极限学习机原理介绍

合集下载

ELM-Chinese-Brief(极限学习机)

ELM-Chinese-Brief(极限学习机)
1 Hao‐Qi Sun 摘要翻译自 G.‐B. Huang, “What are Extreme Learning Machines? Filling the Gap between Frank Rosenblatt's Dream and John von Neumann's Puzzle,”Cognitive Computation, vol. 7, pp. 263‐278, 2015.
2. 介绍
正如 Huang 等[6]指出:“一般来讲,‘超限’指超过传统人工学习方法的局限, 并向类脑学习靠拢。超限学习机的提出,是为了打破传统人工学习方法和生物学习机 制之间的屏障。‘超学习机’基于神经网络泛化理论,控制理论,矩阵理论和线性 系统理论,代表了一整套不需要调整隐层神经元的机器学习理论。”
定理 2 (分类能力[23])给定任何非常数分段连续函数作为激活函数,若调整隐 层参数可让单层前馈网络逼近任何连续的目标函数 f(x),那么这个拥有随机隐层映射 h(x)的单层前馈网络可以分割具有任何形状的不连通区域。
7. 单隐层前馈网络和多隐层前馈网络
在没有完全解决单隐层问题时在超限学习机中直接引入多隐层结构会比较困难。 所以在过去的十年中,大多数的超限学习机研究都注重“通用”单隐层前馈网络 (SLFNs)。
理论,控制理论,矩阵理论和线性系统理论。随机地生成隐层节点是“不需要调整隐 层神经元”的其中一种常用方法;与此同时,也有很多其他方法,例如核方法[6,23], 奇异值分解(SVD)和局部感受域[8]。我们相信超限学习机反映了某些生物学习机制 的实际情况。它的机器学习效能在 2004 年被确认[24],它的万能逼近性(对于“通用 单隐层前馈网络”,其隐层节点可以是由一些节点构成的子网络,并/或拥有基本上任 何类型的非线性分段连续激活函数的神经元(确切数学模型/公式/形状未知))在 2006 到 2008 年[5,25,26]被非常严格地证明。它的实际生物证据在 2011 到 2013 年 [27‐ 30] 接着出现。

极限学习机简介

极限学习机简介

1 极限学习机传统前馈神经网络采用梯度下降的迭代算法去调整权重参数,具有明显的缺陷:1)学习速度缓慢,从而计算时间代价增大;2)学习率难以确定且易陷入局部最小值;3)易出现过度训练,引起泛化性能下降。

这些缺陷成为制约使用迭代算法的前馈神经网络的广泛应用的瓶颈。

针对这些问题,huang等依据摩尔-彭罗斯(MP)广义逆矩阵理论提出了极限学习(ELM)算法,该算法仅通过一步计算即可解析求出学习网络的输出权值,同迭代算法相比,极限学习机极大地提高了网络的泛化能力和学习速度。

极限学习机的网络训练模型采用前向单隐层结构。

设分别为网络输入层、隐含层和输出层的节点数,是隐层神经元的激活函数,为阈值。

设有个不同样本,,其中,则极限学习机的网络训练模型如图1所示。

图1 极限学习机的网络训练模型极限学习机的网络模型可用数学表达式表示如下:式中,表示连接网络输入层节点与第i个隐层节点的输入权值向量;表示连接第i个隐层节点与网络输出层节点的输出权值向量;表示网络输出值。

极限学习机的代价函数E可表示为式中,,包含了网络输入权值及隐层节点阈值。

Huang等指出极限学习机的悬链目标就是寻求最优的S,β,使得网络输出值与对应实际值误差最小,即。

可进一步写为式中,H表示网络关于样本的隐层输出矩阵,β表示输出权值矩阵,T表示样本集的目标值矩阵,H,β,T分别定义如下:极限学习机的网络训练过程可归结为一个非线性优化问题。

当网络隐层节点的激活函数无限可微时,网络的输入权值和隐层节点阈值可随机赋值,此时矩阵H为一常数矩阵,极限学习机的学习过程可等价为求取线性系统最小范数的最小二乘解,其计算式为式中时矩阵的MP广义逆。

2实验结果>>ELM('diabetes_train', 'diabetes_test', 1, 20, 'sig')TrainingTime =0.0468TestingTime =TrainingAccuracy =0.7934TestingAccuracy =0.7396由实验结果可得,极限学习机方法具有耗时短,效率高等优点,但是训练和测试的精度还有待提高。

极限学习机理论与应用研究

极限学习机理论与应用研究

极限学习机理论与应用研究在深度学习领域中,神经网络一直是一个热门话题。

然而,神经网络不仅复杂而且计算密集,因此新的机器学习算法也不断涌现,希望取代这种方法。

极限学习机是这样一种算法,它有效地解决了传统神经网络所面临的问题。

本文将深入介绍极限学习机的理论和应用研究。

一、极限学习机的概念极限学习机是一种快速的单层前馈神经网络,符合大数据环境下高效率和高精度的要求。

与传统的神经网络不同,极限学习机模型不涉及网络层中权值的调节,因此更容易使用。

这个模型常常简称为ELM。

它的训练方式是在网络学习过程中,只调整输入层和输出层之间的链接权重和偏差。

与其他的神经网络相比,极限学习机有以下优点:1. 快速:传统神经网络通常需要使用反向传播算法训练,这个过程非常耗时。

在性能要求的情况下,ELM的训练速度更快。

2. 简单:ELM的参数只包括输入层和输出层之间的链接权重和偏差。

这使得神经网络的设计和实现更加容易。

3. 鲁棒性:ELM对于权重和偏差的初始值并不敏感,也就是说,它可以在初始权重和偏差值上取得很好的效果。

4. 高精度:在处理大量数据的时候,ELM的精度相当高。

二、极限学习机的原理在ELM中,输入层与神经元之间的连接权重是随机初始化的,然后通过解方程组来确定输出层与神经元之间的连接权重。

这个过程被称为“随机稠密映射(Random Projection)”。

随机稠密映射通常可以被看做是一种优秀的特征提取器。

在ELM的训练过程中,首先要将样本输入层的输入值x通过一个由与节点神经元个数相同的系数矩阵Omega和偏置项b组成的线性变换$H = g(x\Omega+b)$中映射到隐藏层,其中g是一个激活函数。

公式中的随机矩阵Omega是样本输入层和输出层之间的链接权重。

目标是找到输入矩阵X和标签矩阵Y之间的连接权重W,使预测值P与真实值T的误差最小化:$P=H W$$minimize \quad \frac{1}{2} ||Y-P||^2_F$其中||·||_F 是矩阵F范数选择逆矩阵(Inv)方法,将权重$W = H^+ Y$公式中,H⁺是矩阵H的Moore-Penrose伪逆。

极限学习机在图像处理中的应用研究

极限学习机在图像处理中的应用研究

极限学习机在图像处理中的应用研究极限学习机(Extreme Learning Machine, ELM)作为一种新兴的机器学习算法,近年来在图像处理领域中得到了广泛的应用和研究。

本文将探讨极限学习机在图像处理中的具体应用研究,并讨论该算法的优势和局限性。

首先,我们来简要介绍一下极限学习机的原理。

极限学习机是一种单层前馈神经网络,它的主要特点是随机初始化输入层到隐藏层的连接权重和阈值参数。

当输入数据通过隐藏层传递至输出层时,隐藏层的输出值被固定,而输出层的权重则被随机生成。

通过随机初始化参数,极限学习机能够在很短的时间内完成训练,具有较快的学习速度和较好的泛化能力。

在图像处理领域中,极限学习机可以应用于多种任务,其中包括图像分类、目标检测、图像分割和人脸识别等。

在图像分类任务中,极限学习机可以通过对大量图像样本的学习,建立一个有效的分类器,用于自动将输入图像分为不同的类别。

而在目标检测任务中,极限学习机可以通过学习已标记的训练样本,自动识别并标记图像中的目标。

对于图像分割任务,极限学习机可以将图像划分为不同的区域,并对每个区域进行进一步的处理和分析。

此外,极限学习机还可以用于人脸识别任务,通过学习人脸图像的特征,实现对输入图像中人脸的识别和验证。

极限学习机在图像处理中的应用研究不仅仅局限于上述任务,还涉及到其他一些具体的领域。

例如,在医学图像处理中,极限学习机可以用于对医学图像进行分析和识别,帮助医生进行疾病诊断和治疗。

此外,极限学习机还可以应用于视频处理中的运动检测和跟踪任务,通过对视频帧的处理和分析,实现对运动目标的检测和跟踪,广泛应用于视频监控和视频分析领域。

尽管极限学习机在图像处理中具有广泛的应用和潜力,但也存在一些挑战和限制。

首先,极限学习机的性能高度依赖于样本的分布情况,对于非线性分布或者高度不均匀的数据,其表现可能不如其他机器学习算法。

其次,由于极限学习机只有一层隐藏层,因此无法利用多层网络的层次化特征表示能力。

极限学习机在预测和优化中的应用

极限学习机在预测和优化中的应用

极限学习机在预测和优化中的应用极限学习机是一种新型的人工神经网络算法,它能够快速训练出高度精确的预测模型,是目前比较流行的机器学习算法之一。

由于极限学习机在预测和优化领域中的独特性,它广泛地被应用于各种领域,如金融预测、医药研究、图像识别、机器人等。

本文将介绍极限学习机在预测和优化中的应用,并探讨它的优缺点。

一、极限学习机简介极限学习机(Extreme Learning Machine,ELM)是一种基于单层前向神经网络结构的机器学习算法。

它主要有两个步骤:首先随机生成神经元的权值和偏置,然后通过激活函数将输入值映射到神经元的输出值,最后将输出值作为预测结果。

相比于传统人工神经网络模型,ELM具有快速收敛、低存储和计算成本等优势。

二、ELM在预测中的应用1. 金融预测金融预测一直是经济学家和投资者关注的重点。

通过对历史数据的分析,可以预测未来的市场趋势和股价涨跌。

ELM在金融预测领域已经被广泛应用。

例如,通过ELM可以预测股票的收盘价、期货的价格等等。

ELM在金融预测领域的应用,有效地提高了数据的处理效率和预测精度,帮助投资者做出更稳健的投资决策。

2. 医药研究医药研究是一个长期且高风险的过程。

通过对大量的药物试验数据进行分析,可以挖掘出药物的性质和作用。

ELM在药物研究中的应用,可以有效地预测药物的活性和毒性,并优化药物设计过程。

例如,通过ELM可以预测药物对人类细胞的毒性,从而降低药品的副作用。

三、ELM在优化中的应用1. 图像处理图像处理是一个需要大量计算的领域。

通过ELM可以有效地处理和优化图像,减少计算时间和能源消耗。

例如,通过ELM可以快速地识别图像中的物体,从而更好地理解图像内容。

2. 机器人控制机器人控制需要高度精准的指令和反馈,以实时控制机器人的运动。

通过ELM可以实现机器人的自主控制和优化,避免机器人的运动出现偏差和错误。

四、ELM的优缺点ELM相比于传统的神经网络算法具有以下优点:1. ELM可以在一个较短的时间内进行训练,而不需要进行大量的迭代,可以快速地处理海量数据。

基于极限学习机的数据分类方法研究

基于极限学习机的数据分类方法研究

基于极限学习机的数据分类方法研究数据分类作为一种重要的数据挖掘技术,已经被广泛应用于各个领域。

而在数据分类中,分类模型的选择将直接关系到分类的准确性和效率。

在此基础上,本文将介绍一种新颖的基于极限学习机的数据分类方法,探讨其理论原理和应用前景。

一、背景概述在数据分类中,传统的机器学习算法如SVM、KNN等已经被逐渐淘汰。

而以神经网络为代表的深度学习算法,虽然在分类准确性上表现出色,但其训练过程非常复杂,需要大量的计算资源和时间。

因此,极限学习机(ELM)作为一种新型的快速学习方法,备受研究者的关注。

ELM是由黄广省博士于2006年提出的一种单隐层前馈神经网络模型。

其主要特点是采用随机初始化神经元的权重和偏置,然后直接获取最小二乘解以避免传统神经网络中的时间和空间消耗问题。

由于其快速的学习速度和优异的性能,ELM 在图像识别、文本分类、生物医药等领域得到了广泛的应用。

二、极限学习机的基本理论1. ELM的网络结构ELM网络由三个层组成,分别为输入层、隐层和输出层。

其中,输入层接收原始数据,隐层负责提取特征向量,输出层则进行分类。

2. ELM的优化目标ELM通过最小化随机初始化的权重和偏置的最小二乘解来优化模型,以达到分类正确率最高的效果。

3. ELM的分类方法ELM将输入数据映射到隐层,从而得到特征向量,然后再将特征向量与权重矩阵进行乘积运算得到输出结果。

最后,输出结果经过sigmoid函数处理,得到最终的分类结果。

三、基于ELM的数据分类方法基于ELM的数据分类方法包括以下几个步骤:1. 数据预处理数据预处理是分类的前置工作,主要包括数据清洗、降维和标准化等操作。

其中,数据清洗可以去除数据中的异常值和缺失值,降维可以减少特征向量的维度,标准化可以使数据的分布更加均匀。

2. 配置ELM模型ELM模型的配置包括隐层神经元的选择、激活函数的选择等。

其中,隐层神经元的选择需要根据实际情况确定,通常需要进行交叉验证来确定最优的隐层神经元数量。

机器学习中的分类算法与极限学习机

机器学习中的分类算法与极限学习机

机器学习中的分类算法与极限学习机机器学习一直是计算机科学领域中备受关注和研究的一项技术。

其中,分类算法是机器学习领域最为重要的算法之一。

分类算法主要是根据已知数据集中的特征和属性信息对新数据进行自动分类和预测,广泛应用于社交网络分析、智能推荐系统、数据挖掘和图像处理等领域。

本文将详细讨论机器学习中的分类算法与极限学习机,并探讨其原理、特点以及应用场景。

一、机器学习中的分类算法1.朴素贝叶斯分类器朴素贝叶斯分类器是基于贝叶斯定理的一种分类算法,主要用于解决文本分类、垃圾邮件过滤和情感分析等问题。

该算法将数据集中的各个特征间视为相互独立且相同分布的,从而计算出新数据与不同类别之间的概率,并将概率最大的类别作为分类结果。

朴素贝叶斯分类器具有分类速度快、准确率高的优点,但是对于数据集中出现的特殊特征,其分类效果比较差。

2.支持向量机分类器支持向量机分类器是一种常用的分类算法,主要是通过将不同类别之间的分界线尽可能地放置于最大间隔区域来进行分类。

该算法适用于小数据集和高维数据集中的分类问题,并且可以使用核函数对不规则的数据集进行处理。

支持向量机分类器具有分类效果好、可解释性强的优点,但是对于大数据集和特征较多的数据集来说,其训练时间比较长。

3.决策树分类器决策树分类器是一种基于树状结构进行决策的分类算法,主要用于解决分类问题和回归问题。

该算法通过对数据集中各个特征进行分析和选择,创建一颗决策树来判断新数据的类别。

决策树分类器具有分类效果好、容易实现的优点,但是对于数据集中存在噪声和缺失值的情况,其分类效果比较差。

4.K近邻分类器K近邻分类器是一种基于距离度量进行分类的算法,主要是通过计算新数据与已知数据集中每个样本之间的距离来进行分类。

K近邻分类器具有分类效果好、预处理简单的优点,但是对于特征维度较高的数据集以及没有明显规律的数据集,其分类效果比较差。

二、极限学习机极限学习机,也称为极限随机网络,是一种基于人工神经网络的分类算法,主要用于解决分类和回归问题。

极限学习机模型在故障诊断中的应用研究

极限学习机模型在故障诊断中的应用研究

极限学习机模型在故障诊断中的应用研究在现代工业生产中,故障诊断一直是制造业中的重要环节之一。

通过快速分析并定位异常,可以提高设备的性能和可靠性,进而提高工作效率。

现代机器学习技术不断发展,构建了许多有效诊断模型。

本文将介绍一种新型机器学习模型——极限学习机(Extreme Learning Machine,ELM),并探究其在故障诊断中的应用研究。

一、极限学习机模型简介极限学习机是一种新型,快速学习算法。

其基本思想是:在随机的中间层节点上,通过解析式的方法来线性拟合输入信号,并将中间层的非线性输出作为输出层的输入,从而实现快速,高精度的学习。

相比其他传统的机器学习模型,极限学习机具有以下优点:(1)快速简便:由于只需要随机生成少量的中间层节点并一次性拟合输入,所以训练时间较短。

(2)高精度:ELM模型能够利用高维空间中的向量,快速完成对输入模式的分类问题。

(3)适应性强:ELM模型能够不断学习新的数据模型来适应新的环境,提高诊断的准确率。

二、极限学习机模型在故障诊断中的应用在故障诊断领域,ELM模型已经被广泛应用。

例如,在飞机引擎故障诊断中,ELM模型能够快速识别出因子输入信号,进而识别出故障原因。

在车辆故障分析中,ELM模型可以通过车辆测试数据自适应性地学习,实现车辆故障的远程预测。

这里提到一种新型的应用——智慧电表的故障诊断预测。

智慧电表是一种新型的精密计量仪表,它能够实时监测电量使用情况,还能够与互联网进行数据交换。

ELM模型在智慧电表中的应用,可以用于故障预测和诊断。

三、基于极限学习机的智慧电表故障预测研究(1)数据采集在智慧电表研究中,需要采集大量的电表数据,建立智慧电表的模型。

数据采集过程中,需要考虑到电表的实时性、准确性、可靠性等因素,以确保数据的正确性和有效性。

(2)特征提取特征提取是对采集的数据进行处理的过程,目的是识别出数据中的重要信息,为后续处理提供依据。

在智慧电表中,特征提取的过程中需要处理的数据包括:实时功率、电流、电压、功率因数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11 21 ... l1
12 22 ... l 2
... 1m ... 2 m ... ... ... lm l m
(2)
其中, jk 表示隐含层第 j 个神经元与输出层第 k 个神经元间的连接权值。 设隐含层神经元的阈值 b 为
w11 w W 21 ... wl1
w12 w22 ... wl 2
... w1n ... w2 n ... ... ... wln l n
(1)
其中, w ji 表示输入层第 i 个神经元与隐含层第 j 个神经元的连接权值。 设隐含层与输出层间的连接权值 为
.
由定理 1 可知, 若隐含层神经元个数与训练集样本个数相等, 则对于任意的 w 和
b ,SLFN 都可以零误差逼近训练样本,即
|| t
j 1
Q
j
y j || 0
(8)
其中,
y j [ y1 j , y2 j ,..., ymj ]T ( j 1,2,..., Q) .
然而,当训练样本个数 Q 较大时,为了减少计算量,隐含层神经元个数 K 通常 取比 Q 小的数,由定理 2 可知,SLFN 的训练误差逼近一个任意的
^ ^
提及,ELM 的性能也得到了很大的提升,其应用范围亦愈来愈广,其重要性亦日 益体现出来。
二,ELM 概述 传统的典型单隐含层前馈神经网络结构如下图一所示,由输入层,隐含层和 输出层组成,输入层与隐含层,隐含层与输出层神经元间全连接。其中,输入层 有 n 个神经元, 对应 n 个输入变量; 隐含层有 l 个神经元; 输出层有 m 个神经元, 对应 m 个输出变量。在不失一般性的情况下,设输入层与隐含层间的连接权值 W为
其中, wi
(5)
[ wi1 , wi 2 ,..., win ] ; x j x1 j , x2 j ,..., xnj


T
式(5)可表示为
H T '
'
(6)
其中,T 为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵,具体形式如下:
H ( w1 , w2 ,..., wl , b1 , b2 ,..., bl , x1 , x2 ,...xQ ) g ( w1 x1 b1 ) g ( w2 x1 b2 ) g ( w x b ) g ( w x b ) 1 2 1 2 2 2 ... ... g ( w1 xQ b1 ) g ( w2 xQ b2 ) ... g ( wl x1 bl ) ... g ( wl x2 bl ) ... ... ... g ( wl xQ bl )

(10)
其解为
H T '
其中, H 为隐含层输出矩阵 H 的 Moore PenroseLM 的学习算法 由以上分析可知,ELM 在训练之前可以随机产生 w 和 b ,只需确定隐含层 神经元个数及隐含层神经元的激活函数 (无限可微) , 即可计算出 .具体地, ELM 的学习算法主要有以下几个步骤: (1) 确定隐含层神经元个数,随机设定输入层与隐含层的连接权值 w 和隐 含层神经元的阈值 b ; (2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含 层输出矩阵 H ; (3) 计算输出层权值 : H T ' . 值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都 可以使用(如 S 型函数,正弦函数和复合函数等) ,还可以使用不可微函数,甚 至使用不连续的函数作为激活函数。 四, ELM 当前研究现状 ELM 以其学习速度快,泛化性能好等优点, 引起了国内外许多专家和学者的 研究和关注。 ELM 不仅适用于回归, 拟合问题, 亦适用于分类, 模式识别等领域, 因此,其在各个领域均得到广泛的应用。同时,不少改进的方法和策略也被不断
0 ,即
|| t
j 1
Q
j
y j ||
(9)
因此,当激活函数 g ( x) 无限可微时,SLFN 的参数并不需要全部进行调整, w 和
b 在训练前可以随机选择,且在训练过程中保持不变。而隐含层和输出层的连接
权值 可以通过求解以下方程组的最小二乘解获得:
min || H T ' ||
极限学习机(Extreme Learning Machine,ELM)
一,ELM 概要 极 限 学 习 机 是 一 种 针 对 单 隐 含 层 前 馈 神 经 网 络 (Single-hidden Layer Feedforward Neural Network, SLFN)的新算法。相对于传统前馈神经网络训练速度 慢,容易陷入局部极小值点,学习率的选择敏感等缺点,ELM 算法随机产生输入 层与隐含层的连接权值及隐含层神经元的阈值,且在训练过程中无需调整, 只需 要设置隐含层神经元的个数, 便可以获得唯一的最优解。 与之前的传统训练方法 相比,ELM 方法具有学习速度快,泛化性能好等优点。
b1 b b 2 bl l1
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
(3)
x11 x 21 X ... xn1
x12 x22 ... xn 2
... x1Q y11 y ... x2Q Y 21 ... ... ... ... xnQ nQ ym1
y12 y22 ... ym 2
... y1Q ... y2Q ... ... ... ymQ mQ
(4)
设隐含层神经元的激活函数为 g ( x ) ,则由图一可知,网络的输出 T 为
T [t1 , t 2 ,..., tQ ]mQ
l g ( w x b ) i 1 i j i t1 j i 1 l t 2j g ( w x b ) i 2 i j i tj i 1 ( j 1,2,..., Q) l t mj m1 im g ( wi x j bi ) i 1 m1
于具有 Q 个隐含层神经元的 SLFN,在任意赋值 wi R 和 bi
n
' 隐含层输出矩阵 H 可逆且有 || H T || 0 .
R 的情况下,其
定理 2 给定任意 Q 个不同样本 ( xi , ti ) ,其中, xi [ xi1 , xi 2 ,..., xin ] R ,
(7)
Ql
在前人的基础上,黄广斌等人提出了以下两个定理: 定理 1 给定任意 Q 个不同样本( ( xi , ti ) ,其中, xi [ xi1 , xi 2 ,..., xin ] R ,
T n
ti [ti1 , ti 2 ,..., tim ] R m ,一个任意区间无限可微的激活函数 g : R R,则对
T n
ti [ti1 , ti 2 ,..., tim ] R m ,给定任意小误差 0 ,和一个任意区间无限可微的
激活函数 g : R R,则总存在一个含有 K ( K Q ) 个隐含层神经元的 SLFN,在 任意赋值 wi R 和 bi
n
R 的情况下,有 || H N M M m T ' ||
相关文档
最新文档