全国2010年10月高等教育高等数学(工本)自考试题
2010“专升本”《高数》试题及答案

《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。
2010年10月全国自考概率论与数理统计试题答案

全国2010年10月高等教育自学考试《概率论与数理统计(经管类)》答案课程代码:04183(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)[答疑编号918070101]『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。
解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。
故选择A。
提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。
2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()C.Φ(1)D.Φ(3)[答疑编号918070102]『正确答案』分析:本题考察正态分布的标准化。
解析:,故选择C。
提示:正态分布的标准化是非常重要的方法,必须熟练掌握。
3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()[答疑编号918070103]『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。
解析:,故选择A。
提示:概率题目经常用到“积分的区间可加性”计算积分的方法。
4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-[答疑编号918070104]『正确答案』分析:本题考察概率密度的性质。
解析:1=,所以c=-1,故选择B。
提示:概率密度的性质:4.在f(x)的连续点x,有F’(X)=f(x);5.5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=[答疑编号918070105]『正确答案』分析:本题考察概率密度的判定方法。
自考高等数学一历年真题

全国2010年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设函数x x f 31)(+=的反函数为)(x g ,则)10(g =( )A.-2B.-1C.2D.32.下列极限中,极限值等于1的是( )A.e)11(limxx x -∞→ B.x x x sin lim ∞→ C.2)1(lim xx x x +∞→ D.x xx arctan lim ∞→3.已知曲线x x y 22-=在点M 处的切线平行于x 轴,则切点M 的坐标为A.(-1,3)B.(1,-1)C.(0,0)D.(1,1) 4.设C x F x x f +=⎰)(d )(,则不定积分⎰x f xxd )2(2=( )A.C F x +2ln )2( B.F (2x )+C C.F (2x )ln2+C D.2x F (2x )+C5.若函数),(y x z z=的全微分y y x x y z d cos d sin d +=,则二阶偏导数yx z∂∂∂2=( )A.x sin - B.y sin C.x cos D.y cos 二、填空题(本大题共10小题,每小题3分,共30分) 6.设函数f (x )的定义域为[0,4],则f (x 2)的定义域是______.7.极限=-+-∞→17272lim n nnn n ______. 8.设某产品的成本函数为C (q )=1000+82q ,则产量q =120时的边际成本为______.9.函数212x xy -=在x =0处的微分d y =______.10.曲线2ln -+=x x xy 的水平渐近线为______.11.设函数f (x )=x (x -1)(x -2)(x -3),则方程0)(='x f 的实根个数为______.12.导数⎰=-xt t t xd )1(d d ______.13.定积分x x d |1|20⎰-=______.14.二元函数f (x ,y )=x 2+y 4-1的极小值为______. 15.设y =y (x )是由方程e y -xy =e 所确定的隐函数,则导数xy d d =______.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数||sin )(x x x x f -=,问能否补充定义f (0)使函数在x =0处连续?并说17.求极限)5cos 1(lim 2xx x -∞→. 18.设函数y =ax 3+bx 2+cx+2在x =0处取得极值,且其图形上有拐点(-1,4),求常数a ,b ,c 的值. 19.求微分方程)1()2(322y x y y ++='的通解.20.求不定积分⎰--x xx d 112.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设函数f (x )=sin e -x ,求)0()0()0(f f f ''+'+.22.计算定积分⎰-=121d 12arctanx x I .23.计算二重积分⎰⎰+=Dy x y xI d d )1(2,其中D 是由直线y =x ,y =2-x 及y轴所围成的区域.五、应用题(本题9分)24.在一天内,某用户t 时刻用电的电流为2)24(1001)(2+-=t t t I (安培),其中240≤≤t .(1)求电流I (t )单调增加的时间段;(2)若电流I (t )超过25安培系统自动断电,问该用户能否在一天内不被断电?六、证明题(本题5分)25.设函数f (x ),g (x )在区间[-a ,a ]上连续,g (x )为偶函数,且f (-x )+f (x )=2. 证明:⎰⎰-=aaax x g x x g x f 0d )(2d )()(.全国2010年1月高等教育自学考试高等数学(一)试题 课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
全国2010年10月高等教育高等数学(工本)自考试题

全国2010年10月高等教育高等数学(工本)自考试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系下,方程2x2+3y2=6表示的图形为( )A.椭圆B.柱面C.旋转抛物面D.球面、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.马克思主义是( )A.关于工人阶级和人类解放的科学B.人类全部优秀文化成果的总汇C.自然知识和社会知识的总和D.关于未来社会具体设想的学说2.在马克思主义理论体系中,政治经济学是其( )A.理论基础B.核心内容C.指导原则D.前提条件3.马克思主义哲学认为,物质的唯一特性是( )A.广延性B.持续性C.可知性D.客观实在性4.唯物辩证法的总特征是( )A.联系和发展的观点B.量变和质变的观点C.对立统一的观点D.辩证否定的观点5.在马克思主义指导下,从中国社会主义初级阶段的国情出发,走自己的路。
这体现了( )A.矛盾的普遍性和特殊性的统一B.矛盾的统一性和斗争性的统一C.事物发展的量变和质变的统一D.事物发展的内因和外因的统一6.肯定和否定相互依存,离开了肯定就没有否定,离开了否定也没有肯定。
这是一种( )A.相对主义诡辩论观点B.主观唯心主义观点C.形而上学的观点D.辩证法的观点7.社会经济的发展推动教育事业的发展,而教育事业的发展又反过来促进经济进一步发展。
从因果关系来看,这属于( )A.原因和结果相互区别B.原因和结果相互依存C.原因和结果相互渗透D.原因和结果相互作用8.下列选项中,正确揭示了认识的本质的是( )A.认识是主体对客体的能动反映B.认识是主体对客体的直观反映C.认识是主体的主观创造D.认识是主体的内心体验9.宋代诗人陆游在一首诗中说“纸上得来终觉浅,觉知此事要躬行”。
全国2010年10月高等教育自学考试

浙00023# 高等数学(工本)试卷 第 1 页 共 3 页全国2010年10月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y x f )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f drd θD .⎰⎰⎰π12)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu浙00023# 高等数学(工本)试卷 第 2 页 共 3 页二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(xyf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解.浙00023# 高等数学(工本)试卷 第 3 页 共 3 页21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zyx z x 24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .。
2010年10月全国自考高等数学(工本)试题

= 1- 2+ n 2 n 1 = 1- 2+
1 ,而且 lim S n =1- 2 , n n 2+ n 1
(
n 1
n 2 - 2 n 1 n) = 1- 2
4/4
2010 年 10 月全国自考高等数学(工本)试题
课程代码:00023
一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1.在空间直角坐标系下,方程 2x +3y =6 表示的图形为(B) A.椭圆
2 2 2
B.柱面
1 x 2 y 0
C.旋转抛物面
D.球面
2.极限 lim arcsin(x+y )=(A)
2 2
C
解:C:x=2cost,y=2sint(0≤t≤π),
x ds
2
c
0
4 cos t 2dt 4
2
0
1 (1 cos 2t )dt 4 t sin 2t 4 2 0
19.计算对坐标的曲线积分 ≤1 的正向边界曲线。 解:由格林公式
2z 。 xy
A -4 D AC D 0 得 C -3D 5 A 7 C D 0
全国学前特殊儿童教育(00883)2010年10月高等教育自学考试试题与答案

全国2010年10月高等教育自学考试学前特殊儿童教育试题课程代码:00883一、单项选择题(本大题共27小题,每小题2分,共54分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.美国特殊教育专家柯克和葛拉格将特殊儿童分为五大类:( A )A.心智偏异、感觉障碍、沟通异常、行为异常和多重障碍与重度障碍B.心智偏异、思维障碍、沟通异常、情感异常和多重障碍与重度障碍C.心智偏异、感觉障碍、思维异常、行为异常和多重障碍与重度障碍D.心智偏异、反应障碍、沟通异常、行为异常和多重障碍与重度障碍2.学前教育机构中生理发展障碍儿童除了视觉障碍、听觉障碍外,还包括部分( B ) A.弱智儿童B.病弱儿童C.自闭症儿童D.多动症儿童3.回归主流教育模式中的资源教室模式主要流行于( D )A.法国B.德国C.英国D.加拿大4.低视力指双眼中优势眼的最佳矫正视力为( D )A.0.03-0.05 B.0.03-0.5C.0.3-0.5 D.0.05-0.35.视觉障碍儿童( A )A.兴趣不广泛B.活泼C.好动D.爱提问6.人类所能听到的声音强度介于( B )A.0-120分贝B.0-130分贝C.0-140分贝D.0-150分贝7.以下几种语言异常的表现中,属于构音异常的是( B )A.口吃B.整体性的语音不清C.共鸣异常D.音调异常浙00883# 学前特殊儿童教育试卷第 1 页共8 页8.传统的语言障碍研究中,语言障碍主要指( C )A.清晰度障碍B.流利障碍C.语义障碍D.音质障碍9.20世纪50年代,受学习行为理论影响,研究者倾向认为口吃形成的原因是( B ) A.患者的语言编码过程B.学习C.压力D.神经心理或生理上的缺陷10.自闭症儿童机械模仿别人的“鹦鹉式语言”属于( B )A.语言缺乏B.存在质量差别的语言C.语言发展迟缓D.语言发展中断11.缺乏交会性注意是孤独症儿童的一大行为特征,这是指( C )A.孤独症儿童无法在交流的时候对交流对象集中注意B.孤独症儿童不具有较长时间的有意注意C.孤独症儿童无法与他人一起将注意力汇聚在同一注意对象上D.孤独症儿童在日常会话中无法集中注意12.当孤独症儿童上下挥动手臂时,教他认识“上”和“下”概念;当他摆弄玩具时,教他给玩具命名,认识玩具的形状、颜色特征等。
全国2010年10月自考00388《学前儿童数学教育》真题及答案

2010年10月高等教育自学考试全国统一命题考试学前儿童数学教育试卷一、单项选择题(本大题共24小题,每小题1分,共24分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在提后的括号内。
错选、多选或未选均无分。
1.从任何一个角度提出教育目标,其归宿都需落实到【C 】3-45A.社会需求B.学科结构C.儿童发展D.教学活动2.作为人类的发明,数学体现了人类思维的的【B】1-3A.具体化B.抽象化C.系统化D.概括化3. 学前儿童数学教学活动所采用的主要形式是【A 】4-77A.集体活动B.小组活动C.个人活动D.小组活动与个人活动相结合4.教师引导幼儿学习一些逆向思维的加减应用题,以促进其思维发展,这一做法适合于【D 】7-205A.小班后期B.中班后期C.大班前期D.大班后期5.在幼儿数学教育内容中起着发散思维作用的核心因素是【 A 】3-61A.数量关系B.集合关系C.对应关系D.分类关系6.整个幼儿期,占主导地位的思维类型是【 B 】2-19 A.直觉行动思维B.具体形象思维C.抽象逻辑思维D.辩证逻辑思维7.幼儿数概念的发生过程是【A 】5-121A.辩数-认数-点数B.先数数,后有集合概念C.数数-认数-辩数D.从口头数数到有数的模糊概念8.幼儿辨认形状时,最难的是【D】8-213A.配对B.指认C.拼合D.命名9.量的本质特征在于它是【B】9-241A.连续的B.可测的C.可比的D.可逆的10.早期数学教育的重要价值在于培养儿童【C 】1-8 A.抽象思维能力B.掌握数学知识C.基本的数学素养D.钻研的精神11.儿童不能把集合作为一个结构完整的统一体来感知的阶段是【A 】5-125A.3岁以前B.4岁以前C.5岁以前D.6岁以前12.在描述物体的空间方位时,总是要和一定的参照物联系在一起。
这表明空间方位概念具有【A 】10-266A.相对性B.可变性C.可测性D.连续性13. 儿童数学教育评价中工作量最大、技术性最强的步骤是【B 】11-299A.确定评价目的B.收集评价资料C.设计评价方案D.处理评价结果14.在学前儿童数学教育中,儿童掌握数学知识只是发展的表面现象,关键在于是否发展了儿童的【A】2-33A.思维结构B.操作能力C.心智技能D.学习态度15. 富有成效的数学教育的关键在于【 C 】4-95A.教育目标的确立B.教学方法的选择C.教育活动的设计D.教学活动形式的选择16. 在数的组成教学中,教师应重视【 A 】6-176A.幼儿自己的探索与操作B.教师的讲解C.教师的演示D.家庭教育的配合17.“学习不受颜色、大小和摆放位置的影响,正确辨认图形”这一教育要求适合于【 B 】8-219 A.幼儿园小班B.幼儿园中班C.幼儿园大班D.学前班18.表现物质运动、变化的持续性、顺序性的量是【B】10-273A.空间B.时间C.形状D.容积19.幼儿学习加减运算的主要手段是【 B 】7-187A.运用动作B.运用表象C.运用概念D.运用规则20.研究表明,幼儿对各种量的排序能力发展最早的是【 A 】9-245A.认识物体大小、长短的数序B.认识实物的数序C.认识直观图形的数序D.认识抽象的数序21.“会10以内数的倒着数,能注意生活中的运用顺、倒数得有关事例”这一教育要求适合于【 C 】6-157A.幼儿园小班B.幼儿园中班C.幼儿园大班D.学前班22. 以下表述中,属于小班儿童量的概念教育要求的是【 A 】9-250A.会用观察、比较的方法,区别大小和长短不同的物体B.能区分物体的粗细、厚薄、高矮C.会按一定的规律排列物体D.学习量的守恒23. 教育评价是要对教育活动的有关要素进行【 B 】11-282A.事实判断B.价值判断C.逻辑判断D.关系判断24. 提出“最近发展区”理论的是【D 】2-32A.巴班斯基B.皮亚杰C.蒙台梭利D.维果茨基二、多项选择题(本大题共5小题,每小题2分,共10分)每小题列出的五个备选项仲至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页
全国2010年10月高等教育高等数学(工本)自考试题 9
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在三角形的以下性质中是仿射性质的是( ) A.垂心 B.重心 C.内心
D.外心
2.以下四条直线中所含的无穷远点与其他三条不同的是( ) A.
x
y x y 121
)1(2+=
++ B.11
)(2=++x x y
C.x +2y =0
D.过点(1,3),(3,2)的直线
3.已知A ,B ,C ,D 四点是调和点列,任意调整它们次序后所得交比不会出现的是( ) A.1 B.2 C.-1
D.
2
1
4.椭圆型射影对应的自对应元素是( ) A.两个互异的实元素 B.两个互异的虚元素 C.两个重合的实元素
D.两个重合的虚元素 5.唯一决定一条二阶曲线需无三点共线的( ) A.3点 B.4点
C.5点
D.6点
二、填空题(本大题共5小题,每小题2分,共10分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
6.两点-3u 1+u 2+2u 3=0,2u 1-u 2+3u 3=0连线的坐标是_________.
7.若对合a μμ′+b (μ+μ′)+c =0是椭圆型的,则系数满足_________.
8.完全四线形的每一条对角线上有一组调和点列,即这直线上的两个顶点和_________. 9.椭圆上四定点与其上任意第五点所联四直线的交比为_________. 10.平面上任一圆通过的两个固定点称为_________. 三、计算题(本大题共6小题,每小题6分,共36分)
11.求使三点A (0,0),B (1,1),C (1,-1)变到三点A ′(1,1),B ′(3,1),C (1,-1)的仿射变换. 12.已知平面上有点A (2,1),B (4,2),C (6,-3),D (-3,2),E (-5,1),求A (BC ,DE ).
第 2 页
13.求射影变换式,使它的不变元素的参数是λ1=-1,λ2=3,并且使λ3=1变为3λ'=0.
14.求射影变换⎪⎩
⎪
⎨⎧--='-='-='3213212
211
36 4 x
x x x x x x x x x ρρρ的二重直线.
15.求两个成射影对应的线束x 1-λx 2=0,x 2-λ′x 3=0,(λ′=λ
λ
+1)所构成的二阶曲线的方程.
16.求二次曲线x 1x 2+x 1x 3+x 2x 3=0的中心.
四、作图题(本大题共2小题,每小题8分,共16分)(第18题写出作法) 17.作出下列图形的对偶图形:
题17图
18.已知二阶曲线上五点A ,B ,C ,D ,E ,求作该曲线上点A 处的切线.
题18图
五、证明题(本大题共3小题,第19小题和第20小题各10分,第21小题8分,共28分)
19.设三条定直线l 1,l 2,l 3共点于M ,A 与B 为二定点,其连线通过M .又R 为l 3上的动点,且RA ,RB 分别交l 1,l 2于P ,Q ,证明PQ 必过AB 上一定点.
20.设A ,B ,C ,A ′,B ,′C ′是共线点,且
(AA ′,BC )=(BB ′,CA )=(CC ′,AB )=-1,
求证:A ,A ′;B ,B ′;C ,C ′是同一对合的对应点.
21.四边形ABCD 的四边AB ,BC ,CD ,DA 分别切一圆于E ,F ,G ,H ,求证AC ,BH ,DE 共点
.
题21图
第 3 页。