数学建模作业-人口增长模型
微分方程模型人口增长数学模型

4:问题的简化:
• 只考虑人口增长的主要因素---增长率及基数; • 并假定人口总数是时间的连续函数,甚至可微
函数。(在人口总数很大时,可近似)(离散 变量连续化处理--------------掌握。)
5:假设变量:N(t),r(t,N(t))为t时刻人口总数和增长率
6:建立模型(微元法):在(t,t+t)这段 时间内人口增长为
设:f(r,t)drdt表示年龄在[r,r+dr]区间和[t,t+dt]时间 里迁入迁出的人口总数称为相对扰动密度函数(统计给 出).则模型为
ppr,tpr,tfr,t
r t
7
pr,0p0r,prm,t0,p0,t t
4:区域模型: (1):假设变量:
设 p i r , t i 1 , 2 , n 表示第 i 地区 省市 的人口密度函数
一:实际问题: 1:问题:
当今人类面临五大问题
• 人口问题 • 工业化的资金问题 • 粮食问题 • 不可再生资源问题 • 环境问题
人口问题
• (人口太多) • 人均粮食不足 • 人均资源不足 • 工业化资金有限 • 生态平衡被严重破坏 • (人口太少) • 人口老化 • 劳动力短缺 • 问题:人口预测;制
模型二:(SI模型)
1:假设:
(1)记i(t),s(t)表示时刻t传染病人数和未被传染人数, i(0)=i0 。
(2)每个病人单位时间内传播的人数是与这时未
被传染人数成正比,即k(t)=ks(t)。
(3)一人得病后,经久不愈,并且在传染期内不 会死亡。
(4)总人数n不变, i(t)+s(t)=n.
dt
N |t t0 N 0
kN 2 为竞争项因为资源有限
数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。
数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。
首先,中国人口增长的情况是众所周知的。
随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。
根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。
根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。
在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。
指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。
利用指数增长模型可以对未来的人口增长进行预测。
但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。
因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。
另外,人口结构是指人口在不同年龄段的分布情况。
人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。
中国的人口结构表现为老龄化趋势和少子化现象。
根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。
这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。
为了分析人口结构的变化,可以利用数学建模中的人口金字塔。
人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。
通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。
总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。
数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
毕业设计_数学建模论文中国人口增长预测

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
人口增长模型

随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。
模型建立
符号说明
X(t) t时刻的人口数量
0x 初始时刻的人口数量
r 人口增长率
x m环境所能容纳的最大人口数量,即r(xm)=0
模型一:二次函数模型
我们假设该地区t时刻的人口数量的人口数量x(t)是时间t的二次函数,
即:
我们可以根据最小二乘法,利用已有数据拟合得到具体参数。
即,要求a、b和c,使得以
下函数达到最小值:
模型二:阻滞增长模型
我们假设人口增长率r是人口数x的线性减函数,即随着人口数的增加,人口增长速度会慢慢下降:。
数学建模模版之人口增长问题

“公平”分配方法
人数 席位 A方 B方 p1 p2 n1 n2
衡量公平分配的数量指标 当p1/n1= p2/n2 时,分配公平
若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10 p1/n1– p2/n2=5 虽二者的绝对 不公平度相同
存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。 已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。
一种确定参数的办法是测量或调查,请设计测量方法。
参数估计ቤተ መጻሕፍቲ ባይዱ
另一种确定参数的方法——测试分析
2
将模型改记作 t an bn ,
只需估计 a,b
理论上,已知t=184, n=6061, 再有一组(t, n)数据即可
实际上,由于测试有误差,最好用足够多的数据作拟合
现有一批测试数据: 用最小二乘法可得
存贮模型
生猪的出售时机 森林救火
3.4
最优价格
3.5 血管分支
3.6 消费者均衡
3.7 冰山运输
静 态 优 化 模 型
• 现实世界中普遍存在着优化问题
• 静态优化问题指最优解是数(不是函数) • 建立静态优化模型的关键之一是 根据建模目的确定恰当的目标函数 • 求解静态优化模型一般用微分法
问题
3.1
x(t ) x0 e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文结构合理,模型建立详细,思想明确,论述清楚程序和拟合是文章的亮点,模型建立完了没有做误差分析,如果补完整是一篇很不错的文章。
摘要
•随着科学技术的发展,国内资金积累量在不断增加,但是中国人口近几年还是呈增加的趋势,这样就会影响人均收入。
由于国民收入是资金积累的一部分,国民收入变化可以反映资金积累的变化。
因此研究资金积累、国民收入与人口增长的关系可以转化成研究资金积累与人口增长的关系。
若国民平均收入与按人口平均资金积累成正比,说明仅当资金积累的相对增长率大于人口的相对增长率时,国民平均收入才是增长的。
所以认识资金积累与人口增长的关系,对国民平均收入的增长有重大意义。
本文通过微分方程建立三个模型,即人口Malthus模型、资金积累指数模型、资金积累增长率与人口增长率的二次曲线模型。
通过资金积累与人口增长的关系来分析国民平均收入。
关键词:资金积累人口增长国民平均收入资金积累增长率人口增长率
一、问题的重述
资金积累、国民收入、与人口增长的关系:
(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的. (2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.
二、问题分析
人均国民收入主要与国家资金总积累量和总人口数有关,若总人口数的增长率大于资金积累增长率,则增长的资金不能使每一位国民增加收入,只能使少量国民收入增加,因此,总体来说,国家人均收入实际上是减少的。
三、模型假设
假设总资金增长和人口增长均为指数增长,资金积累增长率和人口增长率为二次曲线模型。
四、符号说明
a为国民收入在总资金积累中所占比例;
y(t)为总资金积累量;
N(t)为总人口数;
Nm为人口的峰值;
x(t) 为人均国民收入;
r 为人口增长率;
k 为资金积累增长率。
五、模型的建立与求解
(1)人口增长模型曲线如图1所示:
图1
通过图形,用MATLAB 编程可建立指数增长模型
6
110
)()(⨯+=⨯t
e
t N αα 其中0127
.01
=α 0058
.02
=α
(2)总资金积累模型曲线如图2所示:
图2
由曲线可知资金增长是呈指数整长的并通过MATLAB编程得到指数模型:y(t)=(0.001+e x
003
.0) 106。
国民平均收入如图3所示,由图1和图2可得,国民平均收入呈稳步增长趋势。
图3
总资金积增长率的实际曲线如图4所示:由图可知总资金积增长率的波动较大,80年到84年呈增长趋势,85年到90年呈下降趋势,94年过后较平滑点。
图4
总资金积增长率的实拟合曲线如图5所示:由曲线可得到总资金积增增长率的二次曲线模型,即:k=-0.0007x2+0.0081x+0.0783。
1980
198519901995200020052010
0.020.04
0.06
0.08
0.1
0.12
0.14
0.16
图5
人口自然增长率实际曲线如图6所示:由图可知人口增长率呈下降趋势,但总人口数在不断增加。
图6
人口自然增长率的拟合曲线如图7所示:由拟合曲线可得到人口自然增长率的二次曲线模型,r=-0.0001 t2+0-495.8072
1980
198519901995200020052010
0.020.040.060.080.10.120.140.16
0.18
图7
综上可知:
⎪⎪⎪
⎩
⎪
⎪
⎪⎨
⎧→∆⨯⨯⨯=∆-∆+=∆+⨯=⨯+=→∆⨯0
,)()()()(lim )
()()()(10
)()(06
1t r t N k t y t t y t t y dt t t dX t N t y t X e t N t t αααα ∴当
k 大于r 时,国民收入才会增加。
当人口激增时,在一定程度上,人口资金积累和人均国民收入相对减少,人们生活水平就会下降。
因此,国家应该实施宏观调控,以控制人口增长,以保证人们的生活水平进一步提高。
六、模型的评价
模型的优点
(1)用Matlab 和Excel 工具对问题中数据的进行处理,得到了较为精确的像坐标。
(2)建立的模型与实际问题联系紧密,结合实际情况对所提出的问题进行求解,使模型更贴近实际,通用性强。
模型的缺点
(1) 由于人口增长率涉及到出生率和死亡率,所以无法很准确的统计到每年人
口的实际数据,只能建立一个估计的模型。
(2)由于每年资金积累率曲线波动很大,所以很难建立准确的拟合曲线来反映资金积累率的变动趋势。
参考文献
《资金积累论》顾建国1994
附录
程序:
资金积累与资金增长率:
x=[1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008];
y=[0.078 0.052 0.091 0.109 0.152 0.135 0.088 0.116 0.113 0.041 0.038 0.092 0.142 0.14 0.131 0.109 0.1 0.093 0.078 0.076 0.084 0.083 0.091 0.1 0.101 0.104 0.116 0.13 0.089];
plot(x,y,'r')
hold on
p=polyfit(x,y,3)
x1=linspace(min(x),max(x),300);
y1=polyval(p,x1);
plot(x1,y1)
在Matlab下输入:edit,然后将下面两行百分号之间的内容,复制进去,保存function F=zhidao_fit_4(a,x)
F=a(1)+exp(a(2)*x);
资金增长率:
x=[0:28];
y=[0.078 0.052 0.091 0.109 0.152 0.135 0.088 0.116 0.113
0.041 0.038 0.092 0.142 0.14 0.131 0.109 0.1 0.093 0.078
0.076 0.084 0.083 0.091 0.1 0.101 0.104 0.116 0.13 0.089]; plot(x,y,'r')
hold on
p=polyfit(x,y,3)
x1=linspace(min(x),max(x),300);
y1=polyval(p,x1);
plot(x1,y1)。