质1.1.7固态发酵的界面作用意义1)提供给微生物生长繁殖的场所2)营养物质通过界面作用吸附在界面表面,供给微生物的生长利用。

1.2固态发酵反应器固态发酵的放映基质以固态形式存在,反应体系内的传递极其复杂。

包括气固、气液、液固等形式,气相是最主要的流动介质。

以基质的运动情况分类静态固态发酵反应器动态固态发酵反应器1.2.1静态固态发酵反应器包括浅盘式和塔柱式反应器;优点:结构简单,操作方便,放大问题小;缺点:由于发酵基质的相对静止,热量、氧气和其他营养物质的传递困难,从而导致基质内部温度、湿度、酸碱度和菌体生长状态的严重不均匀。

发酵工程技术

发酵工程技术

发酵工程技术一、引言发酵工程技术是指利用微生物进行生物化学反应的技术,是现代生物工程领域中的重要分支之一。

随着人们对生命科学认识的不断深入,发酵工程技术在食品、医药、化工等领域的应用也越来越广泛。

本文将从发酵过程、微生物选育、发酵设备和控制等方面详细介绍发酵工程技术。

二、发酵过程发酵过程是指利用微生物进行代谢反应,产生有用产物的过程。

发酵过程一般包括以下几个步骤:1.微生物培养:选取适合的微生物菌株进行培养,使其达到最佳状态。

2.接种:将培养好的微生物菌株加入到合适的基质中。

3.发酵:在适宜的条件下进行反应,如温度、气体含量、pH值等。

4.收获:收集并处理有用产物。

三、微生物选育微生物选育是指通过筛选和改良微生物菌株,获得更优良的特性和功能的过程。

微生物选育可以通过以下几个方面来进行:1.筛选:从自然界中或已有菌株中筛选出具有所需特性的菌株。

2.改良:通过基因工程等手段对微生物进行改良,使其具有更优异的性能。

3.培育:对已筛选或改良好的微生物菌株进行培养和保存,以便后续使用。

四、发酵设备发酵设备是指用于进行发酵反应的设备。

发酵设备一般包括以下几个部分:1.发酵罐:用于容纳微生物和基质,并提供适宜的环境条件,如温度、气体含量、pH值等。

2.搅拌器:用于将微生物和基质充分混合,以加速反应速率。

3.通气系统:用于提供适宜的气体含量和流速,以保证反应过程中氧气充足。

4.控制系统:用于监测和控制反应过程中各项参数,如温度、pH值、搅拌速度等。

五、发酵控制发酵控制是指对发酵过程中各项参数进行监测和控制的过程。

发酵控制可以通过以下几个方面来进行:1.温度控制:保持适宜的温度,以保证微生物菌株处于最佳状态。

2.pH值控制:保持适宜的pH值,以维持反应环境的稳定。

3.气体含量控制:保持适宜的气体含量和流速,以保证反应过程中氧气充足。

4.搅拌速度控制:调节搅拌速度,以加速反应速率。

5.在线监测:通过在线监测各项参数,及时调整反应条件,以提高产物质量和产量。

发酵工程在现代生物技术中的应用

发酵工程在现代生物技术中的应用

四、目的基因导入受体细胞
取决于是否用合适的受体细胞、合适的克隆载体和合适的基因转移方法
干热灭菌法
进行干热灭菌时,微生物细胞发生氧化,微生物体内蛋白质变性和电解质浓缩引起中毒等作用,其中氧化作用导致微生物死亡是主要依据。由于微生物对干热的耐受力比对湿热强得多,故干热灭菌所需的温度要高,时间要长,一般160~170℃,1~1.5h。 实际应用时,对一些要求保持干燥的实验器具和材料可以采用干热灭菌法。
培养基的灭菌方法
分批灭菌 分批灭菌是在每批培养基全部流入发酵罐后,就在罐内通入蒸汽加热至灭菌温度,维持一定时间,再冷却到接种温度。实罐灭菌时,发酵罐与培养基一起灭菌。 不需要附属设备,操作简便,常用的灭菌方法 加热和冷却时间较长,营养随时间降低,罐利用率低;不能采用高温快速灭菌工艺。
发酵罐溶积越大,加热冷却时间越长 T总=t1+t2+t3 式中t1、t2、t3分别为加热、维持、冷却所需要的时间 其他灭菌设备一般采用蒸汽灭菌,如设备十分耐压,则可采用较高的温度,但必须注意设备内部的凹处及露出的小配管等蒸汽不能到达的部位。
应用范围 培养基,水,发酵罐等其他不适合干热灭菌的物品。 高压蒸汽灭菌法的注意事项: 完全排除锅内冷空气 灭菌完毕后要缓慢减压 压力降为零后打开盖子
辐射灭菌法 利用高能量的电磁辐射和微粒辐射来杀死微生物 以紫外线最常用。紫外线对芽孢和营养细胞都能起作用,但细菌芽孢和霉菌孢子对紫外线的抵抗力强。紫外线的穿透力低,仅适用于表面灭菌和无菌室、培养间等空间的灭菌,且距照射物不超过1.2 m;对固体物料灭菌不彻底,也不能用于液体物料的灭菌。
高锰酸钾溶液的灭菌作用是使蛋白质、氨基酸氧化,使微生物死亡,一般用0.1%~0.25%的溶液。
⑵漂白粉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代发酵工程技术
随着科技的进步和工业化的发展,发酵工程技术在许多领域发挥着重要的作用。

发酵工程技术利用微生物的代谢过程,将天然有机物转化为有用的产物,广泛应用于食品、制药、化工等行业。

本文将从发酵工程的基本原理、发酵工程技术的应用和发展趋势等方面进行介绍。

一、发酵工程的基本原理
发酵工程是利用微生物在特定条件下生长繁殖和代谢产物的过程。

微生物通过代谢过程中的酶作用,将有机物质转化为其他有用的物质。

发酵过程需要控制温度、pH值、氧气供应等条件,以保证微生物的生长和代谢活动。

发酵工程中常用的微生物有酵母菌、细菌、真菌等。

发酵工程技术的发展主要集中在优化微生物的生长条件、提高产物的得率和纯度等方面。

二、发酵工程技术的应用
1. 食品工业:发酵技术在食品工业中得到广泛应用。

例如,酵母菌发酵面团可以产生二氧化碳,使面包蓬松可口;乳酸菌发酵牛奶可以制成酸奶,具有益生菌功效;大豆发酵可以制成豆腐、豆浆等食品。

发酵技术不仅提高了食品的口感和品质,还增加了食品的营养价值。

2. 制药工业:发酵工程在制药工业中起到了关键的作用。

通过发酵
技术,可以生产出许多重要的药物,如抗生素、酶类制剂和维生素等。

这些药物的生产通常需要大规模发酵罐和精确的控制系统,以保证微生物的生长和产物的纯度。

3. 化工工业:发酵工程技术在化工工业中也有广泛的应用。

例如,利用微生物发酵产生的有机酸可以用作化学合成的原料;利用微生物发酵产生的有机溶剂可以替代传统的化学溶剂,减少对环境的污染。

发酵工程技术的应用使得化工工业更加环保和可持续发展。

三、发酵工程技术的发展趋势
1. 微生物基因工程:利用基因工程技术可以改造微生物的代谢途径,增加产物的得率和纯度。

通过改造微生物的基因组,可以实现对微生物的精确控制和调控,提高发酵过程的效率和产物的质量。

2. 发酵过程的在线监测与控制:发酵过程中的温度、pH值、氧气供应等参数对微生物的生长和产物的得率有着重要的影响。

通过在线监测和控制系统,可以实时调整这些参数,提高发酵过程的效率和稳定性。

3. 废弃物的利用:发酵工程技术可以将各种废弃物转化为有用的产物。

例如,利用微生物发酵废弃物可以产生生物燃料和生物肥料,实现资源的循环利用和环境的可持续发展。

现代发酵工程技术在食品、制药、化工等行业中发挥着重要的作用。

通过优化微生物的生长条件、提高产物的得率和纯度,发酵工程技术为人类提供了更多的高品质产品。

随着微生物基因工程和在线监测控制技术的发展,发酵工程技术将会进一步提高效率和可持续性,为人类带来更多的福祉。

相关文档
最新文档