气体的溶解度教学课件PPT
合集下载
初中化学:溶解度 PPT课件 图文

然后再加入A物质40g,可用曲线上的c 点表示。
⑹若A溶液中含有少量B物 质,应采取的分离方法是:
降温结晶(冷却热的饱 。 和溶液)
⑺若B溶液中含有少量A物
质,应⑻将t2℃时等质量的三种物质的饱和溶液降温
至析t出1℃的,是析出晶C体最。多的是 A
,没有晶体
A.烧开水时,沸腾前有气泡逸出 B.喝下汽水感到有气体冲出鼻腔 C.揭开啤酒瓶盖,有大量的泡沫溢出 D.夏季黄昏,池塘里的鱼常浮出水面
例.不同温度下,氧气的溶解度随压强的变化如右图 所示,图中t1对应的温度为40℃,则t2对应的温度
____a____(填编号)。
a.大于40℃ b.小于40℃ c.无法确定
(4)温度为t℃时,三种物质的溶解度关系满足“C<
A<B”的条件,则t的取值范围是t_1<__t<_t_2 ____。
(5)t3℃时,将三种物质的饱和溶液降温到t1℃,溶质 质量分数保持不变的是____C_____。
①甲图中R物质在室温(20℃)时的饱和状态为D点,
40℃时的饱和状态为A点,现将甲图中的R溶液从A状态
例.右图为A、B、C三种固体物质 溶解度/g
A
的溶解度曲线,回答下列问题:
B
(1)在_t_1 __℃时,A、C两种
物质的溶解度相等。
C
(2)三种物质中溶解度受温度 0
影响最小的是__B___。
t1 t2 t3 温度/℃
(3)要使A物质的不饱和溶液变为饱和溶液,可采用
的方法是_降__低___温度(填“升高”或“降低”)。
2、在同一温度下,同种溶质的饱和溶液 一定比不饱和溶液浓度大。
饱和溶液与不饱和溶液的转化条件
一般规律:
《溶解度》课件

2 作用机理
因溶质的分子结构而异,如在某些情况下, 共轭溶剂能改变溶质分子间的相互作用力, 使得溶质变得更容易溶解。
溶解度与晶体多形转化的关系
1 晶体多形
同一种化合物由于制备条件等因素可以产生 不同的晶体形态。
2 多形转化
随着温度、压力、溶度等条件的变化,晶体 多形状态也会发生变化,从而影响其应用价 值。
浓度与溶解度的关系
定义
浓度表示溶质在单位溶剂或溶 液中的量。
影响
通常来说,浓度与溶解度成正 比关系。
检测方法
通过比较单位体积内溶质量的 浓度差,利用光度计、分光光 度计等实验装置来检测。
了解饱和溶解度和过饱和溶解度
饱和溶解度
指特定温度和压力下,溶质在溶剂中完全溶解的最 大量。
过饱和溶解度
指达到饱和状态后仍可以增加溶质量,但过饱和状 态不稳定,会形成沉淀。
定义
液体分成两层,无法混合的现象称为液-液相分离。
液液分离的条件
通常需要两种相互悬浮的液体,且不相混合,温度、浓度等影响因素也会直接影响该现象的 发生。
影响
可利用液-液相分离对不同物质进行分离提纯,具有重要的实际应用。
共轭溶剂的作用及其对溶解度的影响
1 共轭溶剂
两种相互稳定的溶剂混合而成的共轭溶剂, 能显著地改变某些物质在溶液中的溶解性。
3 实际应用
溶解度对药物吸收、药效甚至环境保护都有至关重要的作用。
影响溶解度的因素
溶剂特性
• 溶剂极性 • 溶剂型态及物理化学特征 • 溶媒离子化程度
溶质特性
• 溶质粒子大小 • 溶质极性、分子间力及
晶体结构 • 溶质分子量
外界因素
• 温度 • 压力 • 其他添加剂
溶解度ppt课件

通常以质量单位(如克)表示在 一定量的溶剂(如100克水)中 溶解的溶质的质量。
溶解度单位
01
02
03
质量百分比
以溶质质量与溶液质量之 比表示,常用于固体溶解 度。
摩尔浓度
以溶质的摩尔数与溶液体 积之比表示,常用于气体 溶解度。
其他单位
如ppm(百万分之一)、 g/L(克每升)等。
溶解度影响因素
在一定温度和压力下,溶质在溶剂中的最大溶解量。
影响溶解度的因素
02
溶质和溶剂的性质、温度、压力等。
溶解度与溶解速率的关系
03
溶解度大不一定溶解速率快,溶解速率与溶质颗粒大小、溶剂
温度等因素有关。
溶解度研究前沿动态
超临界流体溶解度研究
利用超临界流体作为溶剂,研究不同物质在其中的溶解度,为化 工、医药等领域提供新的分离和纯化方法。
温度
一般来说,随着温度升高,溶解 度增大。但某些物质(如气体和 某些盐)的溶解度可能随温度降
低而增大。
压力
对于气体溶解度,压力增大通常会 使溶解度增大。
溶质与溶剂的性质
不同溶质在同一种溶剂中的溶解度 可能相差很大,这与溶质和溶剂分 子间的相互作用力有关。
CHAPTER 02
固体溶解度
固体溶解度定义
定义
指在一定温度和压力下,某固态物质在100g溶剂中达到溶解平衡时所溶解的质 量。
单位
通常用g/100g溶剂表示。
固体溶解度测定方法
静态法
在一定温度下,将过量的溶质加入一 定量的溶剂中,搅拌并静置,测定上 层清液中溶质的质量,计算溶解度。
动态法
通过测定溶质在不同温度下的溶解度 ,绘制溶解度曲线,利用曲线推算出 其他温度下的溶解度。
溶解度单位
01
02
03
质量百分比
以溶质质量与溶液质量之 比表示,常用于固体溶解 度。
摩尔浓度
以溶质的摩尔数与溶液体 积之比表示,常用于气体 溶解度。
其他单位
如ppm(百万分之一)、 g/L(克每升)等。
溶解度影响因素
在一定温度和压力下,溶质在溶剂中的最大溶解量。
影响溶解度的因素
02
溶质和溶剂的性质、温度、压力等。
溶解度与溶解速率的关系
03
溶解度大不一定溶解速率快,溶解速率与溶质颗粒大小、溶剂
温度等因素有关。
溶解度研究前沿动态
超临界流体溶解度研究
利用超临界流体作为溶剂,研究不同物质在其中的溶解度,为化 工、医药等领域提供新的分离和纯化方法。
温度
一般来说,随着温度升高,溶解 度增大。但某些物质(如气体和 某些盐)的溶解度可能随温度降
低而增大。
压力
对于气体溶解度,压力增大通常会 使溶解度增大。
溶质与溶剂的性质
不同溶质在同一种溶剂中的溶解度 可能相差很大,这与溶质和溶剂分 子间的相互作用力有关。
CHAPTER 02
固体溶解度
固体溶解度定义
定义
指在一定温度和压力下,某固态物质在100g溶剂中达到溶解平衡时所溶解的质 量。
单位
通常用g/100g溶剂表示。
固体溶解度测定方法
静态法
在一定温度下,将过量的溶质加入一 定量的溶剂中,搅拌并静置,测定上 层清液中溶质的质量,计算溶解度。
动态法
通过测定溶质在不同温度下的溶解度 ,绘制溶解度曲线,利用曲线推算出 其他温度下的溶解度。
溶解度(第2课时)

(3)易溶于水的气体是
二氧化硫 ,
(4)极易溶于水的气体是 氯化氢、氨气 。
那么怎样比较不同固体溶质在溶剂(通常 是水)中溶解能力的大小呢?
学生活动1:讨论 需要控制哪些条件
相同呢?
二、固体的溶解度
1、定义: 在一定温度下,某固态物质在100g溶剂里达到饱
和状态时所溶解的质量,叫做这种
4、溶解度的表示方法:
/
度 190
g 180
(1)列表法:
170
.
硝酸钾在不同温度时的溶解度: 160
150
温
140
度
/
0
10 20 30 40
50
60 70
80
90
100
130
℃
120 溶
解 13.3 20.9 31.6 45.8 63.9 85.5 110 138 168 202 246 110
(2)、蒸发溶剂法 氯化钠 适用于溶解度随
温度变化较小的 物质如:NaCl
10 20 30 40 50 60 70 80 90 100
温度(t)
气体溶解度简介
气体溶解度: 气体在压强为101KPa和一定温度时溶解 在1体积水里达到饱和状态时的气体体积。
如:在00C时,氮气的溶解度为0.024。
即:在101KPa和温度为00C时,1体积水里最多 能溶解0.024体积氮气。
提示:(1)固体的溶解度主要有三种类型①陡升型,
如
②缓升型,如
③下降型,
如
。它们分别表示什么含义呢?
(2)应用:从每一条曲线我们可以看出
,
查出
。
当横坐标相同时,我们可以较
。
两条曲线的交点表示什么意义呢?
《溶解度》PPT课件(公开课)2022年人教版 (16)

。
(知识评价)
我会探究:
一包粉末状药品,可能是碳酸钠或者氯化钠,你
能鉴别它究竟是什么吗?简述操作,可能出现的现象
和结论。
(过程与方法评价)
性质——解决问题的依据
5、书写已经学习的有盐参与的化学方程式 导入复分解反应的复习和盐的性质的归纳。
写一写化学方程式:
1.铁与硫酸铜的反应
Fe + CuSO4 = FeSO4 + Cu 2.实验室制取二氧化碳
用途
由学生自主完成,并以此评价学生对基础知识的掌握情况。
4、通过常见的盐导出碳酸盐的复习;并通过 评价练习评价学生对碳酸盐性质的理解,得出“用
物质的性质解决问题”的方法;
常见的盐:
氯化钠:调味品,融雪剂,医药等; 食盐 NaCl 碳酸钙:建筑材料,补钙剂大理石,石灰石 CaCO3
碳酸钠:工业原料 侯德榜 纯碱,苏打 Na2CO3
3.一定温度下,从500克的饱和溶液中倒出100克
溶液,剩余的溶液里,下列数值比原溶液减少的是
①溶质的质量;
②溶剂的质量;
③溶液的密度;
④溶液的质量;
⑤溶质的质量分数(即:浓度);
A. ①②③④ C ①② ④.
B. ②③④⑤ D.①②③④⑤
[课堂小结]
1、饱和溶液和不饱和溶液的定义、区别、判断方法 和 相互转化;
①自主学习:指导学生以实际生活的经验和对知识 的回顾,归纳出常见盐的用途、调动学生思维的积极性, 使学生自主地获取知识。
②探究学习:学生通过有关盐的化学反应探究盐的 性质,培养学生的分析、归纳能力。
③合作学习:利用学生分组实验和小组讨论,使学 生在沟通中创新,在交流中发展,在合作中获得新知。
溶解度ppt课件

24
Q P
A的 不饱和溶液,ω(C)= 20g/120g×100%
20 15
B ② 在t2℃时,将25gA放入到100g
C 水中,充分溶解后得到的是A物质
的 饱和 溶液,ω(A)=20g/120g×100%
0
t1 t2 t3 温度/℃
③ t3℃时,C物质的饱和溶液的溶质质量分数是: 15g/115g×100% 在230gB物质的饱和溶液中含有B 物质__3_0___g
采取措施
降低温度
升高温度 恒温蒸发溶剂或加入溶质 加入溶剂 升高温度同时加溶质
70 KNO3饱和溶液的W/%
60 M
50
40
N P
30
Q
Y 20
10 温度/℃
10 20 30 40 50 60 70 80
⑥沿曲线向下移动
降低温度
如上的六种操作中,能从溶液中析出固体的是第⑥种情况。
如何使溶液 从P点Q点?
D
大册P17 基础测评 1.2.3
D A C
大册P18 基础测评 4.5.6
A
C C
大册P18 拓展提升7
AB D B
C 不能
大册P18 自主梳理
大册P19 合作探究 问题1
31.6
100
131.6
饱和
C
(1)已知20℃时,S(蔗糖)=204g,将200g蔗糖放入100g水 中,充分溶解后得到的是蔗糖的 不饱和 溶液,其ω= 66.7%。 (2)已知20℃时,S(氢氧化钙)=0.2g,将1gCa(OH)2放入100g 水中,充分溶解后得到的是Ca(OH)2的 饱和 溶液,其ω= 0.2%。 (3)已知20℃时,S(氢氧化钙)=0.2g,将0.15gCa(OH)2放入100g 水中,充分溶解后得到的是Ca(OH)2的不饱和 溶液,其ω=0.15。% (4)已知75℃时,S(氢氧化钙)=0.1g,将0.1gCa(OH)2放入100g 水中,充分溶解后得到的是Ca(OH)2的 饱和 溶液,其ω=0.1%。
溶解度ppt【共31张PPT】

压强 压强越大 溶解度越大 温度 温度越高 溶解度越小 利用所学知识解释下列现象?
1、打开健力宝盖时我们为何会看到有气体冒出?
2、给水加热时我们为何可以看到水中出现气泡?
知识反馈
1、下列措施中,能改变固体物质溶解度的是( )
A 搅拌 B 振荡 C 加热
D 把固体研成粉末
C
2、40 ℃时,硝酸钾的溶解度为63.9克。该温度下,在盛有100克水的容器
氯化钠
硼酸
/
熟石灰的溶解度曲线:
度 溶0.20
g解0..1155
0..1100
0..0055
0
100
200
30
40
50
600
7700
800
9900
100
讨论:
从溶解度曲线中你还能获得温度/℃ 哪些信息?
固体物质溶解度受温度影响的变化规律:
固体物质的溶解度一般都随着温度的升高
而增大。其中,有些物质溶解度受温度影
冷却热饱和溶液 (1)、A物质的溶解度曲线表明A物质溶解度随着温度升高而_______
()
应用 海水晒盐
海水
贮水池
粗盐 母液
蒸发池 结晶池
氯化钠 多种化工产品
判断溶液是否饱和的方法:
(1) 一般说来,可以向原溶液中再加入
少量原溶质,如果不能再溶解,则说明是 饱和溶液;如果还能再溶解,则说明是不 饱和溶液。
汽水会自动喷出来;说明气体在水中的溶解度与什 么有关? 2、喝了汽水以后,常常会打嗝。这说明气体的溶解度 还与什么有关?
3、用什么方法可以确定汽水中溶解的气体是二氧化碳?
课题2 溶解度
三、气体物质的溶解度
1、定义:在压强为101KPa、一定温度时溶解在1体积水 里达到饱和状态时的气体体积。
1、打开健力宝盖时我们为何会看到有气体冒出?
2、给水加热时我们为何可以看到水中出现气泡?
知识反馈
1、下列措施中,能改变固体物质溶解度的是( )
A 搅拌 B 振荡 C 加热
D 把固体研成粉末
C
2、40 ℃时,硝酸钾的溶解度为63.9克。该温度下,在盛有100克水的容器
氯化钠
硼酸
/
熟石灰的溶解度曲线:
度 溶0.20
g解0..1155
0..1100
0..0055
0
100
200
30
40
50
600
7700
800
9900
100
讨论:
从溶解度曲线中你还能获得温度/℃ 哪些信息?
固体物质溶解度受温度影响的变化规律:
固体物质的溶解度一般都随着温度的升高
而增大。其中,有些物质溶解度受温度影
冷却热饱和溶液 (1)、A物质的溶解度曲线表明A物质溶解度随着温度升高而_______
()
应用 海水晒盐
海水
贮水池
粗盐 母液
蒸发池 结晶池
氯化钠 多种化工产品
判断溶液是否饱和的方法:
(1) 一般说来,可以向原溶液中再加入
少量原溶质,如果不能再溶解,则说明是 饱和溶液;如果还能再溶解,则说明是不 饱和溶液。
汽水会自动喷出来;说明气体在水中的溶解度与什 么有关? 2、喝了汽水以后,常常会打嗝。这说明气体的溶解度 还与什么有关?
3、用什么方法可以确定汽水中溶解的气体是二氧化碳?
课题2 溶解度
三、气体物质的溶解度
1、定义:在压强为101KPa、一定温度时溶解在1体积水 里达到饱和状态时的气体体积。
第三章溶解气体_PPT幻灯片

计算不同压力下氧气的溶解度和饱和度
• 例 计算淡水湖面大气压为85200Pa水温15℃时氧气的溶解度?
解:求氧分压:(101325Pa,P1和85200Pa,P2条件下的氧分压)
P1= (PT1-PW0) ×20.95% P2= (PT2-PW0) ×20.95% 查表可知15℃时, PW0=1707Pa C1/C2=P1/P2
C = KH × P 式中:C——气体的溶解度;
P——达到溶解平衡时某气体在液面上的压力;
KH——气体吸收系数,其数值随气体的性质、温度、水的 含盐量变化而变化,也与压力(P)、溶解度(C)所釆用的单 位有关。
• 对同一种气体在同一温度下有
C1/C2=P1/P2 式中:C1----压力为P1时的溶解度; C2----压力为P2时的溶解度。
• 对于混合气体中某组分气体在水中的溶解度,上述各式中 的P则是指该组分气体的分压力,与混合气体的总压力无 关。由几种气体组成的混合气体中组分B的分压力PB等于 混合气体的总压力PT乘以气体B的分压系数,这就是道尔 顿分压定律:
见P65页
• 道尔顿分压定律和亨利定律,只有理想气体才能严格相符。 对于不与水发生化学反应的真实气体,如N2、O2、CH4 等,只要压力不是很大都可以用道尔顿分压定律和亨利定 律进行有关计算。
解求气泡在池底时甲烷的分压力:
∵ PT= 1.2atm,体积分数为40% ∴PCH4=1.2×40%=0.48atm 求甲烷溶解度
P1=1.0atm,C1=32.2mg/L P2=1.0atm,C2=? 根据C1/C2=P1/P2得: C2=C1×P1/P2=23.2×0.48÷1=11.1mg/L
• 能与水发生化学反应的气体溶解度大,不能与水发生化学 反应的气体溶解度小。例如NH3、HCL在水中的溶解度很 大,而N2、H2、O2在水中的溶解度很小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 由亨利定律表达式知:
∴亨利系数为
又
,而
∴相平衡常数
∴溶解度系数为: 或由各系数间的关系求出其它系数
三、用气液平衡关系分析吸收过程
1、判断过程的方向
例:在101.3kPa,20℃下,稀氨水的气液相平衡关系为 :
,若含氨0.094摩尔分数的混合气和组成
的氨水接触,确定过程的方向。 解: 用相平衡关系确定与实际气相组成 成平衡的液相组成
2、计算过程的推动力
当气液相的组成均用摩尔分数表示时,吸收的推动力可 表示为:
以气相组成差表示的吸收推动力; 以液相组成差表示的吸收推动力。
3、确定过程的极限
所谓过程的极限是指两相充分接触后,各相组成变化的 最大可能性。
增加塔高 组成为y1的混合气 减少吸收剂用量 塔底 x1增加
极限
组成为:
组成为y1的混合气
将其与实际组成比较 : ∴气液相接触时,氨将从气相转入液相,发生吸收过程。 或者利用相平衡关系确定与实际液相组成成平衡的气相组成
将其与实际组成比较: ∴氨从气相转入液相,发生吸收过程。 若含氨0.02摩尔分数的混合气和 x=0.05的氨水接触,则
气液相接触时,氨由液相转入气相,发生解吸过程。 此外,用气液相平衡曲线图也可判断两相接触时的传质方向 具体方法: 已知相互接触的气液相的 实际组成y和x,在x-y坐标 图中确定状态点,若点在 平衡曲线上方,则发生吸 收过程;若点在平衡曲线 下方,则发生解吸过程。
由亨利定律:
即:
3)用摩尔比Y和X分别表示气液两相组成的亨利定律
a) 摩尔比定义:
由
当溶液浓度很低时,X≈0, 上式简化为: 亨利定律的几种表达形式也可改写为
例:在常压及20℃下,测得氨在水中的平衡数据为: 0.5gNH3/100gH2O浓度为的稀氨水上方的平衡分压为400Pa, 在该浓度范围下相平衡关系可用亨利定律表示,试求亨利系 数E,溶解度系数H,及相平衡常数m。(氨水密度可取为 1000kg/m3)
H是温度的函数,H值随温度升高而减小。
易溶气体H值大,难溶气体H值小。
H与E的关系
设溶液的密度为
,浓度为
,则
对于稀溶液,
2) 气液相中溶质的摩尔分数表示的亨利定律
m——相平衡常数 ,是温度和压强的函数。 温度升高、总压下降则m值变大, m值越大,表明气体的溶解度越小。
m与E的关系: 由分压定律知 :
第六章 吸收
第二节 气液相平衡
一、气体的溶解度 二、亨利定律 三、用气液平衡关系分析吸 收过程
一、气体的溶解度
1、气体在液体中溶解度的概念
气体在液相中的溶解度 :气体在液体中的饱和浓度
2、溶解度曲线
•吸收剂、温度T、P 一定时,不同物质的溶解度不同。 •温度、溶液的浓度一定时,溶液上方分压越大的物质越难溶。 •对于同一种气体,分压一定时,温度T越高,溶解度越小。 •对于同一种气体,温度T一定时,分压P越大,溶解度越大。 •加压和降温对吸收操作有利。
二、亨利定律
1、亨利定律
E——亨利系数,单位与压强单位一致 。 E值取决于物系的特性及温度;温度T上升,E值增大; 在同一溶剂中,E值越大的气体越难溶。
2、亨利定律的其他表示形式
1)用溶质A在溶液中的摩尔浓度和气相中的分压表示的亨 利定律
H——溶解度系数 ,单位:kmol/m3·P塔顶y2降低
极限
组成为:
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
∴亨利系数为
又
,而
∴相平衡常数
∴溶解度系数为: 或由各系数间的关系求出其它系数
三、用气液平衡关系分析吸收过程
1、判断过程的方向
例:在101.3kPa,20℃下,稀氨水的气液相平衡关系为 :
,若含氨0.094摩尔分数的混合气和组成
的氨水接触,确定过程的方向。 解: 用相平衡关系确定与实际气相组成 成平衡的液相组成
2、计算过程的推动力
当气液相的组成均用摩尔分数表示时,吸收的推动力可 表示为:
以气相组成差表示的吸收推动力; 以液相组成差表示的吸收推动力。
3、确定过程的极限
所谓过程的极限是指两相充分接触后,各相组成变化的 最大可能性。
增加塔高 组成为y1的混合气 减少吸收剂用量 塔底 x1增加
极限
组成为:
组成为y1的混合气
将其与实际组成比较 : ∴气液相接触时,氨将从气相转入液相,发生吸收过程。 或者利用相平衡关系确定与实际液相组成成平衡的气相组成
将其与实际组成比较: ∴氨从气相转入液相,发生吸收过程。 若含氨0.02摩尔分数的混合气和 x=0.05的氨水接触,则
气液相接触时,氨由液相转入气相,发生解吸过程。 此外,用气液相平衡曲线图也可判断两相接触时的传质方向 具体方法: 已知相互接触的气液相的 实际组成y和x,在x-y坐标 图中确定状态点,若点在 平衡曲线上方,则发生吸 收过程;若点在平衡曲线 下方,则发生解吸过程。
由亨利定律:
即:
3)用摩尔比Y和X分别表示气液两相组成的亨利定律
a) 摩尔比定义:
由
当溶液浓度很低时,X≈0, 上式简化为: 亨利定律的几种表达形式也可改写为
例:在常压及20℃下,测得氨在水中的平衡数据为: 0.5gNH3/100gH2O浓度为的稀氨水上方的平衡分压为400Pa, 在该浓度范围下相平衡关系可用亨利定律表示,试求亨利系 数E,溶解度系数H,及相平衡常数m。(氨水密度可取为 1000kg/m3)
H是温度的函数,H值随温度升高而减小。
易溶气体H值大,难溶气体H值小。
H与E的关系
设溶液的密度为
,浓度为
,则
对于稀溶液,
2) 气液相中溶质的摩尔分数表示的亨利定律
m——相平衡常数 ,是温度和压强的函数。 温度升高、总压下降则m值变大, m值越大,表明气体的溶解度越小。
m与E的关系: 由分压定律知 :
第六章 吸收
第二节 气液相平衡
一、气体的溶解度 二、亨利定律 三、用气液平衡关系分析吸 收过程
一、气体的溶解度
1、气体在液体中溶解度的概念
气体在液相中的溶解度 :气体在液体中的饱和浓度
2、溶解度曲线
•吸收剂、温度T、P 一定时,不同物质的溶解度不同。 •温度、溶液的浓度一定时,溶液上方分压越大的物质越难溶。 •对于同一种气体,分压一定时,温度T越高,溶解度越小。 •对于同一种气体,温度T一定时,分压P越大,溶解度越大。 •加压和降温对吸收操作有利。
二、亨利定律
1、亨利定律
E——亨利系数,单位与压强单位一致 。 E值取决于物系的特性及温度;温度T上升,E值增大; 在同一溶剂中,E值越大的气体越难溶。
2、亨利定律的其他表示形式
1)用溶质A在溶液中的摩尔浓度和气相中的分压表示的亨 利定律
H——溶解度系数 ,单位:kmol/m3·P塔顶y2降低
极限
组成为:
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!