华东师范大学第二附属中学(实验班用)数学习题详解-18

合集下载

上海市华东师范大学第二附属中学2018届高三数学下学期开学考试试题(含解析)

上海市华东师范大学第二附属中学2018届高三数学下学期开学考试试题(含解析)

上海市华东师范大学第二附属中学2018届高三数学下学期开学考试试题(含解析)一.填空题1.,若集合【解析】【分析】,再求.【详解】由题得={···,-3,-2,2,3,4,5,···}【点睛】本题主要考查集合补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【解析】【分析】.【详解】∵,设所以..故答案为:【点睛】本题主要考查反三角函数的计算,考查同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.【答案】13【解析】【分析】故答案为:13【点睛】本题主要考查空间向量的坐标运算和空间向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.4.【答案】1【解析】【分析】z的值,再求|z|的大小得解.故答案为:1【点睛】本题主要考查复数方程的解法和复数模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.)的反函数【解析】【分析】(,(,因为.因为x≥0,所以,【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.6.【答案】2【解析】【分析】.经检验,当x=-10时,原方程没有意义,x=2是原方程的解.故答案为:2【点睛】本题主要考查对数函数的运算和对数方程的解法,考查对数函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.81,则常数项为________【答案】8【解析】【分析】n=4,再利用二项式展开式的通项求常数项得解.【详解】由题得,所以n=4, 二项展开式的通项为令.所以常数项为故答案为:8【点睛】本题主要考查二项式展开式的系数和问题,考查二项式展开式特定项的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.8.已知离心率为2的双曲线的焦点到最近准线的距离等于3,则该双曲线的焦距为________ 【答案】8【解析】【分析】.8.故答案为:8【点睛】本题主要考查双曲线的简单几何性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.9.________【答案】36【解析】【分析】.故答案为:36【点睛】本题主要考查圆柱的表面积和体积的计算,考查圆柱轴截面的面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.胡涂涂同学用一颗均匀的骰子来定义递推数列,即令为______(结果用最简分数表示).【解析】【分析】胡涂涂同学掷了3. 【详解】胡涂涂同学掷了3轮,要使得有两种情况,① 一轮点数为1,二轮点数为1、2、3、4、5、6,三轮点数为1;② 一轮点数为2、3、4、5、6,二轮点数为1、2,三轮点数为1;【点睛】本题主要考查排列组合的应用,考查古典概型,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.11.已知用“斜二测”画图法画一个水平放置的圆时,所得图形是椭圆,则该椭圆的离心率为_______【解析】【分析】为了简化问题,我们可以设单位圆x²+y²=1,先求出单位圆直观图的方程(x-y)²+8y²=1. 画出圆的外切正方形,和椭圆的外切平行四边形,椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.【详解】为了简化问题,我们可以设单位圆x²+y²=1,即圆上的点P(cosθ,sinθ),第一步变换,到它在x(cosθ,0.5sinθ),第二步变换,绕着投影点顺时针旋转cosθθθ),所以据此得到单位圆的直观图的参数方程为,x=cosθθ,sinθ,θ为参数,消去参数可得方程为,(x-y)²+8y²=1.得到单位圆的直观图后,和上面一样,我们画出圆的外切正方形,和椭圆的外切平行四边形,当然就相当完美了!A、B处均与椭圆相切,并且可以轻易发现,椭圆的长轴其实已经不在x 轴上了该椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.椭圆上的点(cosθθθ)到原点的距离的平方为=,所以故答案为:【点睛】本题主要考查直观图的画法,考查圆的直观图的方程的求法,考查三角恒等变换和三角函数的最值,考查椭圆离心率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.、时,函数取得最小值;③函数3;④【答案】-17【解析】【分析】【详解】根据假设法推理可知,①错误,②③④正确,由②得(因为如果ac<0,则函数在定义域内没有最小值,如果a<0,c<0,则函数在定义域内也没有最小值.)且故答案为:-17【点睛】本题主要考查分析推理,考查函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.二.选择题13.已知无穷等比数列)A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分也非必要条件【答案】A【解析】【分析】,,所以S<0再利用充要条件的定义判断得解.S<0,所以”是“”的是充要条件.故答案为:A【点睛】本题主要考查无穷等比数列的前n项和,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.)B.【答案】B【解析】【分析】由方程组得x+b(1-ax)=1,所以(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1.【详解】由方程组得x+b(1-ax)=1,所以方程(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1故选:B【点睛】本题主要考查基本不等式,考查解方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.,则函数)图像的交点不可能()A. B. 上 C. 多于三个 D. 在第二象限【答案】C【解析】【分析】)图像与单调性,分四个象限讨论每一个象限交点的最多个数得解.)图像与单调性可知,在第一象限,最多有2个交点,在第二象限,最多有1)在第三、四象限没有图像,所以它们的图像在第三、四象限没有交点,∴最多只有3个交点.故选:C【点睛】本题主要考查幂函数和指数函数的图像和性质,考查函数的图像的交点问题,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.16.4的奇函数,时,,则方程)B. 036162C. 3053234D. 3055252 【答案】D【解析】【分析】在同一个坐标系下作出函数,且均有对称性,所以在区间上所有解的和为【详解】结合图像对称性,可知,在(2×1=2,第三个交点的横坐标为2,所以在(2+2=4,在(上有三个交点,左边两个交点的横坐标的和为2×3=6,第三个交点的横坐标为4,所以在(6+4=10,故选:D【点睛】本题主要考查三角函数的图像和性质,考查函数的奇偶性、周期性和对称性,考查函数的零点问题,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.三.解答题17.、均为直角,(1(2.【答案】【解析】【分析】(1)由题得AB⊥平面BCD,.(2) 以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,利用向量法.【详解】(1)由题得AB⊥平面BCD,AD=(2)如图所示,以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,则.【点睛】本题主要考查三棱锥体积的计算,考查异面直线所成的角的计算,意在考查学生对这些知识的理解掌握水平和空间观察想象分析推理能力.18.(1(2.【答案】【解析】【分析】(1.(2)的a的取值范围.【详解】(1)由题得.(2增.∴;,,明显符合,所以此时.【点睛】本题主要考查对数函数的图像和性质,考查对数函数不等式的解法,考查函数的单调性,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.19.如图,某小区要建四边形的花坛150°的两面墙,另两边是长度均为8米的篱笆(10.01米);(2)若要求0.01平方米).【答案】【解析】【分析】(1.(2) 连接BD,显然出.②,.(2)连接BD,显然,,即最大值为平方米.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算和最值,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.、(,(1(2(3.【答案】【解析】【分析】(1,所以,再求出抛物线的准线方程和到准线的距离.(2)由可得,所以.(3) 由题得,联立与得,联立与得再求出,求得,解方程得【详解】(1与准线为准线的距离(2,消去得,,∴(3)由题得,联立与得,联立与得,∴联立得由第(2)问结论,,,消去a得,据此,,解得【点睛】本题主要考查直线的位置关系,考查直线和抛物线的位置关系,考查平面向量的运算和直线夹角的计算,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.满足:对所有,,数列.(1的值;(2),证明:但对任意,列;(3,都存在.【答案】见证明;(3)见证明【解析】【分析】(1),两种情况讨论得到,即满足,且当,所以是数列,,所以不数列;再证明当以列,所以不是列.(3)通过归纳得到:当m为奇数,在当m为偶数,在有解,存在再结合函数映射性质可知,当时,,所以对任意都存在.【详解】(1,,不符;综上所述,.(2,,…,既不是,,…,只需即满足,且当,,∴不是数列;,…,只需即满足,,∴是,∴不是数列;综上,存在数列,但对任意,都不是数列.(3,……,当m为奇数,,当m为偶数,在有解,存在结合函数映射性质可知,当时,,是数列.【点睛】本题主要考查对新定义的理解掌握,考查利用新定义解决问题的能力,考查数列性质的运用和证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

2024~2025学年上海市华东师范大学第二附属中学中考一模模拟卷数学试卷(考试时间100分钟满分150分)考生注意:1.带2B铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

一.选择题(共6题,每题4分,满分24分)1.航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星,距离地球约192000000千米.其中192000000用科学记数法表示为()A.1.92×108B.0.192×109C.1.92×109D.1,92×1072.中华文化博大精深,以下是古汉字“雷”的四种写法,可以看作轴对称图形的是()A.B.C.D.3.生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强,在最适宜温度时,酶的活性最强,超过一定温度范围时,酶的活性又随温度的升高逐渐减弱,甚至会失去活性.现已知某种酶的活性值y(单位:IU)与温度x(单位:℃)的关系可以近似用二次函数y=―12x2+14x+142来表示,则当温度最适宜时,该种酶的活性值为()A.14B.240C.3.5D.444.已知a、b、c是△ABC的三边,且满足a2-b2+ac-bc=0,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5.若AB =―4CD,且|AD|=|BC|,则顺次链接四边形ABCD中点得到的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁二.填空题(共12题,每题4分,满分48分)12.如图,AB与CD交于点O,且AC∥__________.13.从“等腰直角三角形”,“等腰梯形”,“平行四边形”,“菱形”中随机抽取一个,是中心对称图形的概率为_________14.等腰梯形ABCD 中,AB ∥CD ,E 、F 分别是AD,BC 的中点,DC=2,AB=4,设AB =a ,则EF 用向量a 表示可得EF =________15.小华探究“幻方”时,提出了一个问题:如图,将0,-4,-2,2,4这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)(14题图)(15题图)(12题图)(11题图)16.如图,在△ABC 中,AB=4,AC=6,E 为BC 中点,AD 为△ABC 的角平分线,△ABC 的面积记为S 1,△ADE 的面积记为S 2,则S 2:S 1=_____.17.在平面直角坐标系中,过点A (m,0),且垂直于x 轴的直线l 与反比例函数y=B ,将直线l 绕(16题图)三.解答题(满分78分)19.计算: 3tan30°-tan60°+13―2―(2024)020.在菱形ABCD 中,E ,F 为线段BC 上的点,且CD=2BE=4BF ,连接AE ,DF 交于点G .(1)如图(1)所示,若∠BAE=∠ADF ,求:∠B 的余弦值的值;(2)连接CG ,在图(2)上求作CG 在AB 与AG 方向上的分向量(保留作图痕迹即可)21.如图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城A1A2A3A4A5A6A7A设立在A6A7边的正中央,游乐城南侧有23.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,联结AE,CF.求证:(1)四边形AFCE是平行四边形:(2)FG·BE=CE·AE25.新定义1:将宽与长的比等于黄金分割比的矩形称为黄金矩形 新定义2:将顶角为36°的等腰三角形称为黄金三角形①在一张矩形纸片的一端,利用图个正方形,然后把纸片展平②如图把纸片展平③折出内侧矩形的对角线中所示的④展平纸片,按照所得到的点(1)根据以上折纸法,求证:矩形BCDE 为黄金矩形(2)如图5,已知∠A=36°,△ABC 为黄金三角形,BC=1,求:AB 的长(3)在(2)的条件下,截取BD=BC 交AC 于D ,截取CE=CD 交线段BD 于E ,过E 作任意直线与边AB,BC 交于P,Q 两点,试判断:1BP +1BQ 是否为定值,若是,请求出定值,若不是,请说明理由(图5)参考答案及部分评分标准选择题(1~6题)ADBCCD填空题(7~18题)7.(3x+1)(3x―1)8.x≥19.a<410.111.2012131415.016.1:1017.-2<m<0或m>218.103解答题(19~25题)19.原式=0(10分)20.(1)58(5分)(2)图对即给分(5分)21.(1)90°76°(4分)(2)2km(3分)(3)24km(3分)22.任务1:y=―13+703任务2:w=-2x2+72x+3360(x≥10)(6分)任务3:雅19 风17 正34 最大利润(4分)23.(1)提示:△ADF≌△EDC(6分)(2)提示:△AFG∽△BEA(6分)24.(1)(0,0),y=ax2,(1,-1),-1,y=-x2(5分合理即可)(2)y=-(x-2)2(4分)(3)y=-(x-2-1)2+1或y=-(x+2-1)2+1(4分)25. (1)证明:CDBC =5―12即可(4分)(2)AB=5+1(5分)2(5分)(3)是定值,3+52。

华东师范大学第二附属中学实验班用高三数学习题:第十八章 概率论初步与基本统计方法(含答案解析)

华东师范大学第二附属中学实验班用高三数学习题:第十八章 概率论初步与基本统计方法(含答案解析)

第十八章概率论初步与基本统计方法18.1 随机事件和古典概型基础练习1.在60件产品中,有30件是一等品,20件是二等品,10件是三等品,从中任取3件,试计算:(1)3件都是一等品的概率.(2)2件是一等品、1件是二等品的概率.(3)一等品、二等品、三等品各有1件的概率.解:(1)330360C7C59=.(2)213020360C C15C59⋅=.(3)111302010360711C C C300C1⋅⋅=.2.盒中有规格相同的红、白、黑手套各3只,从中任意摸出2只恰好配成同色的概率为多少?解:先选一个颜色出来,然后从同色中的3只中任选2只出来,则123329C C1C4=.3.某班36人的血型情况为:A型血12人,B型血10人,AB型血8人,O型血6人,若从班里随机叫出两人,两人血型相同的概率是多少?解:2222121086236C C C C11C45+++=.4.一枚硬币连掷四次,试求:(1)恰好出现两次是正面的概率.(2)最后两次出现正面的概率.解:(1)()244C3 28P A==.(2)()2421 24P B==.5.从一副去掉王牌的牌(52张)中,任取4张,求下列情况的概率:(1)取出4张全是A.(2)取出4张的数字相同.(3)取出4张全是黑桃.(4)取出4张的花色相同.解:取出4张有452C个结果.(1)4张全是“A”记为随机事件A,只有一个结果,4手长为4个花色的A,故()45211C 270725P A ==. (2)取出4张的数字相同记为随机事件B ,52张牌中共有13种数字,每种数字有4个花色.所以随机事件B 包括113C 个基本事件,故所求随机事件概率为()113452C 1C 20825P B ==. (3)取出4张全是黑桃记为随机事件C ,13张黑桃中取出4张,所以有()413452C 11C 4165P C ==.(4)取出4张相同花色记为随机事件D ,4种花色选一种14C ,在选出的花色中13张牌再选出4张相同花色413C ,故随机事件D 共有14413C C 个基本事件,故()14413452C C C PD =.6.把4个相同的球放进3个不同的盒子,每个球进盒子都是等可能的.求: (1)没有一个空盒子的概率. (2)恰有一个空盒子的概率.解:4个相同球放进3个不同的盒子,先加进3个球,变成7个相同球,放进3个不同盒子,保证每个盒子至少一个球,用隔板法解决,有26C 个结果,再将多加进的球取出.(1)“没有一个空盒子”记为随机事件A ,4个相同球放进3个不同的盒子,每个盒子至少一个球,用隔板法解决,有23C 个结果,故()2326C 1C 5P A ==.(2)“恰好有一个空盒子”记为随机事件B ,先选一个盒子13C ,4个相同球放进2个不同盒子,每个盒子至少一个球,所以随机事件B 包含13C 个结果,故()113326C C 3C 5P B ==.7.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率.(2)事件“点数之和小于7”的概率. 解:(1)61366P ==.(2)事件“点数之和小于7”为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1),则概率为1536P =. 8.A 、B 、C 、D 、E 五人分四本不同的书,每人至多分一本.求:(1)A 不分甲书,B 不分乙书的概率.(2)甲书不分给A 、B ,乙书不分给C 的概率.解:(1)4113433355A A A A 13A 20+=(或314344555555A A A 1A A A --+)(2)4113423355A A A A 1A 2+=. 9.一批产品共有82只,其中6只特级品,现任意取出2只,求:(1)全是特级品的概率.(2)只有1只是特级品的概率.(3)都不是特级品的概率.解:(1)()26282C 5C 1107P A ==.(2)()11676282C C 152C 1107P B ==.(3)()276282C C P C =10.有九张卡片分别写着数字1、2、3、4、5、6、7、8、9,甲、乙两人依次从中各抽取一张卡片(不放回).(1)求甲抽到写有奇数数字卡片,且乙抽到写有偶数数字的概率. (2)求甲、乙两人至少抽到一张奇数数字卡片的概率.解:(1)()115429C C 205P 7218P A ===;(2)()2222121086236C C C C 11C 45P A +++==. 11.设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住()n N ≤,求下列事件的概率:(1)指定的n 个房间各有一个人住. (2)恰好有n 个房间,每问各住一个人.解:由于每个人有N 个房间可供选择,所以n 个人住的方式共有n N 种,它们是等可能的, 则(1)指定n 个房间各有一个人住记作事件A :可能的总数为n !则()!nn P A N =. (2)恰好有n 个房问其中各住一人记作事件B ,则这n 个房间从N 个房间中任选共有C n N 个,由(1)可知:()()!!!nN n n C n N P B N N N n ⋅==-. 12.有5个1克砝码,3个3克砝码和2个5克砝码,任意取出3个砝码,求: (1)其中至少有2个砝码同样重量的概率. (2)3个砝码总重量为7克的概率.解:(1)311110532310C C C C 3C 4-=.(2)21213552310C C C C 7C 24+=. 能力提高13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.解:2333727279⨯⨯+=. 14.从一箱产品中随机地抽取一件产品,设事件A =“抽到的是一等品”,事件B = “抽到的是二等品”,事件C = “抽到的是三等品”,且已知()0.7P A =,()0.1P B =,()0.05P C =,求下列事件的概率:(1)事件D =“抽到的是一等品或二等品”. (2)事件E = “抽到的是二等品或三等品”.解:(1)()()()()0.70.10.8P D P A B P A P B =+=+=+=. (2)()()()()0.10.050.15P E P B C P B P C =+=+=+=. 15.从1到9九个数字中不重复地取出3个组成3位数,求: (1)这个3位数是偶数的概率. (2)这个3位数是5的倍数的概率. (3)这个3位数是4的倍数的概率. (4)这个3位数是3的倍数的概率.解:9个数字中取出3个组成3位数,有39P 个结果.(1)“3位数是偶数”记为随机事件A ,有1248P P 个结果,()124839P PP P A =.(2)“3位数是5的倍数”记为随机事件B ,末尾须是5,故随机事件B 包含28P 个结果, 所以()2839P 1P 9P B ==.(3)“3位数是4的倍数”记为随机事件C ,3位数是4的倍数须后两位能被4整除, 后两位可以是12、16、24、28、32、36、48、52、56、64、68、72、76、84、94、98,只要定下百位即可,所以随机事件C 包含1716P 个结果,故()173916P P P C =.(4)“3位数是3的倍数”记为随机事件D ,3位数是3的倍数须各个位置上的数字之和 能被3整除,9个数字,其中3、6、9能被3整除,1、4、7被3除余1,2、5、8被3除余2,所以3位数被3整除包括4种情况:三个数字均被3整除;三个数字都被3除余1; 三个数字都被3除余2;三个数字一个被3整除、一个被3除余1、一个被3除余2,故()() 2333111333333339P C C C C C C5P14P D+++==.16.某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(1)这6位乘客在互不相同的车站下车的概率.(2)这6位乘客中恰有3人在终点站下车的概率.解:(1)61064P15121010P==;(2)33665C914581010P⋅=.17.在某次数学考试中,甲、乙、丙三人及格(互不影响)的概率分别是0.4、0.2、0.5,考试结束后,最容易出现几个人及格?解:(1)三人都及格的概率10.40.20.50.04P=⨯⨯=,(2)三个人都不及格的概率20.60.80.50.24P=⨯⨯=,(3)恰有两人及格的概率30.40.20.50.40.80.50.60.20.50.26P=⨯⨯+⨯⨯+⨯⨯=,(4)恰有一人及格的概率410.040.240.260.46P=---=.由此可知,最容易出现的是恰有一人及格的情况.18.2频率与概率基础练习1.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2.则样本在区间(]50-∞,上的频率为__________.解:0.7.2.一个容量为40的样本数据分组后组数与频数如下:(25,25.3],6;(25.3,25.6],4;(25.6,25.9],10;(25.9,26.2],8;(26.2,26.5],8;(26.5,26.8],4;则样本在(25,25.9]上的频率为__________.解:05..3.为了了解中学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图18—3),已知图中从左到右前三个小组的频率分别为01.,03.,04.,第一小组的频数为5.图 18-3则第四小组的频率__________;参加这次测试的学生有__________人.解:02.;25.4.下列说法正确的是().A.任何事件的概率总是在(0,1)之间B..概率是随机的,在试验前不能确定C..频率是客观存在的,与试验次数无关D..随着试验次数的增加,频率一定会越来越接近概率解:正确选项为D.5:连续抛掷10次硬币,出现5次“正面朝上”的概率是().A.变化的量,不同的人得到的概率也不同B.模拟的次数不同,其概率也不同C.1 2D.是个确定的值,但不是1 2解:正确选项为D.6.某射击手在同一条件下进行射击,结果如下:射击次数()n1020 50 100 200 500 击中靶心次数()m9 19 45 91 179 456击中靶心的频率m n ⎛⎫ ⎪⎝⎭(1)计算表中击中靶心的各个频率.(2)这个射击手射击一次,击中靶心的概率约是多少?解:(1)09.,095.,09.,091.,090.,091..(2)091.. 能力提高7.从正方体的八个顶点中随机选取三点,构成直角三角形的概率是__________. 解:从矩形中选三角形,正方体中一共有12个矩形.343812C 6C 7=.8.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(1)求方程20x bx c ++=有实根的概率.(2)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. 解:(1)基本事件总数为6636⨯=,若使方程有实根,则240b c ∆=-≥,即b ≥ 当1c =时,2b =,3,4,5,6; 当2c =时,3b =,4,5,6; 当3c =时,4b =,5,6; 当4c =时,4b =,5,6; 当5c =时,5b =,6; 当6c =时,5b =,6,目标事件个数为543322=19+++++, 因此方程20x bx ++=有实根的概率为1936. (2)记“先后两次出现的点数中有5”为事件M ,“方程20ax bx c ++=有实根”为事件N , 则()1136P M =,()736P MN =,()()()711P MN P N M P M ==. 18.3几何概型 基础练习1.如图18—7,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色全相同的概率为( ).图 18-7A.34B.38C.14D.18解:正确选项为C.2.如图18—8所示:向边长为2的正方形内随机地投飞镖,假设飞镖都能投入正方形内,且投到每个点的可能性相等,则飞镖落在阴影部分的概率是().图 18-86x-3y-4=0A.11144B.25144C.37144D.41144解:正确选项为B.3.在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,求取出的种子中含有麦锈病的种子的概率.解:001..4.平面上画了一些彼此相距2d的平行线,把一枚半径r d<的硬币任意掷在这平面上,求硬币不与任一条平行线相碰的概率.解:由于硬币的半径为r,则当硬币的中心到直线的距离r d<时,硬币与直线不相碰()22d r d rP dd--==. 能力提高5.如图18—9所示,在ABC 中,60B ∠=︒,45C ∠=︒,高3AD =.在BAC ∠内作射线AM 交BC 于M 点,求1BM <的概率.60°45°图 18-9AB CDM解:由几何概率模型可知,30BAM ∠=︒,()302755P A ︒==︒. 6.某人午觉醒来,发现表停了(见图18—10),他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解:由几何概率模型可知,()26050π16046P A -===. 7.在坐标系中D 是2x ≤且2y ≤的点构成的区域,E 是由到原点的距离不大于1的点构成的区域.向D 中随机投一点,求落入E 中的概率. 解:由几何概率模型可知,落入E 中的概率为π16. 8.若连续掷两颗骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆2216x y +=内的概率.解:基本事件的总数为6636⨯=个,记事件(){}2216A P m n x y +=,落在点圆内,则A 所包含的基本事件为(1,1),(2,2),(1,3),(1,2),(2,3),(3,1),(3,2),(2,1),共8个.则概率为29. 9.有五条线段长度为1,3,5,7,9从中任取3条.求不能构成三角形的概率. 解:能构成三角形的组数为(3,5,7),(3,7,9),(5,7,9),35371C 10P =-=. 10.在面积为S 的ABC △的边AB 上任取一点P ,求PBC △的面积大于3S的概率. 解:由几何概率模型可知,概率为23. 11.一个骰子掷两次,记第一次出现的点数为a ,第二次出现的点数为b .试就方程组 322ax by x y +=⎧⎨+=⎩,解答下列各题: (1)求方程组只有一个解的概率. (2)求方程组只有正数解的概率. 解:事件()a b ,的基本事件有36个.由方程组322ax by x y +⎧⎨+=⎩,可得()()262223a b x b a b y a ⎧-=-⎪⎨-=-⎪⎩.(1)方程组只有一个解,需满足2a b ≠, 而2a b =的事件有()12,()24,()36,共3个. 所以方程组只有一个解的概率为131113612P =-=. (2)方程组只有正数解,需2a b ≠且 62022302b x a ba y ab -⎧=>⎪⎪-⎨-⎪=>⎪-⎩,即2323a b a b >⎧⎪⎪>⎨⎪<⎪⎩或2323a b a b <⎧⎪⎪<⎨⎪>⎪⎩ 其包含的事件有13个:()21,,()31,,()41,,()51,,()61,,()22,,()32,,()42,,()52,,()62,,()14,,()15,,()16,.因此所求的概率为1336. 18.4概率的加法公式和乘法公式 基础练习1.抛掷一颗骰子,观察掷出的点数.设事件A 为“出现偶数点”,B 为 “出现3点”,求: (1)()P A ,()P B .(2)求“出现偶数点或3点”的概率. 解:(1)()3162P A ==.()16P B =(2)23. 2.甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率. (2)其中恰有1人击中目标的概率. (3)至少有1人击中目标的概率.解:(1)()()()0.80.80.64P A B P A P B ⋅=⋅=⨯=.(2)()()()()()()()0.810.8P P A B P A B P A P B P A P B =⋅+⋅=⋅+⋅=⨯- ()10.80.80.160.160.32+-⨯=+=.(3)()()()0.640.320.96P P A B P A B P A B ⎡⎤=⋅+⋅+⋅=+=⎣⎦. 3.甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.求:(1)甲、乙两人同时参加A 岗位服务的概率. (2)甲、乙两人不在同一个岗位服务的概率. 解:(1)332454P 1C P 40=.(2)142454C 4911C P 4010-=-=. 4.从1,2,3,…,30中任意选一个数,求下列事件的概率: (1)是偶数. 。

2018届上海市华东师范大学第二附属中学高三下学期开学考试数学试题(解析版)

2018届上海市华东师范大学第二附属中学高三下学期开学考试数学试题(解析版)

2018届上海市华东师范大学第二附属中学高三下学期开学考试数学试题一、单选题1.已知无穷等比数列的各项的和为,则“”是“”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件【答案】A【解析】先根据已知得,,所以,因为S<0,所以0.再利用充要条件的定义判断得解.【详解】由题得,,∴,因为S<0,所以0.∴“”是“”的是充要条件.故答案为:A【点睛】本题主要考查无穷等比数列的前n项和,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知关于、的方程组:(其中、)无解,则必有()A.B.C.D.【答案】B【解析】由方程组得x+b(1-ax)=1,所以(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,再利用基本不等式分析得解.【详解】由方程组得x+b(1-ax)=1,所以方程(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,∴,即.故选:B【点睛】本题主要考查基本不等式,考查解方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.已知,则函数(R)与(R)图像的交点不可能()A.只有B.在直线上C.多于三个D.在第二象限【答案】C【解析】结合函数(R)与(R)图像与单调性,分四个象限讨论每一个象限交点的最多个数得解.【详解】结合函数(R)与(R)图像与单调性可知,在第一象限,最多有2个交点,在第二象限,最多有1个交点,在第三、第四象限,因为函数(R)在第三、四象限没有图像,所以它们的图像在第三、四象限没有交点,∴最多只有3个交点.故选:C【点睛】本题主要考查幂函数和指数函数的图像和性质,考查函数的图像的交点问题,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.4.已知是周期为4的奇函数,且当时,,方程在区间内有唯一解,则方程在区间上所有解的和为()A.B.036162 C.3053234 D.3055252【答案】D【解析】在同一个坐标系下作出函数y=的图像,分析得到在均有三个解,,且均有对称性,所以在区间上所有解的和为,【详解】结合图像对称性,可知,在(0,2上有三个交点,左边两个交点的横坐标的和为2×1=2,第三个交点的横坐标为2,所以在(0,2上的三个解的和为2+2=4,在(2,4上有三个交点,左边两个交点的横坐标的和为2×3=6,第三个交点的横坐标为4,所以在(2,4上的三个解的和为6+4=10,所以结合图像对称性,可知,在均有三个解,,且均有对称性,∴在区间上所有解的和为,故选:D【点睛】本题主要考查三角函数的图像和性质,考查函数的奇偶性、周期性和对称性,考查函数的零点问题,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.二、解答题5.如图,三棱锥中,、、、均为直角,,.(1)求三棱锥的体积;(2)求异面直线与所成角的大小.【答案】(1) (2)【解析】(1)由题得AB⊥平面BCD,先求出,再求出三棱锥的体积.(2) 以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,利用向量法求异面直线与所成角的大小.【详解】(1)由题得AB⊥平面BCD,AD=,BD=,所以,所以三棱锥的体积.(2)如图所示,以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,则B(0,0,0),A(0,0,1),,所以,所以异面直线与所成角的余弦,∴异面直线与所成角为.【点睛】本题主要考查三棱锥体积的计算,考查异面直线所成的角的计算,意在考查学生对这些知识的理解掌握水平和空间观察想象分析推理能力.6.设R,函数.(1)若,解不等式;(2)求所有的,使得在区间上单调递增.【答案】(1) (2)【解析】(1)由题得再解不等式得解.(2)分类讨论,和,数形结合分析得到使得在区间上单调递增的a的取值范围.【详解】(1)由题得.(2)若,即,二次函数y=,在区间上单调递增.∴;若,即或,当,;当,,明显符合,所以此时综上,.【点睛】本题主要考查对数函数的图像和性质,考查对数函数不等式的解法,考查函数的单调性,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.7.如图,某小区要建四边形的花坛,两邻边用夹角为150°的两面墙,另两边是长度均为8米的篱笆、.(1)若,平方米,求的长(结果精确到0.01米);(2)若要求,求花坛面积的最大值(结果精确到0.01平方米).【答案】(1)10.05 (2) 平方米【解析】(1)设,由正弦定理得,即①,因为所以②,解①②即得解.(2) 连接BD,显然,再利用余弦定理和基本不等式求出,再求花坛面积的最大值.【详解】(1)设,由正弦定理得,∴,因为所以②,解①②得.所以由正弦定理得.(2)连接BD,显然,,由余弦定理得∴,即最大值为平方米.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算和最值,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.已知抛物线,直线、(),与恰有一个公共点,与恰有一个公共点,与交于点.(1)当时,求点到准线的距离;(2)当与不垂直时,求的取值范围;(3)设是平面上一点,满足且,求和的夹角大小.【答案】(1) (2) (3)【解析】(1),,因为与恰有一个公共点,,所以,再求出抛物线的准线方程和点到准线的距离.(2)由可得,所以.(3) 由题得,联立与得,联立与得,再求出,根据,求得,解方程得,所以,即得和的夹角为.【详解】(1),,∵与恰有一个公共点,,∴,因为抛物线准线为,所以点到准线的距离.(2)由可得,,消去得,整理得,∴(3)由题得,联立与得,联立与得,∵,∴,与联立得,由第(2)问结论,,,消去a得,∴,∵,据此,∴,解得,,∴和的夹角为.【点睛】本题主要考查直线的位置关系,考查直线和抛物线的位置关系,考查平面向量的运算和直线夹角的计算,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.9.设,若数列满足:对所有,,且当时,,则称为“数列”,设R,函数,数列满足,().(1)若,而是数列,求的值;(2)设,证明:存在,使得是数列,但对任意,都不是数列;(3)设,证明:对任意,都存在,使得是数列.【答案】(1) (2)见证明;(3)见证明【解析】(1),,分两种情况讨论得到.(2) 先证明当,只需,即满足,且当,,所以是数列,,所以不是数列;再证明当,只需,即满足,且当,,所以是数列,,所以不是数列.(3)通过归纳得到:当m为奇数,在,有解,存在;当m为偶数,在,有解,存在.再结合函数映射性质可知,当时,,所以对任意,都存在,使得是数列.【详解】(1),,当,,;当,,,不符;综上所述,.(2)当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;综上,存在,使得是数列,但对任意,都不是数列. (3),当,有解,存在;,当,有解,存在;,当,有解,存在;,当,有解,存在;……,当m为奇数,在,有解,存在;当m为偶数,在,有解,存在;结合函数映射性质可知,当时,,∴对任意,都存在,使得是数列.【点睛】本题主要考查对新定义的理解掌握,考查利用新定义解决问题的能力,考查数列性质的运用和证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、填空题10.设全集,若集合,,则______【答案】【解析】先求出,再求得解.【详解】由题得={···,-3,-2,,2,3,4,5,···},所以.故答案为:【点睛】本题主要考查集合补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.计算:______【答案】【解析】设,求出,即得解. 【详解】∵,设.所以所以.所以.故答案为:【点睛】本题主要考查反三角函数的计算,考查同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.12.已知向量,,则________【答案】13【解析】由题得,即得.【详解】由题得,∴.故答案为:13【点睛】本题主要考查空间向量的坐标运算和空间向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.13.如果复数满足,那么________【答案】1【解析】由题得,所以方程没有实数根,由求根公式求出z的值,再求|z|的大小得解.【详解】∵,所以,所以方程没有实数根,故答案为:1【点睛】本题主要考查复数方程的解法和复数模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.14.()的反函数________【答案】()【解析】设(),求出,再求出原函数的值域即得反函数.【详解】设(),所以,因为x≥0,所以,所以.因为x≥0,所以y≥0,所以反函数,.故答案为:,【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.15.方程的解为________【答案】2【解析】由题得,即,解方程再检验即得解. 【详解】经检验,当x=10时,原方程没有意义,x=2是原方程的解.故答案为:2【点睛】本题主要考查对数函数的运算和对数方程的解法,考查对数函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.16.在的二项展开式中,所有项的系数之和为81,则常数项为________【答案】8【解析】由题得,所以n=4,再利用二项式展开式的通项求常数项得解. 【详解】由题得,所以n=4,二项展开式的通项为,令.所以常数项为.故答案为:8【点睛】本题主要考查二项式展开式的系数和问题,考查二项式展开式特定项的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.17.已知离心率为2的双曲线的焦点到最近准线的距离等于3,则该双曲线的焦距为________【答案】8【解析】,且,解方程组即得,,即得双曲线的焦距. 【详解】,且,∴,,所以该双曲线的焦距为8.故答案为:8【点睛】本题主要考查双曲线的简单几何性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.18.已知一个圆柱的表面积和体积都等于,则其轴截面的面积为________【答案】36【解析】由题得,,再求其轴截面的面积. 【详解】由题得,,所以.故答案为:36【点睛】本题主要考查圆柱的表面积和体积的计算,考查圆柱轴截面的面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.胡涂涂同学用一颗均匀的骰子来定义递推数列,首先,他令,当时,他投一次骰子,若所得点数大于,即令,否则,令,则的概率为______(结果用最简分数表示).【答案】【解析】胡涂涂同学掷了3轮,要使得,分两种情况讨论,再利用古典概型求的概率.【详解】胡涂涂同学掷了3轮,要使得,有两种情况,① 一轮点数为1,二轮点数为1、2、3、4、5、6,三轮点数为1;② 一轮点数为2、3、4、5、6,二轮点数为1、2,三轮点数为1;∴由古典概型得所求的概率为.故答案为:【点睛】本题主要考查排列组合的应用,考查古典概型,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.20.已知用“斜二测”画图法画一个水平放置的圆时,所得图形是椭圆,则该椭圆的离心率为_______【答案】【解析】为了简化问题,我们可以设单位圆x²+y²=1,先求出单位圆直观图的方程(x-y)²+8y²=1. 画出圆的外切正方形,和椭圆的外切平行四边形,椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.【详解】为了简化问题,我们可以设单位圆x²+y²=1,即圆上的点P(cosθ,sinθ),第一步变换,到它在x轴的投影的距离缩短一半,即(cosθ,0.5sinθ),第二步变换,绕着投影点顺时针旋转45°,即(cosθ+sinθ,sinθ),所以据此得到单位圆的直观图的参数方程为,x=cosθ+sinθ,y=sinθ,θ为参数,消去参数可得方程为,(x-y)²+8y²=1.得到单位圆的直观图后,和上面一样,我们画出圆的外切正方形,和椭圆的外切平行四边形,当然就相当完美了!A、B处均与椭圆相切,并且可以轻易发现,椭圆的长轴其实已经不在x轴上了该椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.椭圆上的点(cosθ+sinθ,sinθ)到原点的距离的平方为=,所以,所以故答案为:【点睛】本题主要考查直观图的画法,考查圆的直观图的方程的求法,考查三角恒等变换和三角函数的最值,考查椭圆离心率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.设,、R,关于函数()的下列结论:①是的零点;②时,函数取得最小值;③函数的最小值是3;④中有且仅有一个是错误的,则________【答案】-17【解析】根据假设法推理可知,①错误,②③④正确,所以,且,且,解方程组得.【详解】根据假设法推理可知,①错误,②③④正确,由②得,(因为如果ac<0,则函数在定义域内没有最小值,如果a<0,c<0,则函数在定义域内也没有最小值.)且,且,解方程组得,.故答案为:-17【点睛】本题主要考查分析推理,考查函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

精品解析:【全国百强校】上海市华东师范大学第二附属中学2018届高三下学期开学考试数学试题(解析版)

精品解析:【全国百强校】上海市华东师范大学第二附属中学2018届高三下学期开学考试数学试题(解析版)

华二附中高三年级第二学期开学考数学试卷2018.03注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

一.填空题1.设全集,若集合,,则______【答案】【解析】【分析】先求出,再求得解.【详解】由题得={···,-3,-2,,2,3,4,5,···},所以.故答案为:【点睛】本题主要考查集合补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.计算:______【答案】【解析】【分析】设,求出,即得解.【详解】∵,设.所以所以.所以.故答案为:【点睛】本题主要考查反三角函数的计算,考查同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.已知向量,,则________【答案】13【解析】【分析】由题得,即得.【详解】由题得,∴.故答案为:13【点睛】本题主要考查空间向量的坐标运算和空间向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.4.如果复数满足,那么________【答案】1【解析】【分析】由题得,所以方程没有实数根,由求根公式求出z的值,再求|z|的大小得解. 【详解】∵,所以,所以方程没有实数根,故答案为:1【点睛】本题主要考查复数方程的解法和复数模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.()的反函数________【答案】()【解析】【分析】设(),求出,再求出原函数的值域即得反函数.【详解】设(),所以,因为x≥0,所以,所以.因为x≥0,所以y≥0,所以反函数,.故答案为:,【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.6.方程的解为________【答案】2【解析】【分析】由题得,即,解方程再检验即得解.【详解】经检验,当x=10时,原方程没有意义,x=2是原方程的解.故答案为:2【点睛】本题主要考查对数函数的运算和对数方程的解法,考查对数函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.在的二项展开式中,所有项的系数之和为81,则常数项为________【答案】8【解析】【分析】由题得,所以n=4,再利用二项式展开式的通项求常数项得解.【详解】由题得,所以n=4,二项展开式的通项为,令.所以常数项为.故答案为:8【点睛】本题主要考查二项式展开式的系数和问题,考查二项式展开式特定项的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.8.已知离心率为2的双曲线的焦点到最近准线的距离等于3,则该双曲线的焦距为________【答案】8【解析】【分析】,且,解方程组即得,,即得双曲线的焦距.【详解】,且,∴,,所以该双曲线的焦距为8.故答案为:8【点睛】本题主要考查双曲线的简单几何性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.9.已知一个圆柱的表面积和体积都等于,则其轴截面的面积为________【答案】36【解析】【分析】由题得,,再求其轴截面的面积.【详解】由题得,,所以.故答案为:36【点睛】本题主要考查圆柱的表面积和体积的计算,考查圆柱轴截面的面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.胡涂涂同学用一颗均匀的骰子来定义递推数列,首先,他令,当时,他投一次骰子,若所得点数大于,即令,否则,令,则的概率为______(结果用最简分数表示).【答案】【解析】【分析】胡涂涂同学掷了3轮,要使得,分两种情况讨论,再利用古典概型求的概率.【详解】胡涂涂同学掷了3轮,要使得,有两种情况,① 一轮点数为1,二轮点数为1、2、3、4、5、6,三轮点数为1;② 一轮点数为2、3、4、5、6,二轮点数为1、2,三轮点数为1;∴由古典概型得所求的概率为.故答案为:【点睛】本题主要考查排列组合的应用,考查古典概型,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.11.已知用“斜二测”画图法画一个水平放置的圆时,所得图形是椭圆,则该椭圆的离心率为_______【答案】【解析】【分析】为了简化问题,我们可以设单位圆x²+y²=1,先求出单位圆直观图的方程(x-y)²+8y²=1. 画出圆的外切正方形,和椭圆的外切平行四边形,椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.【详解】为了简化问题,我们可以设单位圆x²+y²=1,即圆上的点P(cosθ,sinθ),第一步变换,到它在x轴的投影的距离缩短一半,即(cosθ,0.5sinθ),第二步变换,绕着投影点顺时针旋转45°,即(cosθ+sinθ,sinθ),所以据此得到单位圆的直观图的参数方程为,x=cosθ+sinθ,y=sinθ,θ为参数,消去参数可得方程为,(x-y)²+8y²=1.得到单位圆的直观图后,和上面一样,我们画出圆的外切正方形,和椭圆的外切平行四边形,当然就相当完美了!A、B处均与椭圆相切,并且可以轻易发现,椭圆的长轴其实已经不在x轴上了该椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.椭圆上的点(cosθ+sinθ,sinθ)到原点的距离的平方为=,所以,所以故答案为:【点睛】本题主要考查直观图的画法,考查圆的直观图的方程的求法,考查三角恒等变换和三角函数的最值,考查椭圆离心率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.设,、R,关于函数()的下列结论:①是的零点;②时,函数取得最小值;③函数的最小值是3;④中有且仅有一个是错误的,则________【答案】-17【解析】【分析】根据假设法推理可知,①错误,②③④正确,所以,且,且,解方程组得.【详解】根据假设法推理可知,①错误,②③④正确,由②得,(因为如果ac<0,则函数在定义域内没有最小值,如果a<0,c<0,则函数在定义域内也没有最小值.)且,且,解方程组得,.故答案为:-17【点睛】本题主要考查分析推理,考查函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.二.选择题13.已知无穷等比数列的各项的和为,则“”是“”的()A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分也非必要条件【答案】A【分析】先根据已知得,,所以,因为S<0,所以0.再利用充要条件的定义判断得解. 【详解】由题得,,∴,因为S<0,所以0.∴“”是“”的是充要条件.故答案为:A【点睛】本题主要考查无穷等比数列的前n项和,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知关于、的方程组:(其中、)无解,则必有()A. B. C. D.【答案】B【解析】【分析】由方程组得x+b(1-ax)=1,所以(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,再利用基本不等式分析得解.【详解】由方程组得x+b(1-ax)=1,所以方程(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,∴,即.故选:B【点睛】本题主要考查基本不等式,考查解方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知,则函数(R)与(R)图像的交点不可能()A. 只有B. 在直线上C. 多于三个D. 在第二象限【答案】C【分析】结合函数(R)与(R)图像与单调性,分四个象限讨论每一个象限交点的最多个数得解. 【详解】结合函数(R)与(R)图像与单调性可知,在第一象限,最多有2个交点,在第二象限,最多有1个交点,在第三、第四象限,因为函数(R)在第三、四象限没有图像,所以它们的图像在第三、四象限没有交点,∴最多只有3个交点.故选:C【点睛】本题主要考查幂函数和指数函数的图像和性质,考查函数的图像的交点问题,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.16.已知是周期为4的奇函数,且当时,,方程在区间内有唯一解,则方程在区间上所有解的和为()A. B. 036162 C. 3053234 D. 3055252【答案】D【解析】【分析】在同一个坐标系下作出函数y=的图像,分析得到在均有三个解,,且均有对称性,所以在区间上所有解的和为,【详解】结合图像对称性,可知,在(0,2上有三个交点,左边两个交点的横坐标的和为2×1=2,第三个交点的横坐标为2,所以在(0,2上的三个解的和为2+2=4,在(2,4上有三个交点,左边两个交点的横坐标的和为2×3=6,第三个交点的横坐标为4,所以在(2,4上的三个解的和为6+4=10,所以结合图像对称性,可知,在均有三个解,,且均有对称性,∴在区间上所有解的和为,故选:D【点睛】本题主要考查三角函数的图像和性质,考查函数的奇偶性、周期性和对称性,考查函数的零点问题,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.三.解答题17.如图,三棱锥中,、、、均为直角,,.(1)求三棱锥的体积;(2)求异面直线与所成角的大小.【答案】(1) (2)【解析】【分析】(1)由题得AB⊥平面BCD,先求出,再求出三棱锥的体积.(2) 以点B为坐标原点,以BD 所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,利用向量法求异面直线与所成角的大小.【详解】(1)由题得AB⊥平面BCD,AD=,BD=,所以,所以三棱锥的体积.(2)如图所示,以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,则B(0,0,0),A(0,0,1),,所以,所以异面直线与所成角的余弦,∴异面直线与所成角为.【点睛】本题主要考查三棱锥体积的计算,考查异面直线所成的角的计算,意在考查学生对这些知识的理解掌握水平和空间观察想象分析推理能力.18.设R,函数.(1)若,解不等式;(2)求所有的,使得在区间上单调递增.【答案】(1) (2)【解析】【分析】(1)由题得再解不等式得解.(2)分类讨论,和,数形结合分析得到使得在区间上单调递增的a的取值范围.【详解】(1)由题得.(2)若,即,二次函数y=,在区间上单调递增.∴;若,即或,当,;当,,明显符合,所以此时综上,.【点睛】本题主要考查对数函数的图像和性质,考查对数函数不等式的解法,考查函数的单调性,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.19.如图,某小区要建四边形的花坛,两邻边用夹角为150°的两面墙,另两边是长度均为8米的篱笆、.(1)若,平方米,求的长(结果精确到0.01米);(2)若要求,求花坛面积的最大值(结果精确到0.01平方米).【答案】(1)10.05 (2) 平方米【解析】【分析】(1)设,由正弦定理得,即①,因为所以②,解①②即得解.(2) 连接BD,显然,再利用余弦定理和基本不等式求出,再求花坛面积的最大值.【详解】(1)设,由正弦定理得,∴,因为所以②,解①②得.所以由正弦定理得.(2)连接BD,显然,,由余弦定理得∴,即最大值为平方米.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算和最值,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知抛物线,直线、(),与恰有一个公共点,与恰有一个公共点,与交于点.(1)当时,求点到准线的距离;(2)当与不垂直时,求的取值范围;(3)设是平面上一点,满足且,求和的夹角大小.【答案】(1) (2) (3)【解析】【分析】(1),,因为与恰有一个公共点,,所以,再求出抛物线的准线方程和点到准线的距离.(2)由可得,所以.(3) 由题得,联立与得,联立与得,再求出,根据,求得,解方程得,所以,即得和的夹角为.【详解】(1),,∵与恰有一个公共点,,∴,因为抛物线准线为,所以点到准线的距离.(2)由可得,,消去得,整理得,∴(3)由题得,联立与得,联立与得,∵,∴,与联立得,由第(2)问结论,,,消去a得,∴,∵,据此,∴,解得,,∴和的夹角为.【点睛】本题主要考查直线的位置关系,考查直线和抛物线的位置关系,考查平面向量的运算和直线夹角的计算,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.设,若数列满足:对所有,,且当时,,则称为“数列”,设R,函数,数列满足,().(1)若,而是数列,求的值;(2)设,证明:存在,使得是数列,但对任意,都不是数列;(3)设,证明:对任意,都存在,使得是数列.【答案】(1) (2)见证明;(3)见证明【解析】【分析】(1),,分两种情况讨论得到.(2) 先证明当,只需,即满足,且当,,所以是数列,,所以不是数列;再证明当,只需,即满足,且当,,所以是数列,,所以不是数列.(3)通过归纳得到:当m为奇数,在,有解,存在;当m为偶数,在,有解,存在.再结合函数映射性质可知,当时,,所以对任意,都存在,使得是数列.【详解】(1),,当,,;当,,,不符;综上所述,.(2)当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;综上,存在,使得是数列,但对任意,都不是数列.(3),当,有解,存在;,当,有解,存在;,当,有解,存在;,当,有解,存在;……,当m为奇数,在,有解,存在;当m为偶数,在,有解,存在;结合函数映射性质可知,当时,,∴对任意,都存在,使得是数列.【点睛】本题主要考查对新定义的理解掌握,考查利用新定义解决问题的能力,考查数列性质的运用和证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2018届上海市华东师范大学第二附属中学高三下学期开学考试数学试题(解析版)

2018届上海市华东师范大学第二附属中学高三下学期开学考试数学试题(解析版)

第三个交点的横坐标为 2,所以在(0,2 上的三个解的和为 2+2=4,
在(2,4 上有三个交点,左边两个交点的横坐标的和为 2×3=6,第三个交点的横坐标
为 4,所以在(2,4 上的三个解的和为 6+4=10,
所以结合图像对称性,可知,在
均有三个解, ,且均有对称性,
∴在区间
上所有解的和为

故选:D
2018 届上海市华东师范大学第二附属中学高三下学期开学考 试数学试题
一、单选题
1.已知无穷等比数列 的各项的和为 ,则“
”是“ ”的( )
A.充要条件 C.必要非充分条件 【答案】A
B.充分非必要条件 D.既非充分也非必要条件
【解析】先根据已知得

再利用充要条件的定义判断得解. 【详解】
,所以
,因为 S<0,所以 0.
8.已知抛物线
,直线


), 与
恰有一个公共点 , 与 恰有一个公共点 , 与 交于点 .
(1)当
时,求点 到 准线的距离;
(2)当 与 不垂直时,求 的取值范围;
(3)设 是平面上一点,满足

,求 和 的夹角大小.
【答案】(1) (2)
(3)
【解析】(1)

,因为 与 恰有一个公共
点 ,,所以
,再求出抛物线的准线方程和点 到 准线的距离.(2)由 可得
,否则,令
,则
的概率为______(结果用最简分数表示).
【答案】 【解析】胡涂涂同学掷了 3 轮,要使得 的概率. 【详解】
,分两种情况讨论,再利用古典概型求
胡涂涂同学掷了 3 轮,要使得
,有两种情况,① 一轮点数为 1,二轮点数为 1、

上海市华东师范大学第二附属中学2018届高三下学期开学考试数学试题(解析版)

上海市华东师范大学第二附属中学2018届高三下学期开学考试数学试题(解析版)

华二附中高三年级第二学期开学考数学试卷2018.03一.填空题1.设全集,若集合,,则______【答案】【解析】【分析】先求出,再求得解.【详解】由题得={···,-3,-2,,2,3,4,5,···},所以.故答案为:【点睛】本题主要考查集合补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.计算:______【答案】【解析】【分析】设,求出,即得解.【详解】∵,设.所以所以.所以.故答案为:【点睛】本题主要考查反三角函数的计算,考查同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.已知向量,,则________【答案】13【解析】【分析】由题得,即得.【详解】由题得,∴.故答案为:13【点睛】本题主要考查空间向量的坐标运算和空间向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.4.如果复数满足,那么________【答案】1【解析】【分析】由题得,所以方程没有实数根,由求根公式求出z的值,再求|z|的大小得解. 【详解】∵,所以,所以方程没有实数根,故答案为:1【点睛】本题主要考查复数方程的解法和复数模的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.()的反函数________【答案】()【解析】【分析】设(),求出,再求出原函数的值域即得反函数.【详解】设(),所以,因为x≥0,所以,所以.因为x≥0,所以y≥0,所以反函数,.故答案为:,【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.6.方程的解为________【答案】2【解析】【分析】由题得,即,解方程再检验即得解.【详解】经检验,当x=10时,原方程没有意义,x=2是原方程的解.故答案为:2【点睛】本题主要考查对数函数的运算和对数方程的解法,考查对数函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.在的二项展开式中,所有项的系数之和为81,则常数项为________【答案】8【解析】【分析】由题得,所以n=4,再利用二项式展开式的通项求常数项得解.【详解】由题得,所以n=4,二项展开式的通项为,令.所以常数项为.故答案为:8【点睛】本题主要考查二项式展开式的系数和问题,考查二项式展开式特定项的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.8.已知离心率为2的双曲线的焦点到最近准线的距离等于3,则该双曲线的焦距为________【答案】8【解析】【分析】,且,解方程组即得,,即得双曲线的焦距.【详解】,且,∴,,所以该双曲线的焦距为8.故答案为:8【点睛】本题主要考查双曲线的简单几何性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.9.已知一个圆柱的表面积和体积都等于,则其轴截面的面积为________【答案】36【解析】【分析】由题得,,再求其轴截面的面积.【详解】由题得,,所以.故答案为:36【点睛】本题主要考查圆柱的表面积和体积的计算,考查圆柱轴截面的面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.胡涂涂同学用一颗均匀的骰子来定义递推数列,首先,他令,当时,他投一次骰子,若所得点数大于,即令,否则,令,则的概率为______(结果用最简分数表示).【答案】【解析】【分析】胡涂涂同学掷了3轮,要使得,分两种情况讨论,再利用古典概型求的概率.【详解】胡涂涂同学掷了3轮,要使得,有两种情况,① 一轮点数为1,二轮点数为1、2、3、4、5、6,三轮点数为1;② 一轮点数为2、3、4、5、6,二轮点数为1、2,三轮点数为1;∴由古典概型得所求的概率为.故答案为:【点睛】本题主要考查排列组合的应用,考查古典概型,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.11.已知用“斜二测”画图法画一个水平放置的圆时,所得图形是椭圆,则该椭圆的离心率为_______【答案】【解析】【分析】为了简化问题,我们可以设单位圆x²+y²=1,先求出单位圆直观图的方程(x-y)²+8y²=1. 画出圆的外切正方形,和椭圆的外切平行四边形,椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.【详解】为了简化问题,我们可以设单位圆x²+y²=1,即圆上的点P(cosθ,sinθ),第一步变换,到它在x轴的投影的距离缩短一半,即(cosθ,0.5sinθ),第二步变换,绕着投影点顺时针旋转45°,即(cosθ+sinθ,sinθ),所以据此得到单位圆的直观图的参数方程为,x=cosθ+sinθ,y=sinθ,θ为参数,消去参数可得方程为,(x-y)²+8y²=1.得到单位圆的直观图后,和上面一样,我们画出圆的外切正方形,和椭圆的外切平行四边形,当然就相当完美了!A、B处均与椭圆相切,并且可以轻易发现,椭圆的长轴其实已经不在x轴上了该椭圆经过了适当旋转,OC即为椭圆的a,OD即为椭圆的b,根据椭圆上的点到原点的距离最大为a,最小为b,我们可以求出a和b,从而推导出离心率.椭圆上的点(cosθ+sinθ,sinθ)到原点的距离的平方为=,所以,所以故答案为:【点睛】本题主要考查直观图的画法,考查圆的直观图的方程的求法,考查三角恒等变换和三角函数的最值,考查椭圆离心率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.设,、R,关于函数()的下列结论:①是的零点;②时,函数取得最小值;③函数的最小值是3;④中有且仅有一个是错误的,则________【答案】-17【解析】【分析】根据假设法推理可知,①错误,②③④正确,所以,且,且,解方程组得.【详解】根据假设法推理可知,①错误,②③④正确,由②得,(因为如果ac<0,则函数在定义域内没有最小值,如果a<0,c<0,则函数在定义域内也没有最小值.)且,且,解方程组得,.故答案为:-17【点睛】本题主要考查分析推理,考查函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.二.选择题13.已知无穷等比数列的各项的和为,则“”是“”的()A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分也非必要条件【答案】A【解析】【分析】先根据已知得,,所以,因为S<0,所以0.再利用充要条件的定义判断得解. 【详解】由题得,,∴,因为S<0,所以0.∴“”是“”的是充要条件.故答案为:A【点睛】本题主要考查无穷等比数列的前n项和,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知关于、的方程组:(其中、)无解,则必有()A. B. C. D.【答案】B【解析】【分析】由方程组得x+b(1-ax)=1,所以(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,再利用基本不等式分析得解.【详解】由方程组得x+b(1-ax)=1,所以方程(1-ab)x=1-b无解.所以当ab=1,且a,b不同时为1,其中、,∴,即.故选:B【点睛】本题主要考查基本不等式,考查解方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知,则函数(R)与(R)图像的交点不可能()A. 只有B. 在直线上C. 多于三个D. 在第二象限【答案】C【解析】【分析】结合函数(R)与(R)图像与单调性,分四个象限讨论每一个象限交点的最多个数得解. 【详解】结合函数(R)与(R)图像与单调性可知,在第一象限,最多有2个交点,在第二象限,最多有1个交点,在第三、第四象限,因为函数(R)在第三、四象限没有图像,所以它们的图像在第三、四象限没有交点,∴最多只有3个交点.故选:C【点睛】本题主要考查幂函数和指数函数的图像和性质,考查函数的图像的交点问题,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.16.已知是周期为4的奇函数,且当时,,方程在区间内有唯一解,则方程在区间上所有解的和为()A. B.036162 C. 3053234 D. 3055252【答案】D【解析】【分析】在同一个坐标系下作出函数y=的图像,分析得到在均有三个解,,且均有对称性,所以在区间上所有解的和为,【详解】结合图像对称性,可知,在(0,2上有三个交点,左边两个交点的横坐标的和为2×1=2,第三个交点的横坐标为2,所以在(0,2上的三个解的和为2+2=4,在(2,4上有三个交点,左边两个交点的横坐标的和为2×3=6,第三个交点的横坐标为4,所以在(2,4上的三个解的和为6+4=10,所以结合图像对称性,可知,在均有三个解,,且均有对称性,∴在区间上所有解的和为,故选:D【点睛】本题主要考查三角函数的图像和性质,考查函数的奇偶性、周期性和对称性,考查函数的零点问题,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.三.解答题17.如图,三棱锥中,、、、均为直角,,.(1)求三棱锥的体积;(2)求异面直线与所成角的大小.【答案】(1) (2)【解析】【分析】(1)由题得AB⊥平面BCD,先求出,再求出三棱锥的体积.(2) 以点B为坐标原点,以BD 所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,利用向量法求异面直线与所成角的大小.【详解】(1)由题得AB⊥平面BCD,AD=,BD=,所以,所以三棱锥的体积.(2)如图所示,以点B为坐标原点,以BD所在的直线为y轴,以BA所在直线为z轴建立空间直角坐标系,则B(0,0,0),A(0,0,1),,所以,所以异面直线与所成角的余弦,∴异面直线与所成角为.【点睛】本题主要考查三棱锥体积的计算,考查异面直线所成的角的计算,意在考查学生对这些知识的理解掌握水平和空间观察想象分析推理能力.18.设R,函数.(1)若,解不等式;(2)求所有的,使得在区间上单调递增.【答案】(1) (2)【解析】【分析】(1)由题得再解不等式得解.(2)分类讨论,和,数形结合分析得到使得在区间上单调递增的a的取值范围.【详解】(1)由题得.(2)若,即,二次函数y=,在区间上单调递增.∴;若,即或,当,;当,,明显符合,所以此时综上,.【点睛】本题主要考查对数函数的图像和性质,考查对数函数不等式的解法,考查函数的单调性,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.19.如图,某小区要建四边形的花坛,两邻边用夹角为150°的两面墙,另两边是长度均为8米的篱笆、.(1)若,平方米,求的长(结果精确到0.01米);(2)若要求,求花坛面积的最大值(结果精确到0.01平方米).【答案】(1)10.05 (2) 平方米【解析】【分析】(1)设,由正弦定理得,即①,因为所以②,解①②即得解.(2) 连接BD,显然,再利用余弦定理和基本不等式求出,再求花坛面积的最大值.【详解】(1)设,由正弦定理得,∴,因为所以②,解①②得.所以由正弦定理得.(2)连接BD,显然,,由余弦定理得∴,即最大值为平方米.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算和最值,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知抛物线,直线、(),与恰有一个公共点,与恰有一个公共点,与交于点.(1)当时,求点到准线的距离;(2)当与不垂直时,求的取值范围;(3)设是平面上一点,满足且,求和的夹角大小.【答案】(1) (2) (3)【解析】【分析】(1),,因为与恰有一个公共点,,所以,再求出抛物线的准线方程和点到准线的距离.(2)由可得,所以.(3) 由题得,联立与得,联立与得,再求出,根据,求得,解方程得,所以,即得和的夹角为.【详解】(1),,∵与恰有一个公共点,,∴,因为抛物线准线为,所以点到准线的距离.(2)由可得,,消去得,整理得,∴(3)由题得,联立与得,联立与得,∵,∴,与联立得,由第(2)问结论,,,消去a得,∴,∵,据此,∴,解得,,∴和的夹角为.【点睛】本题主要考查直线的位置关系,考查直线和抛物线的位置关系,考查平面向量的运算和直线夹角的计算,考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.设,若数列满足:对所有,,且当时,,则称为“数列”,设R,函数,数列满足,().(1)若,而是数列,求的值;(2)设,证明:存在,使得是数列,但对任意,都不是数列;(3)设,证明:对任意,都存在,使得是数列.【答案】(1) (2)见证明;(3)见证明【解析】【分析】(1),,分两种情况讨论得到.(2) 先证明当,只需,即满足,且当,,所以是数列,,所以不是数列;再证明当,只需,即满足,且当,,所以是数列,,所以不是数列.(3)通过归纳得到:当m为奇数,在,有解,存在;当m为偶数,在,有解,存在.再结合函数映射性质可知,当时,,所以对任意,都存在,使得是数列.【详解】(1),,当,,;当,,,不符;综上所述,.(2)当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,…,既不是数列,也不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;当,,,,,,…,只需,即满足,且当,,∴是数列,,∴不是数列;综上,存在,使得是数列,但对任意,都不是数列.(3),当,有解,存在;,当,有解,存在;,当,有解,存在;,当,有解,存在;……,当m为奇数,在,有解,存在;当m为偶数,在,有解,存在;结合函数映射性质可知,当时,,∴对任意,都存在,使得是数列.【点睛】本题主要考查对新定义的理解掌握,考查利用新定义解决问题的能力,考查数列性质的运用和证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

上海市华东师范大学第二附属中学2018-2019学年高一下学期期末数学试题与详细解析

上海市华东师范大学第二附属中学2018-2019学年高一下学期期末数学试题与详细解析

华师大二附中2021届高一第二学期期末数学考试试卷一、填空题1.函数1arcsin ,22y x x ⎛⎫⎡⎤=∈-- ⎪⎢⎥ ⎪⎣⎦⎝⎭的值域是______.2.数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a =_____.3.()cos f x x x =+的值域是______.4.“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).5.已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S =;6.已知ABC ∆的三边分别是,,a b c ,且面积2224a b c S +-=,则角C =__________.7.已知数列{}n a 中,其中199199a =,11()a n n a a -=,那么99100log a =________8.等比数列{}n a 中首项12a =,公比()*+13,++720,,n n m q a a a n m N n m =+⋅⋅⋅=∈<,则n m +=______.9.在△ABC 中,222sin sin 2018sin A C B +=,则2(tan tan )tan tan tan tan A C B A B C +=++________.10.已知数列{}n a 的通项公式为22lg 1,1,2,3,,3n n a n S n n ⎛⎫=+=⋅⋅⋅ ⎪+⎝⎭是数列的前n 项和,则lim n n S →∞=______.二、选择题11.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A. B.C. D.12.已知函数()222cos sin 2f x x x =-+,则A.()f x 的最小正周期为π,最大值为3B.()f x 的最小正周期为π,最大值为4C.()f x 的最小正周期为2π,最大值为3D.()f x 的最小正周期为2π,最大值为413.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A.在区间35[,]44ππ上单调递增 B.在区间3[,]4ππ上单调递减C.在区间53[,]42ππ上单调递增 D.在区间3[,2]2ππ上单调递减14.已知函数215cos 36k y x ππ+⎛⎫=- ⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[],3a a +上要使函数值54出现的次数不少于4次且不多于8次,则k 值为()A.2或3B.4或3C.5或6D.8或7三、解答题15.在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.16.已知()1221*,,0n n n n n n u a a b a b ab b n N a b ---=+++⋅⋅⋅++∈>.(1)当a b =时,求数列{}n u 前n 项和n S ;(用a 和n 表示);(2)求1lim nn n u u →∞-.17.已知方程arctan arctan(2)2xx a +-=;(1)若4a π=,求arccos 2x的值;(2)若方程有实数解,求实数a 的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求αβ+的最大值.18.(1)证明:()3cos 34cos 3cos x x x =-;(2)证明:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()111112,,,n n n n n n n f x x a x a x a a a ---=++⋅⋅⋅++⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)利用(2)的结论判断()*cos 16,7m m m N π≤≤∈是否为有理数?华师大二附中2021届高一第二学期期末数学考试试卷一、填空题1.函数1arcsin ,22y x x ⎛⎫⎡⎤=∈-- ⎪⎢⎥ ⎪⎣⎦⎝⎭的值域是______.【答案】,36ππ⎡⎤--⎢⎥⎣⎦【解析】【分析】根据arcsin y x =的单调性,结合x 的范围,得到答案.【详解】函数arcsin y x =是单调递增函数,所以32x =-时,arcsin 23y π⎛⎫=-=- ⎪ ⎪⎝⎭,12x =-时,1arcsin 26y π⎛⎫=-=- ⎪⎝⎭,所以函数的值域为:,36y ππ⎡⎤∈--⎢⎥⎣⎦.故答案为:,36ππ⎡⎤--⎢⎥⎣⎦【点睛】本题考查反三角函数的单调性,根据函数的单调性求值域,属于简单题.2.数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a =_____.【答案】()()3122n n n ⎧=⎪⎨≥⎪⎩【解析】【分析】根据n a 和n S 之间的关系,应用公式()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩得出结果【详解】当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦;∴()()3122n n a n n ⎧=⎪=⎨≥⎪⎩故答案为()()3122n nn ⎧=⎪⎨≥⎪⎩【点睛】本题考查了n a 和n S 之间的关系式,注意当1n =和2n ≥时要分开讨论,题中的数列非等差数列.本题属于基础题3.()cos f x x x =+的值域是______.【答案】[]22-,【解析】【分析】对()f x 进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】()cos f x x x=+12sin cos 22x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭,因为[]sin 1,16x π⎛⎫+∈- ⎪⎝⎭所以()f x 的值域为[]22-,.故答案为:[]22-,【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.4.“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).【答案】必要非充分【解析】【分析】通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【详解】因为数列1234,,,a a a a 依次成等差数列,所以根据等差数列下标公式,可得1423a a a a +=+,当121a a ==,342a a ==时,满足1423a a a a +=+,但不能得到数列1234,,,a a a a 依次成等差数列所以综上,“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.5.已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S =;【答案】60【解析】【详解】若数列{a n }为等差数列则S m ,S 2m -S m ,S 3m -S 2m 仍然成等差数列.所以S 10,S 20-S 10,S 30-S 20仍然成等差数列.因为在等差数列{a n }中有S 10=10,S 20=30,()302201030S ⨯=+-所以S 30=60.故答案为60.6.已知ABC ∆的三边分别是,,a b c ,且面积2224a b c S +-=,则角C =__________.【答案】045【解析】试题分析:由2224a b c S +-=,可得2221sin 24a b c ab C +-=,整理得222sin cos 2a b c C C ab+-==,即tan 1C =,所以045C =.考点:余弦定理;三角形的面积公式.7.已知数列{}n a 中,其中199199a =,11()a n n a a -=,那么99100log a =________【答案】1【解析】【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由11()a n n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,∴19999991001log (99)199a =⋅=.故答案为1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.8.等比数列{}n a 中首项12a =,公比()*+13,++720,,n n m q a a a n m N n m =+⋅⋅⋅=∈<,则n m +=______.【答案】9【解析】【分析】根据等比数列求和公式,将+1++720n n m a a a +⋅⋅⋅=进行转化,然后得到关于n 和m 的等式,结合*,,n m N n m ∈<,讨论出n 和m 的值,得到答案.【详解】因为等比数列{}n a 中首项12a =,公比3q =,所以1,,,n n m a a a +⋅⋅⋅成首项为123n n a -=⨯,公比为3的等比数列,共1n m -+项,所以()11+12313++27013n m n n n m a a a --+⨯-+⋅⋅⋅==-整理得11720313n m n -+--=因为*,,n m N n m∈<所以可得,等式右边为整数,故等式左边也需要为整数,则13n -应是720的约数,所以可得133,9,27n -=,所以1,2,3n =,当1n =时,得3721m =,此时*m N ∉当2n =时,得13241m -=,此时*m N ∉当3n =时,得2381m -=,此时6m =,所以9m n +=,故答案为:9.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.9.在△ABC 中,222sin sin 2018sin A C B +=,则2(tan tan )tan tan tan tan A C BA B C +=++________.【答案】22017【解析】【详解】因为222sin sin 2018sin A C B+=所以2222018a c b +=⋅注意到:tan tan tan tan tan tan A B C A B C++=⋅⋅故()2tan tan tan tan tan tan A C B A B C+++()2tan tan tan 11tan tan tan tan tan tan A C B B A B C A C +⎛⎫==+ ⎪⋅⋅⎝⎭22222222sin 1222sin sin cos 20182017B b ac b A C B ac a c b b b ⎛⎫=⋅=== ⎪⋅+--⎝⎭.故答案为2201710.已知数列{}n a 的通项公式为22lg 1,1,2,3,,3n n a n S n n ⎛⎫=+=⋅⋅⋅ ⎪+⎝⎭是数列的前n 项和,则lim n n S →∞=______.【答案】lg 3【解析】【分析】对数列{}n a 的通项公式22lg 13n a n n ⎛⎫=+ ⎪+⎝⎭进行整理,再求其前n 项和,利用对数运算规则,可得到n S ,从而求出lim n n S →∞,得到答案.【详解】222232lg 1lg 33n n n a n n n n ++⎛⎫=+= ⎪++⎝⎭()()()12lg 3n n n n ++=+所以123n nS a a a a =+++⋅⋅⋅+()()()12233445lg lg lg lg 1425363n n n n ++⨯⨯⨯=+++⋅⋅⋅+⨯⨯⨯+()13131lg lg 331n n n n⎛⎫+ ⎪+⎝⎭==++所以131lg lg 331lim lim n n n S n n→∞→∞⎛⎫+ ⎪⎝⎭==+.故答案为:lg 3.【点睛】本题考查对数运算公式,由数列的通项求前n 项和,数列的极限,属于中档题.二、选择题11.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以1(2,)n n a n n N -+=≥∈,又1a f =,则7781a a q f ===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.12.已知函数()222cos sin 2f x x x =-+,则A.()f x 的最小正周期为π,最大值为3B.()f x 的最小正周期为π,最大值为4C.()f x 的最小正周期为2π,最大值为3D.()f x 的最小正周期为2π,最大值为4【答案】B 【解析】【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.【详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+,所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B.【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.13.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A.在区间35[,]44ππ上单调递增 B.在区间3[,]4ππ上单调递减C.在区间53[,42ππ上单调递增 D.在区间3[,2]2ππ上单调递减【答案】A 【解析】【分析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.【详解】由函数图象平移变换的性质可知:将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令1k =可得一个单调递增区间为:35,44ππ⎡⎤⎢⎥⎣⎦.函数的单调递减区间满足:()322222k x k k Z ππππ+≤≤+∈,即()344k x k k Z ππππ+≤≤+∈,令1k =可得一个单调递减区间为:57,44ππ⎡⎤⎢⎥⎣⎦,本题选择A 选项.【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.14.已知函数215cos 36k y x ππ+⎛⎫=-⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[],3a a +上要使函数值54出现的次数不少于4次且不多于8次,则k 值为()A.2或3 B.4或3C.5或6D.8或7【答案】A 【解析】【分析】根据题意先表示出函数的周期,然后根据函数值54出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于k 的不等式,从而得到k 的范围,结合k ∈N ,得到答案.【详解】函数215cos 36k y x ππ+⎛⎫=-⎪⎝⎭,所以可得2621213T k k ππ==++,因为在区间[],3a a +上,函数值54出现的次数不少于4次且不多于8次,所以5215cos 436k x ππ+⎛⎫=- ⎪⎝⎭得121cos 436k x ππ+⎛⎫=- ⎪⎝⎭即21cos 36k y x ππ+⎛⎫=-⎪⎝⎭与14y =的图像在区间[],3a a +上的交点个数大于等于4,小于等于8,而21cos 36k y x ππ+⎛⎫=-⎪⎝⎭与14y =的图像在一个周期T 内有2个,所以2343T T ≤⎧⎨≥⎩,即6232164321k k ⎧⨯≤⎪⎪+⎨⎪⨯≥⎪+⎩解得3722k ≤≤,又因k ∈N ,所以得2k =或者3k =,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.三、解答题15.在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】(1)∠A =π3(2)AC边上的高为2【解析】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B7=.由正弦定理得sin sin a b A B =⇒7sin A 437sin A=2.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A=112727⎛⎫⨯-+⨯⎪⎝⎭=14.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7142⨯=,∴AC边上的高为2.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.16.已知()1221*,,0nn n n n n u a ab a b ab b n N a b ---=+++⋅⋅⋅++∈>.(1)当a b =时,求数列{}n u 前n 项和n S ;(用a 和n 表示);(2)求1limnn n u u →∞-.【答案】(1)1a =时,()3,12n n n S a +=≠时,()()()21221221n n n n a n a a a S a +++-+-+=-;(2)1,lim,n n n a a bu b a b u →∞-≥⎧=⎨<⎩;【解析】【分析】(1)当a b =时,求出()1nn u n a =+,再利用错位相减法,求出{}n u 的前n 项和n S ;(2)求出1nn u u -的表达式,对a ,b 的大小进行分类讨论,从而求出数列的极限.【详解】(1)当a b =时,可得()1nn u n a =+,当1a =时,得到1n u n =+,所以()32n n n S +=,当1a ≠时,所以()2312341n n n S a a a nan a -=+++⋅⋅⋅+++,两边同乘a 得()23412341nn n aS a a a na n a+=+++⋅⋅⋅+++上式减去下式得()()231121nn n a S a a a a n a+-=+++⋅⋅⋅+-+()()()11111n n n a a a S a n a a+--=+-+-,所以()()()121111n n n a a a n a S aa +--+=+--()()()21221221n n n a n a a a a +++-+-+=-所以综上所述,1a =时,()32n n n S +=;1a ≠时,()()()21221221n n nn a n a a aS a +++-+-+=-.(2)由(1)可知当a b =时,()1nn u n a=+则()111lim lim n nn n n n n a u u na -→∞→∞-+=()1lim n a n a n →∞+==;当a b ¹时,11nn n nn u a ab ab b --=++⋅⋅⋅++21nnb b b a a a a ⎡⎤⎛⎫⎛⎫=+++⋅⋅⋅+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()111111n n n n b aa ab b a ba+++⎛⎫- ⎪⎝⎭==---则111n n n n nn u a b u a b ++--=-若0a b >>,111limlim lim 1nn n n n n nn n n n b a b u a b a a u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭若0b a >>,111limlim lim 1nn n n n n nn n n n b a b u a b ab u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭所以综上所述1,lim ,n n n a a bu b a b u →∞-≥⎧=⎨<⎩.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.17.已知方程arctanarctan(2)2xx a +-=;(1)若4a π=,求arccos 2x 的值;(2)若方程有实数解,求实数a 的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求αβ+的最大值.【答案】(1)π或3π;(2)[arctan;(3)19;【解析】试题分析:(1) 4a π=时,由已知得到()22121212xxx x x +-=⇒=---或;(2)方程有实数解即a 在()arctan arctan 22xx +-的值域上,(3)根据二次函数的性质列不等式组得出tana 的范围,利用根与系数的关系得出α+β的最值.试题解析:(1)()()2π2arctan arctan 212122412xxx x x x x +-+-=⇒=⇒=---或,arccos =2x π或3π;(2)()()222arctan arctan 2tan tan ,4,2261012xxx t x a a a t x x x t t +-+-=⇒=⇒==---+-tan a ∴∈arctan a ⎡∴∈⎢⎣(3)因为方程在区间[]5,15上有两个相异的解α、β,所以[]411,1,441119x αβαβ-∈--∴-+-≥-∴+≤18.(1)证明:()3cos 34cos 3cos x x x =-;(2)证明:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()111112,,,n n n n n n n f x x a x a x a a a ---=++⋅⋅⋅++⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)利用(2)的结论判断()*cos16,7m m m N π≤≤∈是否为有理数?【答案】(1)见解析;(2)见解析;(3)不是【解析】【分析】(1)()()cos 3cos 2x x x =+,利用两角和的正弦和二倍角公式,进行证明;(2)对n 分奇偶,即21n k =+和2n k =两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将cos7m π表示出来,然后判断其每一项都为无理数,从而得到答案.【详解】(1)()()cos 3cos 2cos 2cos sin 2sin x x x x x x x=+=-()222cos 1cos 2sin cos x x x x =--()322cos cos 21cos cos x x x x =---34cos 3cos x x=-所以原式得证.(2)n 为奇数时,3n =时,()()2323123cos 3cos 2cos cos cos x f x x a x a x a ==+++,其中30a =,成立21n k =-时,()()21cos 21cos k k x f x --=222122*********cos cos cos cos k k k k k k x a x a x a x a ------=+++⋅⋅⋅++,其中210k a -=,成立21n k =+时,()()21cos 21cos k k x f x ++=221221122212cos cos cos cos k k k k k k x a x a x a x a +-+=+++⋅⋅⋅++,其中210k a +=,成立,则当23n k =+时,()()()()cos 23cos 212cos 21cos 2sin 21sin 2k x k x x k x x k x +=++=+-+⎡⎤⎣⎦()()()1cos 21cos 2cos 21cos 232k x x k x k x =+---+⎡⎤⎣⎦所以得到()()()cos 232cos 21cos 2cos 21k x k x x k x+=+--2212212122212221222312222122cos cos cos cos 2cos 12cos cos cos cos k k k k k k k k k k k k x a x a x a x a x x a x a x a x a +-+------⎡⎤⎡⎤=+++⋅⋅⋅++-⎣⎦⎣⎦⎡⎤-+++⋅⋅⋅++⎣⎦()()2223222121122212cos 4cos 42cos 2cos k k k k k k k x a x a x a a x +++++-=++-+⋅⋅⋅-+因为1,,n a a ⋅⋅⋅均为整数,所以()21122214,42,,2k k k a a a a +--⋅⋅⋅-+也均为整数,故原式成立;n 为偶数时,2n =时,()212212cos 2cos 2cos cos x f x x a x a -==++,其中()22211a =-=-,22n k =-时,()()22cos 22cos k k x f x --=232223*********cos cos cos cos k k k k k k x a x a x a x a ------=+++⋅⋅⋅++,其中()()221222111k k k a---=-=-=-,成立,2n k =时,()2cos 2cos k kx f x =2122122122122cos cos cos cos k k k k k k x a x a x a x a ----=+++⋅⋅⋅++,其中()()222111k kka=-=-=,成立,则当22n k =+时,()()cos 22cos 22cos 2cos 2sin 2sin 2k x kx x kx x kx x +=+=-()()()1cos 21cos 2cos 21cos 232k x k x k x =+---+⎡⎤⎣⎦所以得到()()cos 232cos 2cos 2cos 22k x kx x k x+=--21221222122122322232412232222cos cos cos cos 2cos 12cos cos cos cos k k k k k k k k k k k k x a x a x a x a x x a x a x a x a ----------⎡⎤⎡⎤=+++⋅⋅⋅++-⎣⎦⎣⎦⎡⎤-+++⋅⋅⋅++⎣⎦()()2122212121221232222cos 4cos 42cos 2cos 2k k k k k k k k k x a x a x a a x a a +++----=++-+⋅⋅⋅-+--其中22221k k a a ---=-,因为1,,n a a ⋅⋅⋅均为整数,所以()211221234,42,,2k k k a a a a ----⋅⋅⋅-+也均为整数,故原式成立;综上可得:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()11112n n n n n n f x x a x a x a ---=++⋅⋅⋅++,1,,n a a ⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)由(2)可得()*cos16,7m m m N π≤≤∈cos cos 77m m f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭11112cos cos cos 777m m m m m a a a πππ---=++⋅⋅⋅++*16,m m N ≤≤∈其中1122,,m m a a a -⋅⋅⋅均为有理数,因为cos7π为无理数,所以1cos,cos cos 777m m πππ-⋅⋅⋅均为无理数,故11112coscos cos 777m m m m m a a a πππ---++⋅⋅⋅++为无理数,所以()*cos 16,7m m m N π≤≤∈不是有理数.【点睛】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 排列组合与二项式定理17.1 乘法原理和加法原理 基础练习1.5个应届高中毕业生报考三所重点院校,每人报一所且只能报一所院校,则共有__________种不同的报名方法.解:每位学生可以有3种报考重点院校的方式,由乘法原理可得:53243=. 2.在所有三位数中,有且只有两个数字相同的三位数有__________个. 解:(1)百位和十位一样,有9981⨯=种, (2)百位和个位一样,有9981⨯=种,(3)十位和个位一样,有99981⨯⨯=种,一共243种.3.由0,1,2,3,4,5组成的没有重复数字的六位奇数的个数是__________. 解:首先末尾必须排奇数,其次最高位不排0,则34432l 288⨯⨯⨯⨯⨯=.4.从0到8这9个数字中选4个数字组成没有重复数字的四位数,按下列要求分别求符合条件的个数. ①四位数中奇数的个数.②四位数中偶数的个数.③四位数中能被25整除的个数.④四位数中大于4500的个数.⑤四位数中小于3570的个数. 解:①47761176⨯⨯⨯=.②按首位是否为零分类,87647761512⨯⨯+⨯⨯⨯=.③66276114⨯⨯+⨯=.④48764761512⨯⨯⨯+⨯⨯=.⑤287647656870⨯⨯⨯+⨯⨯+⨯=.5.从2,3,5,7这四个数字中,任取两个分别作为分数的分子和分母.有几个是真分数?几个是假分数? 解:(1)按照分母可以取7,5,3分类,则3216++=. (2)按照分母可以取2,3,5分类,3216++=.6.已知{}210123m ∈--,,,,,,{}321012n ∈---,,,,,,且方程221x y m n+=是表示中心在原点的双曲线,则表示不同的双曲线最多有多少条?解:0mn <,则分0m >,0n <和0m <,0n >,则223313⨯+⨯=. 能力提高7.在一张平面上画了2 007条互不重合的直线1l ,2l ,…,2007l 始终遵循垂直、平行交替的规则进行:12l l ⊥,23l l ∥,34l l ⊥,….这2007条互不重合的直线的交点共有多少个?解:100310041007012⨯=.8.4个学生各写一张贺卡放在一起,然后每人从中各取一张,但不能取自己写的那一张贺卡,则不同的取法共有多少种?解:由于先让一人甲去拿一种有3种方法,假设甲拿的是乙写的贺卡,接下来让乙去拿,乙此时也有3种方法,剩下两人中必定有一人自己写的贺卡还没有发出去. 这样两人只有一种拿法,3319⨯⨯=,故答案为9.9.一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,数学课排在上午,班会课排在下午,有多少种不同排课方法?解:数学课排第一节,班会课排在下午,然后再排体育,则2432148⨯⨯⨯⨯=, 数学课不排第一节,先排数学,再排班会,再排体育课,则323321108⨯⨯⨯⨯⨯=, 则有156种不同排课方法.10.如果一个三位正整数形如“123a a a ”满足12a a ∠且32a a <,则称这样的三位数为凸数,求这样的凸数的个数.解:对2a 进行分类讨论,由题意,当中间数是2时,首位可取1,个位可取0,1,故总的种数有212=⨯, 当中间数为3时,首位可取1,2,个位可取0,1,2,故总的种数共有623=⨯, …,当中间数为9时,首位可取1,2,…,8,个位可取0,1,2,…,8,故总的种数共有7289=⨯,故所有凸数个数为1223348926122030425672240⨯+⨯+⨯++⨯=+++++++=,故答案为:240. 17.2 排列 基础练习1.解方程:①32213P 2P 6P x x x +=+.②13P 17160r=. 解:①将排列写为分数形式,则()()()()31221615x x x x x x x x --=++-⇒=,②4x =. 2.10个人站成一排,要求甲,乙之间必须站4个人,则共有多少种不同的站法?解:甲,乙之间选4个人,然后把这6个人视为一个整体,则24582858P P P 52P 403200⨯⨯=⨯⨯=. 3.一场晚会有5个唱歌节目和3个舞蹈节目.3个舞蹈节目在节目单中的先后顺序固定,可排出多少种不同的节目单?解:3个舞蹈节目无先后顺序,则一共88P 种,3个舞蹈节目在节目单中的先后顺序固定,则有8888P 6720P 种.4.一铁路线上原有”个车站.为适应客运需要,新增加了m 个车站()1m >,客运车票因此增加了62种.问现有多少个车站?(来回的车票不同)解:226262212n m n P P n m m m+-=⇒=-+⇒=,15n =,则17m n +=. 5.4位男生和4位女生围成一个圆圈,如果男女相问表演舞蹈,有多少种排法? 解:3!4!144⨯=.6.6颗不同珍珠与6颗不同的玛瑙相隔串成一串项链,有多少种不同的串法? 解:15!6!432002⨯⨯= (项链可以翻转).7.有8个队比赛,采取淘汰制,在赛前抽签时,实际上可得到多少种不同的安排法?解:48!331524!⨯=⨯. 能力提高8.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王5名志愿者中选派4人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余3人均能从事这四项工作,求不同的选派方案数. 解:由题意知本题需要分类, 若小张或小赵入选,则有选法113223C C P 24=;若小张、小赵都人选,则有选法2323P P 12=,根据分类计数原理知共有选法36种. 故答案为:36.9.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,求不同站法的总数.解:由题意知本题需要分组解决,由于对于7个台阶上每一个只站一人有37P 种;若有一个台阶有2人,另一个是1人共有1237C P 种,则根据分类计数原理知共有不同的站法种数是336种. 故答案为:336.10.在99⨯的黑白相间的棋盘上,有多少种方法将8只互不攻击的车放在同色的格子里?(称放在棋盘的同一行或同一列的2只车是互相攻击的)解:先考虑8只互不攻击的车放在黑色格里的方法种数,再考虑放在白色格里的方法种数.注意到,放在奇数行的黑格的车与放在偶数行的黑格的车不能互相攻击;同理:放在奇数行的白格的车与放在偶数行的白格的车不能互相攻击.(1)将原棋盘中奇数行的黑格拼成一个55⨯的棋盘,有5!种方法放置5只互不攻击的车在此棋盘里.将原棋盘中偶数行的黑格拼成一个44⨯的棋盘,有4!种方法放置4只互不攻击的车在此棋盘里.从而,共有5!4!⨯种方法将9只互不攻击的车放在原棋盘的黑格里.再从9只车中拿走任意一只车满足条件且其中没有重复,于是共有95!4!⨯⨯种方法将8只互不攻击的车放在原棋盘的黑格里.(2)将原棋盘中奇数行的白格,偶数行的白格分别拼成一个54⨯的棋盘,有5!种方法放置4只互不攻击的车在各自棋盘里,于是,共有()()2254325!⨯⨯⨯=种方法将8只互不攻击的车放在棋盘的白格里. 于是一共有()295!4!5!40320⨯⨯+=种方法.17.3 组合 基础练习1.圆上有8个点,任意两点可连成弦,两弦交点在圆内的有__________个.解:两弦的交点就是两弦的四个顶点构成的四边形的对角线的交点.于是两弦的交点数就是四边形的个数.于是,两弦交点在圆内的有48C 70=. 2.以正方体的顶点为顶点的四面体个数是__________个.解:正方体的八个顶点构成12个矩形,于是48C 1258-=. 3.10个名额分配到八个班,每班至少一个名额,则有多少种不同的分配方法?解:由挡板法可得,79C 36=. 4.100件产品中有4件次品,现抽取3件检查,(1)恰好有一件次品的取法有__________种. (2)既有正品又有次品的取法有__________种.解:(1)12496C C 18240=.(2)1221496496C C C C 18816+=.5.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__________种.解:4441284C C C 34650=. 6.从5双不同尺码的鞋子中任取4只,使其中至少有2只能配成一双,则有多少种不同的取法?解:4只鞋配成一双或配成两双,则1211254225C C C C C 130+=.7.如图17-2,点1P ,2P ,…,10P 分别是四面体顶点或棱的中点,那么在同一平面上的四点组()()1110ijkP P P P i j k <<<,,,≤有多少个?图 17-2PP 96解:35C 333+=个.8.m ,n ,r +∈N ,试证明:011220C C C C C C C C C r r r r r n m n m n m n m n m --+=++++.解:构造数学模型证明.全班有n m +个人,从中选出r 个人当志愿者。

原式等价于先把全班人分成两组,A 组人数为n ,B 组人数为m .然后从A ,B 组中共选出r 人.9.将两个a 和两个b 共4个字母填在44⨯的小方格内,每个小方格内至多填1个字母,若使用相同字母既不同行也不同列,则不同的填法共有多少种?解:()22222124444169C P C P C P 3960--=.10.平面上给定5个点,已知连接这些点的直线互不平行,互不垂直,也不重合.过每个点向其余四点的连线作垂线,这些垂线的交点最多能有多少个(不计已知的5个点)?解:垂线共有6530⨯=条,交点共有230C 435=个,由于同一点所作垂线无交点,且同一直线的垂线无交点.共扣除()15105125+⨯=个点.则实际有435125310-=个.17.4 其他几种排列组合基础练习1.有一排5个信号的显示窗,每个窗可亮红灯、绿灯或不亮灯,则共可发出的不同信号有多少种? 解:每个窗有3种亮灯方式,由乘法原理可知:一共53243=种方式.2.组成mathematician 的13个字母,可以组成多少个不同的13字母的单词?解:mathematician 中有2个m ,2个t ,2个i ,3个a ,于是共有13!2!2!2!3!⋅⋅⋅个不同的单词.3.晚会上共有9个演唱节目和4个舞蹈节目,要求每两个舞蹈节目之间至少有两个演唱节目.则有多少种不同的节目顺序表?解:4!·9!·47C .4.求123413x x x x +++≤的正整数解的组数. 解:12344x x x x +++=,5,6, (13)然后用挡板法解题,得到:3333412C C C 715+++=.5.88x y z n ++=,x ,y ,*z ∈N 有666组正整数解,求n 的最大值. 解:max 8837304n =+⨯=.6.在1到610之间有多少个整数的各位数字之和等于9?解:转化成方程1234569x x x x x x +++++=的自然数解个数的问题,等价于方程12345615y y y y y y +++++=的正整数解个数的问题,514C 2002=. 7.3 570有多少不同的偶数因子?解:3570235717=⨯⨯⨯⨯,偶数因子里一定有2,3,5,7,17四个质数的每一个质数可能有,可能没有.则4216=. 能力提高8.如果从1,2,…,14中,按从小到大的顺序依次取出以1a ,2a ,3a 使同时满足:213a a -≥,323a a -≥,那么所有符合要求的不同取法有多少种? 解:811120nn k k ===∑∑种.9.有多少种方法将100表示成3的非负幂次的和的形式?(加数的不同排列是作同一种的表示方法) 解:402.10.由数字1,2,3组成n 位数()3n ≥,且在n 位数中,1,2,3每一个至少出现1次,那么,这样的”位数有多少个? 解:n 位数有133323n n I A A -=-⨯+个.17.5 排列与组合的综合应用 基础练习1.电梯里有7名乘客,在10层楼房的每一层停留,如果恰有3个乘客在同一层出去,有2个乘客在另一层同时出去,这样的下客方法有多少种? 解:1058400.2.把2000个不加区分的小球分别放在10个不同的盒子里,使得第i 个盒子里至少有i 个球()1210i =,,,,则不同的方法总数是多少?解:()()()123101231020001291995x x x x x x x x ++++=⇒+-+-++-=,即()()()123101291995x x x x +-+-++-=的正整数解的组数,等价于把1 955个一样的球分给10个人,每人至少得一个球.然后利用挡板法解题,91954C .3.路上有编号为1,2,3,…,10共十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,且两端的灯也不能关掉,则满足条件的关灯方法共有多少种? 解:插空法解题,36C 20=.4.7粒相同的骰子扔在桌面上,可能出现多少种不同的结果?解:此问题为可重取组合数问题,用证明多元一次方程非负整数解的隔板模型做. 此问题即是求:{123456},,,,,的七元可重组合数的个数.建立模型:7个相同的球排成一排,向八个间隔中插入5块隔板,一个间隔中可插多块.此时,第一块隔板左侧球的个数为1的个数,第一块和第二块间的球的个数为2的个数,依次类推.求插法总数. 为简化问题,在每块隔板左侧加一个球,题目变成12个球排成一排,向除了第一个球左边的间隔以外的12个间隔中插5块隔板,每个间隔只能插一块,求插法总数.512C 792=. 5.3个白球,6个红球排成一个圆环,共有多少种排法?解:10种.6.从1,2,…,21中任取若干个数相加,使其和为偶数,问共有多少种不同的取法?解:()021010111111C C C 21+++⋅-.能力提高7.8个人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,问有几种不同的坐法? 解:将甲乙两人视作一个整体,7676P P 2120076-⨯=.8.在圆周上顺时针方向依次放置着数1,2,…,10,从中取三个数,要求其中任意两个都不圆周上相邻的数,则共有多少种取法?解:由容斥原理得()310101021050C -⨯-+=(123110x x x <<≤≤,212x x -≥,322x x -≥,13102x x +-≥). 9.如图17-4所示,平面被分成六个区域,进行六染色,旋转后重合视为同一种,求染法总数.图 17-4解:()()311112512162636434655366C C C C C P C C 6P C C P 61140+++⋅++⋅=.10.空间有n 个平面,其中任意2个不平行,任意3个不共线,任意4个不共点,则空间被划分成多少个区域?解:3566n n ++.11.若四位数,n abcd =的各位数码以,a ,b ,c ,d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.解:称()a a a a ,,,为n 的数码组,则a ,b ,c ,d M ∈={1,2,…,9}; 一、当数码组只含一个值,为()a a a a ,,,,1a =,2,…,9,共得9个n 值. 二、当数码组恰含两个值以,a ,b ()a b >.(1)数码组为()a a a b ,,,型,则任取三个数码皆可构成三角形,对于每个a ∈{2,…,9},b 可取1a -个值,则数码组个数为()92136a a =-=∑,对于每组()a a a b ,,,, b 有4种占位方式,于是这种n 有364144⨯=个.(2)数码组为()a b b b ,,,型()a b >,据构成三角形条件,有2b a b <<. M 中a 的个数共得16个数码组,对于每组()a b b b ,,,,a 有4种占位方式,于是这种n 有16464⨯=个. (3)数码组为()a a b b ,,,型()a b >,据构成三角形条件,有2b a b <<,同上得16个数码组,对于每组()a a b b ,,,,两个a 有24C 6=种占位方式,于是这种n 有16696⨯=个.以上共计1446496304++=个.三、当数码组恰含三个值a ,b ,()c a b c >>.(1)数码组为()a b c c ,,,型,据构成三角形条件,则有2c b a c <<<这种()a b c c ,,,有14组,每组中a ,b 有24A 12=种占位方式,于是这种n 有1412168⨯=个.(2)数码组为()a a b c ,,,型,c b a b c <<<+,此条件等价于M ={1,2,…,9}中取三个不同的数构成三角形的方法数,有34组,每组中a ,b 有24A 12=种占位方式,于是这种n 有3412408⨯=个. (3)数码组为(a ,a ,b ,c )型,c b a b c<<<+,同情况(2),有2434A 408=个n 值.以上共计168408408984++=个n 值.四、a ,b,c ,d 互不相同,则有d c b a c d <<<<+,这种a ,b ,c ,d 有16组,每组有4!个排法,共得164!384⨯=个n 值.综上,全部四位三角形数n 的个数为93049843841681+++=个. 17.6 二项式定理 基础练习1.求1021x x ⎛⎫- ⎪⎝⎭的展开式中系数最大的项.解:461010C C 210==. 2.已知9a x ⎛- ⎝的展开式中3x 的系数为94,求常数a 的值. 解:943992199C C rrr r r r a a T x x ---+⎛⎫== ⎪⎝⎭,则8r =, 1898999C4164a a =⇒=.得出:4a =.3.10的展开式和第3项小于第4项,求x 的取值范围.解:5105611010CC rr r r r T x--+==,则55552332341010C C T T x x --<⇒<, 10532451200x x x <⇒< 4.若12nx x ⎛⎫+- ⎪⎝⎭的展开式的常数项为20-,求n .解:当x 为正数时,212nnxx ⎛⎫+-= ⎪⎝⎭, 常数项为()2C 120nn n -=-,解得:3n =.当x 为负数时,()2121nnn xx ⎛⎫+-=- ⎪⎝⎭, 常数项为()2C 120nn n -=-,解得:3n =. 综上:3n =.5.求在32212x x ⎛⎫+- ⎪⎝⎭的展开式中含2x 项的系数.解:3622112x x x x ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭,则()6216C 1r rr r T x -+=-,则2r =,则含2x 项的系数为15.6.求()()10211x x x ++-展开式中含4x 项的系数.解:432101010C C C 135-+=. 能力提高7.在二项式n的展开式中,前三项的系数成等差数列,求展开式中所有有理项.解:2102112C C C 822nn n n ⎛⎫=+⇒= ⎪⎝⎭,则584181C 2rr r r T x -+⎛⎫= ⎪⎝⎭,则0r =,4,8,有理项为41T x =,4584135C 28T x x ==,8229811T C 2256x x -8==. 8.已知()6sin x α+1的展开式中2x 项的系数与415cos 2x α⎛⎫- ⎪⎝⎭的展开式中3x 项的系数相等,求解α.解:(42126415C sin C cos 2cos cos 2πarccos 12k ααααα⎛⎫=-⇒-2-1=0⇒⇒± ⎪⎝⎭,k ∈Z .9.()12nx +的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.解:()556C 2n T x =,()667C 2n T x =,依题意有5566C 2C 28n n n =⇒=.()812x ∴+的展开式中,二项式系数最大的项为()44458C 21120T x x ==.设第1r +项系数最大,则有11881188C 2C 256C 2C 2r r r r r r r r r --++⎧⋅⋅⎪⇒⎨⋅⋅⎪⎩≥≤≤≥. 则系数最大的项为561792T x =,671792T x =.最大的项为:561792T x =,671792T x =.10.已知()log 21nx x +的展开式中有连续三项的系数之比为123∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:()()()()()11!!!1231231!1!!!1!1!k k k n n n n n n C C C n k k n k k n k k -+=⇒=-+----+∶∶∶∶∶∶∶∶,()()()!!112311!1!!!12n n k n k n k k n k k n k =⇒=⇒=--+---+∶∶,()()()!!1223253!!1!1!3n n k n k n k k n k k n k +=⇒=⇒=+---+-∶∶,联立:31142535n k n n k k =-=⎧⎧⇒⎨⎨=+=⎩⎩.这三项是第5,6,7项.展开式的倒数第二项为:()213log 2log 21422C 1128log 3log xx xx x x =⇒=⇒=⇒=.则x =,或2x =. 17.7 二项式定理的性质与应用基础练习1.记()12nx -展开式中i x 的项系数为i a ,0i =,1,2,…,n .求122222nna a a +++. 解:()C 2i i i na =-,则().012211C C 1222nii n n n n i a a a=+++=-=-=-∑. 2.若()727012731x a a x a x a x +=++++,(1)求0127a a a a ++++的值.(2)求0246a a a a +++的值.(3)求1357a a a a +++的值.解:(1)求二项展开式中各项系数之各,相当于去掉展开式中的示知字母x ,这可由赋值法令1x =实现.则()701273116384a a a a ++++=+=.①(2)若要求二项展开式中奇数项系数之和,可由赋值法令1x =-, 则()70123731128a a a a a -+-+-=-+=-.②将①,②两式相加得:()0246216384128a a a a +++=-,则02468128a a a a +++=.(3)将①,②两式相减得:()1357216384128a a a a +++=+, 则13578256a a a a =++=. 3.(1)求理论上:2511222n -++++能被31整除()*n ∈N .(2)求1227272727C C C S =+++除以9的余数.解:(1)由于()5125152122221321311121n nn n n --++++==-=-=+-- 0111C 31C 31C 31C 1n n n nn n n n --=⨯+⨯++⨯+-()0112131C 31C 31C n n n n n n ---=⨯+⨯++,则原式能被31整除.(2)()91227279272727C C C 2181911S =+++=-=-=--()091889081789999999C 9C 9C 9C 19C 9C 9C 2=⨯-⨯++⨯--=⨯-⨯++-()081789999C 9C 9C 17=⨯-⨯++-+,故S 被9除的余数为7.4.101011-的末尾连续零的个数是几个.解:()10100101991010101010101110011C 100C 100C 100C 1-=+-=⨯+⨯++⨯+-()208178101010100C 100C 100C 1000=⨯+⨯+++则101011-的末尾连续零的个数是3个.5.若)()21*20r m r m αα+=+∈<<1N ,,,求证:()1m αα+=.解:))212121221012221212122C C 2C 2r r r rr r r r +++-+++-=+⋅+⋅+()()()21221210122212121212C 5C 52C 522r rr r r r r r +-+++=+⎡⎤+--⋅+⋅+-⎢⎥⎣⎦2221332121212222rr r r r C C -+++⎡⎤=⋅+⋅++⎢⎥⎣⎦1313212121*2121212525252r r r r r r r r C C C ---++++⎡⎤=⋅+⋅⋅+++∈⎣⎦N .()201∈,,从而)()21201r +∈,.所以()131321212121212125252522r r r r r r r r r m C C C ---++++=⋅⋅+⋅⋅++⋅⋅+ )212r a +=.故()))()21212122541r r rmαα+++ +=⋅=-=.6.设((19821515x=+++,求数x的个位数字.解:令((19821515y=+-,则((((1982198215151515x y⎡⎤⎡⎤+=+++⎢⎥⎢⎥⎣⎦⎣⎦.由二项式定理知,对任意正整数n,((()22151521515220n nn nnC-+=+⋅⋅+为整数,且个位数字为零.因此,x y+是个位数字为零的整数.下面对y估值.因为50150.225<=<=,且((88191515-<,所以(1919021520.20.4y<<<⨯<.故x的个位数字为9.7.已知10x px q-+能被()21x+整除,求p,q.解:()()1010111x px q x p x p q-+=-++-+++()()()()()2101210101C11C111x x x p x p q=+-++++++-+++()()()()2102101101C11p q p x x x=++-+++++++10101009p q pp q++==-⎧⎧⇒⎨⎨+==⎩⎩.能力提高8.设()21*11nna q q q n q-=++++∈≠±N,,1212C C C nn n n n nA a a a=+++.(1)用q,n表示nA.(2)当31q-<<时,求lim2nnnA→∞.(3)设122nn nAb b b+++=,证明:数列{}n b是等比数列.解:(1)11nnqaq-=-,()1111211C C C111n nin n ni i u in n n ni i iqqA qq q q===+--⎛⎫==⋅-=⎪---⎝⎭∑∑∑.(2)()1111lim lim1lim0121211nnnn n nA qq q q→∞→∞→∞⎧⎫⎡⎤⎡⎤+⎪⎪⎛⎫=⋅-=⋅-=⎢⎥⎨⎬⎪⎢⎥---⎝⎭⎣⎦⎢⎥⎪⎪⎣⎦⎩⎭.(3)1111111112212222n n nn nn n nA A q q qbq++++⎡⎤+++⎛⎫⎛⎫⎛⎫=-=⋅-=⋅⎢⎥⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,11122qb+=⋅.∴数列{}n b 是等比数列.9.已知a ,b 均为正整数,且a b >,222sin ab a b θ=+(其中π02θ<<),()22sin n A a b n θ=+⋅,求证:对一切*n ∈N ,n A 均为整数.解:因为222sin ab a b θ=+,且π02θ<<,a b >,所以2222cos a b a b θ-==+. 显然sin n θ为()cos sin ni θθ+的虚部, ()()()222222222221cos isin i 2i nn n a b ab a b aqb a b a b a b θθ⎛⎫-+=+=-+ ⎪++⎝⎭+ ()()2221i n n a b a b =++.所以()()()222cos isin i n n a b n n a b θθ++=+.从而()22sin n n A a b n θ=+为()2i n a b +的虚部.因为a 、b 为整数,根据二项式定理,()2na bi +的虚部当然也为整数,所以对一切*n ∈N ,n A 为整数.10.观察下列等式:15355C C 22+=-;197399C C 22+=+;1591311513131313C C C C 22+++=-; 15913171571717171717C C C C C 22++++=+;…由以上等式推测一个一般的结论:对于*n ∈N ,15144141414141C C C C n n n n n n x +++++++++.解:()4104114414141411C C C n n n n n n n x x x +++++++=+++.分别将i ,i -,1,1-代入,即可得()15941412141414141212nn n n n n n n C C C C +--++++++++=+-. 11.某市2005年底人口为20万,人均住房面积为8平方米,计划2009年底人均住房面积达到10平方米,如果该市将人口平均增长率控制在1%,则要实现上述计划,这个城市每年平均至少要新建住房面积为多少万平方米?(结果以万平方米为单位,保留两位小数) 解:高每年平均新增住房x 平方米,则2010年住房面积为 ()22000008416000004x x m ⨯+=+,2009年人口数为()20000011%⨯+,依题意知()41600000420000011%10x +=⨯+⨯,解之得12.05x =(万平方米).。

相关文档
最新文档