无模成形技术简介
简述消失模铸造工艺

简述消失模铸造工艺
消失模铸造是一种用于铸造金属零件的常用工艺,它使用消失模具进行铸件成型。
这种工艺的使用可以产生结构复杂、加工尺寸精度高以及外观光洁等高质量的金属铸件。
消失模铸造工艺是一种强有力的工艺,可以在一次模具内进行多种复杂的设计。
消失模铸造的主要发展方向是材料的配比。
消失模具由固体和液体组成,它们的性能也各不相同。
固体为聚脂树脂,加入骨料形成坚硬的模具,而液体则是热可塑性的树脂。
在模具制作过程中,将两种材料精确配比和完美混合,可以使其获得所需的性能和附加值。
消失模铸造工艺的另一个关键点是设计。
除了材料配比外,还要考虑模具的设计,这包括材料的厚度,有无内置支撑结构,表面处理等。
考虑到热分配的问题,还需要预留液体冷却系统。
消失模铸造工艺的主要过程如下:首先,使用3D打印机和CAD 软件制作模具,按照预设信息标准进行精确打印、切削和处理,使液体和固体混合均匀,产生完美的模具。
然后,将待铸件和融化的金属液注入模具以填充模具,形成所需的金属铸件。
最后,进行模具拆解,将铸件从模具中取出,完成整个消失模铸造工艺。
消失模铸造工艺的特点是快速、高效、绿色,它不需要安装工具,不需要浪费资源,也不会对环境造成污染。
消失模铸造工艺的应用范围也越来越广,它已经在汽车、航空航天、家电、信设备等行业得到了广泛应用。
总之,消失模铸造是一种很有效的铸造工艺,它可以实现快速、
高效、绿色、复杂精度高等优点,被广泛应用于各个行业。
消失模铸造工艺简单介绍讲义

消失模铸造技术解析卢宝江一铸造概述在我国已有几千年历史的传统铸造,主要用来生产机械零件的毛坯件,尽管发展到现在,也出现了许多新的方法,但是目前生产上应用最普遍的仍然是发展较早的砂型铸造。
手工砂型铸造通常又被称之为翻砂。
它必须借助于铸模(用木材或金属制成),才能将型砂制成的需形状的铸型,但是这类用木材或金属制成的模样,必须在浇注前从铸型中取出,否则就无法浇注。
因此,这种工艺显得特别复杂,工序多、劳动强度大、生产周期长、成本高,而且铸件精度不够理想,表面较粗糙,加工余量大,甚至对于某些复杂的零件还无法实现活块整体铸造,这就成了砂型铸造的致命弱点。
为了改善砂型铸造的状况,人们作了不少努力,近代高速粘土湿砂射压造型和静压造型的应用,呋喃树脂自硬砂,有机酯硬化和微波加热水玻璃砂的应用,达到砂型铸造的先进水平。
但是对于那些单件小批量、形状较为复杂的大中型铸件、大批量生产的复杂铸件如何来实现“高效、优质、清洁、低成本、高精度、”的生产要求,成了铸造工作者急待解决的重大课题。
在消失模铸造法出现之后,这个问题得到了解决。
消失模铸造是一种近无余量、精确成型的铸造方法,被铸造界的权威人士称为“21世纪的铸造工艺革命”和“最值得推广的绿色铸造工程”。
消失模铸造与传统的粘土砂铸造的主要工艺流程比较如下图:消失模实型铸造法、干砂负压铸造法分别代表了消失模铸造发展的两个阶段,也是当前世界各地广泛使用的、已相互独立的两种铸造方法。
实型铸造法(FM法):就是用泡沫聚苯乙烯模代替铸模进行造型,其方法主要是用化学自硬砂造型,模样不取出呈实体铸型,浇入金属液,模样气化,而得到理想铸件的一种铸造方法。
该法的工艺过程是将泡沫塑料制成的模样,置入砂箱内填入造型材料后夯实,模样不取出构成一个没有型腔的实体铸型,当金属液浇入铸型时,泡沫塑料模在高温金属液的作用下迅速气化、燃烧而消失,金属液取代了原来泡沫塑料模样所占据的位置,冷却凝固成与模样形状相同的实型铸件。
无模多点成形技术

无模多点成形技术学习先进制造技术过程中,接触到了一些前沿的成型技术,感触颇深,对此挺感兴趣!于是从多方查资料,得知先进成型技术的一种——无模多点成形技术,所以就略作整理,得此文章,分享给大家,也请老师评阅。
【文章摘要】【无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。
该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面】【关键字:数控车削实例讲解模具制造的加工技术数控车削工艺分析】一、基本概念无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。
该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面成形。
它是对三维曲面扳类件传统生产方式的重大创新。
二、技术特点实现无模成形:取代传统的整体模具,节省模具设计、制造、调试和保存所需人力、物力和财力,显著地缩短产品生产周期,降低生产成本,提高产品的竞争力。
与模具成形法相比,不但节省巨额加工、制造模具的费用,而且节省大量的修模与调模时间:与手工成形方法相比,成形的产品精度高、质量好,并且显著提高生产效率。
优化变形路径:通过基本体调整,实时控制变形曲面,随意改变板材的变形路径和受力状态,提高材料成形极限,实现难加工材料的塑性变形,扩大加工范围。
实现无回弹成形:可采用反复成形新技术,消除材料内部的残余应力,并实现少无回弹成形/保证工件的成形精度。
小设备成形大型件:采用分段成形新技术,连续逐次成形超过设备工作台尺寸数倍的大型工件。
易于实现自动化:曲面造型、工艺计算。
压力机控制、工件测试等整个过程全部采用计算机技术,实现CAD/CAM/CA T一体化生产,工作效率高,劳动强度小,极大地改善劳动者作业环境。
三、技术发展概况多点成形的研究起源于日本。
70年代日本造船协会西冈等人试制了多点压力机,进行船体外板自动成形的研究,但因关键技术未能解决好,多点压机的制造费用太高,未能实用化。
无模拉伸成型

水 …………………. …….
油 ………………….
…………………. ………………….
成型方法
滚筒形式 …..
热源固定 ………... 连续无模拉伸机
…… …… ……
按热源状况分类
卷筒形式
热源移动
……..
伺服电机 转换系统
拉伸设备
材料试验机ຫໍສະໝຸດ 成型设备图4 连续无模拉伸机
M是液压马达,E是联轴节,B是 涡轮减速器,G1-5是齿轮,W是链 轮,C是链条,D是卷筒,R1-2是滚 轮,S是压簧,Co是冷却器,H是 感应线圈,Gu是导板。
无模拉伸成型
2013年10月28日
主要内容
概述
工艺特点
成型原理
典型实例
成型方法 和设备
概述
• 一种不采用模具而进行金属成形的新工艺。 • 无模拉伸研究在国外始于七十年代。 • 目前世界上只有少数几个国家对此工艺进行了理论和实 验研究,例如日本、英国、苏联等。 • 从文献上看,利用无模拉伸成形工艺可以生产棒材、管 材、阶梯棒或管、锥形棒或管、波形棒或管、复合棒或管等。
成型原理
图1 无模拉伸的两种典型布置。A1和A2分别表示变形前后坯料的断 面积,V1为棒料拉伸速度,V2为热源移动速度。
成型原理
图2 连续拉伸成形原理图
成型方法
电阻加热(交流、直流)
燃烧气体加热(氧—乙炔)
按加热方法分类
等离子电弧加热
感应加热(高频、低频)
成型方法
气体
按冷却方法分类
液体
空气 热空气 …………………. 慢冷却 惰性气体 …………………. 氦气 二氧化碳气体 …………………. 急冷却
成型原理
无模成形技术简介

无模成形技术简介1.引言无模成形是以计算机为主要手段,利用多点成形或增量成形的方法,实现板料的无模具塑性成形的先进智能化制造技术。
金属板料成形在制造业中有着十分重要的地位,该技术广泛应用于航空航天、船舶工业、汽车覆盖件和家电等生产行业,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
为此,国内外许多学者都在致力于板料塑性成形新技术的研究,努力实现金属板料快速高效的柔性冲压和无模成形,以适应现代制造业产品快速更新的市场竞争需要。
2.研究概况国内外许多学者都对板料塑性成形新技术进行了大量的研究,从无模多点成形和数字化渐进成形到喷丸成形、爆炸成形、激光热应力成形和激光冲击成形等,并取得了一定的成果。
2.1 无模多点成形无模多点成形是利用高度可调节的数控液压加载单元(基本群体)形成离散曲面,来替代传统模具进行三维曲面成形的方法,是一种多点压延加工技术。
此法特别适合于多品种小批量生产,体现了敏捷制造的理念。
目前已在高速列车流线型车头制作、船舶外板成形、建筑内外饰板成形及医学工程等领域,得到广泛应用。
与传统模具成形方法相比,其主要区别就是他具有“柔性”,可以在成形前也可在成形过程中改变基本体的相对位移状态,从而改变被成形件的变形路径及受力状态,以达到不同的成形效果。
图2-1 为传统模具成形与多点成形的比较。
图 2-2 为多点模具成形的过程。
图 2-1 模具成形与多点成形的比较图 2-2 多点模具成形过程20 世纪 70 年代,日本造船界开始研究多点成形压力机,并成功应用于船体外板的曲面成形。
此后许多学者为开发多点成形技术进行了大量的探讨与研究,制作了不同的样机,但大多只能进行变形量较小的整体变形。
吉林大学李明哲等人对无模多点成形技术进行了较为系统的研究,已自主设计并制造了具有国际领先水平的无模多点成形设备,2002 年底,李教授组建了产学研实体:长春瑞光科技有限公司。
无模多点数字化成形技术与装备

1无模多点数字化成形技术与装备多点数字化成形是一种先进的板类件三维曲面成形技术。
该技术利用计算机控制很多可调整高度的基本体,形成所需的成形曲面,代替模具实现板材快速、柔性成形。
具有实现无模成形、改善变形条件、无回弹成形、小设备成形大型件、CAD/CAM/CAT一体化等特点。
多点数字化成形设备特别适用于尺寸多变、批量不大的大型板材曲面零件的生产,使生产简单化、柔性化,实现零件的快速制造。
多点成形设备的加工范围广、零件的成形精度高、成形质量好,可广泛用于飞机蒙皮、船体外板、车辆覆盖件、医学工程、压力容器、建筑装饰、城市雕塑等领域中各种曲面零件的制造。
传统的模具成形方式制造成本高,手工加工的质量难以保证。
多点成形设备不需模具,功能全、性能好,市场前景非常广阔。
用户购置该设备后,可节省大量的模具材料及模具制造费用,并可提高工效数十倍,缩短研制及生产周期,对产品的更新换代做出快速响应,取得显著的经济效益。
2多点数字化拉形技术多点数字化拉形技术是将传统的整体拉形模具离散成规则排列的基本体点阵,形成数字化控制的多点模具,实现不同形状蒙皮件的数字化制造。
吉林大学已经开发出尺寸为1200×800mm的多点数字化拉形装置,成形出多种合格的蒙皮件,取得了良好的效果。
该装置由1536个基本体单元构成,具有八轴伺服控制系统,可同时调整6个基本体单元。
这是目前正在运行的欧盟第六框架协议计划“基于多点成形方法的飞机蒙皮制造用数字化调整装置”国际合作项目的重要成果之一。
3液态道路沥青软包装成套设备及新型沥青包装袋液态道路沥青软包装技术是“七五”国家重点科技攻关项目,于1991年2月通过国家鉴定验收,并获国家科技攻关成果二等奖。
94年获交通部科技进步二等奖,95年获国家科技进步三等奖,该项目92年列入交通部重点推广项目,93年列入国家重点推广项目,它完美地解决了长期困扰我国的道路沥青包装、贮藏和运输的一大难题。
液态道路沥青软包装线是将温度在≤200℃时的道路沥青,灌装在特种材料经过特殊工艺加工制成的软包装复合袋中的机械设备。
无模成型技术

摘要:金属板料成形在制造业中有着广泛的应用,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
因此一些新型的无模成形技术应运而生,如:喷丸成形、数字化渐进成形、无模多点成形、激光热应力成形、激光冲压成形等。
这些技术都是在数控系统的支撑下,实现板料的无模成形,具有很大的柔性。
他们克服了模具成形的不足,节省了模具制造费用与时间,特别适合新产品的开发和小批量生产。
1 喷丸成形喷丸成形是利用高速弹丸撞击金属板料的一个表面,使受撞击表面及其下一层金属产生塑性变形,导致面内产生残余应力,在此应力作用下逐步使板料达到要求外形的一种成形方法。
[1]目前其主要应用在航空航天领域,如波音和空中客车等飞机制造公司在其现代客机的生产中,都已采用了喷丸成形方法。
其主要优点是:(1)零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达32m,若采用其他方法,设备投资将急剧增加。
(2)工艺装备简单,无需成形模具,只需简单的夹具。
准备周期短,固定投资少。
(3)在进行成形的同时,可对板料起到强化作用。
(4)可对变厚度的板料进行成形。
(5)既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
[2]喷丸成形的工艺方法有弯曲喷丸、延伸喷丸和预应力喷丸3种,其成形机理十分复杂。
由于影响成形过程的因素较多,使得喷丸成形工艺参数的选择仍要依靠庞大的实验数据库和操作经验,采用试喷渐进的方法来确定,耗时费资。
在采用CNC喷丸成形后,这一问题更需解决。
西北工业大学的康小明等人提出喷丸成形CAD/CAM/CAE系统,以机翼整体壁板全信息模型及喷丸成形数据库为基础,解决了喷丸成形的参数选取问题;对喷丸成形进行运动模拟,简化了喷丸成形的数控编程工作;对喷丸成形进行有限元模拟,增强了对这一复杂过程的预见。
金属板材无模成形

类型多样的金属板材无模成形技术1.金属板材无模成形简介金属板材无模成形是指使用非模具的成形工具强迫金属板材发生渐进的塑性变形,最终得到所需零件的加工方法。
由于市场需求的多样化,机械和控制技术的进步,促使金属板材无模成形有了较快的开展,国内外许多企业学者进展了大量的研究。
目前比拟典型的板材无模成形方法有成形锤渐进成形、旋压成形、多点成形和数字化渐进成形等。
通过不同的板材成形方法来了解各种成形技术的开展及其优缺点。
2.无模成形的类型及特点2.1CNC成形锤渐进成形法[1]该方法使用刚性冲头和弹性下模,对板材各局部区域分别打击成形,逐步成形为所需形状的加工工艺。
成形锤渐进成形法成形方法简单,成形速度较快,但是该技术只能成形形状比拟简单的工件,而且成形后留下大量的锤击压痕点,影响制品的外表质量,因而还必须进展后续处理。
成形锤渐进成形示意图2.2喷丸成形[2]喷丸成形是利用高速弹丸撞击金属板材的一个外表,使受撞击外表及其下一层金属产生塑性变形,导致面内产生剩余应力,在此应力作用下逐步使板材到达要求外形的一种成形方法。
目前其主要应用在航空航天领域,如波音和空中客车等飞机制造公司在其现代客机的生产中,都已采用了喷丸成形方法。
喷丸成形的主要优点:〔1〕零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达32 m,假设采用其他方法,设备投资将急剧增加;〔2〕工艺装备简单,无需成形模具,只需简单的夹具,准备周期短,固定投资少;〔3〕在进展成形的同时,可对板料起到强化作用;〔4〕可对变厚度的板料进展成形;〔5〕既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
A380飞机超临界外翼下翼面整体壁板长度30余m、厚度30余mm,是迄今采用喷丸成形技术所获得的长度最长、厚度最大的构件,代表了国际喷丸成形工艺技术的最新成果。
2.3 旋压成形[3-5]旋压成形是一种将金属坯料装在芯模的顶部,旋轮通过轴向运动和径向运动,使旋转坯料在旋轮滚压作用下产生局部连续塑性变形,最终获得所要求的薄壁回转体零件的塑性加工方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无模成形技术简介1.引言无模成形是以计算机为主要手段,利用多点成形或增量成形的方法,实现板料的无模具塑性成形的先进智能化制造技术。
金属板料成形在制造业中有着十分重要的地位,该技术广泛应用于航空航天、船舶工业、汽车覆盖件和家电等生产行业,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
为此,国内外许多学者都在致力于板料塑性成形新技术的研究,努力实现金属板料快速高效的柔性冲压和无模成形,以适应现代制造业产品快速更新的市场竞争需要。
2.研究概况国内外许多学者都对板料塑性成形新技术进行了大量的研究,从无模多点成形和数字化渐进成形到喷丸成形、爆炸成形、激光热应力成形和激光冲击成形等,并取得了一定的成果。
2.1无模多点成形无模多点成形是利用高度可调节的数控液压加载单元(基本群体)形成离散曲面,来替代传统模具进行三维曲面成形的方法,是一种多点压延加工技术。
此法特别适合于多品种小批量生产,体现了敏捷制造的理念。
目前已在高速列车流线型车头制作、船舶外板成形、建筑内外饰板成形及医学工程等领域,得到广泛应用。
与传统模具成形方法相比,其主要区别就是他具有“柔性”,可以在成形前也可在成形过程中改变基本体的相对位移状态,从而改变被成形件的变形路径及受力状态,以达到不同的成形效果。
图2-1为传统模具成形与多点成形的比较。
图2-2为多点模具成形的过程。
图2-1模具成形与多点成形的比较图2-2多点模具成形过程20世纪70年代,日本造船界开始研究多点成形压力机,并成功应用于船体外板的曲面成形。
此后许多学者为开发多点成形技术进行了大量的探讨与研究,制作了不同的样机,但大多只能进行变形量较小的整体变形。
吉林大学李明哲等人对无模多点成形技术进行了较为系统的研究,已自主设计并制造了具有国际领先水平的无模多点成形设备,2002年底,李教授组建了产学研实体:长春瑞光科技有限公司。
目前,公司已有的多台产品投入到工程使用中,表2-1给出了产品的具体型号。
表2-1长春瑞光科技有限公司产品具体型号YAM-4型1000KN多点成形压力机1.总成形力:1000KN2.基本体调整量:100mm3.有效成形尺寸:500x400mm4.可加工板材厚度:2~8mm机1.总成形力:630KN2.基本体调整量:100mm3.有效成形尺寸:400×320mm4.可加工板材厚度:0.5~3.0mm YAM-3型630KN薄板多点成形压力机1.总成形力:630KN2.基本体调整量:100mm3.有效成形尺寸:400×320mm4.可加工板材厚度:0.5~3.0mm YAM-5型2000KN多点成形压力1.总成形力:2000KN2.基本体调整量:200mm3.有效成形尺寸:840×600mm4.可加工板材厚度:2.0~10.0mm小型多点成形压力机1.总成形力:100KN2.基本体调整量:50mm3.有效成形尺寸:140x140mm4.可加工板材厚度:0.3~3.0mm压力机1.总成形力:3150KN2.基本体调整量:300mm3.有效成形尺寸:1000×720mm4.一次调形时间:3~5分钟5.可加工板材厚度:3.0~15.0mmSM150型鸟巢工程用多点成形压力机1.最大成形力:15000KN2.基本体群布置:9×93.一次成形尺寸:1350×1350mm该公司的产品目前已应用于许多行业,以应用领域如下:(1)列车流线型车头覆盖件成形长春轨道客车股份有限公司使用无模多点成形系统生产出44种成形难度大的高速列车车头覆盖件,节省了巨额模具费用。
按原工艺方案生产新车型的模具需6~8个月时间,采用多点成形技术后,仅用几天的时间就完成了一台新型高速列车车头覆盖件的成形,大大缩短了新产品的开发周期,提高了成形效率与成形质量。
同时,显著地降低了工人的劳动强度,改善了工作环境。
唐山机车车辆厂定制的多点成形系统也已通过验收,即将投入300公里动车组的生产中。
图2-3为采用多点成形压力机生产的高速列车流线型车头的拼焊制造过程。
图2-3高速列车流线型车头的拼焊制造过程(2)钛合金板成形我国新一代潜艇的外板用钛合金材料,成形后的回弹极大,用传统的方法很难成形,采用多点成形设备较好地解决了钛合金成形问题。
洛阳725所已利用该设备加工了数件潜艇钛合金外板,缩短了生产周期。
图2-4为潜艇外壳的部分成形件。
图2-4潜艇外壳(钛合金)的部分成形件(3)医学工程中的钛网板塑形在医学工程中,人脑受损伤后,颅骨缺损部位需要植入钛网板进行修补。
采用多点成形技术,很好地解决了钛板塑形问题。
这项技术首先根据CT断层照片完成颅骨修补部位的三维重建,然后进行修复体的数字设计、模拟装配、优化工艺参数,最后将设计好的修复体数据直接传输到无模多点成形设备上制造出修复体。
图2-5为医学中用到的钛网板。
图2-5钛网板颅骨修复体(4)弯扭板件鸟巢建筑工程在施工时遇到多项技术难题,其中一大难题就是鸟巢建筑中大量使用的大型弯扭箱形钢构件需要成形。
由于各构件的弯扭形状与尺寸都不一样,所用钢板的厚度从10mm变化到60mm,且形状各异,成形相当困难。
如采用模具成形,模具费用高昂,而采用水火弯板手工成形则不易保证成形精度,且工人劳动强度大。
采用多点成形技术圆满解决了上述问题,不仅实现了与传统整体模具成形相同的效果,节约了高额模具费用,还显著提高了成形效率。
图2-6为鸟巢工程用钢构件制造过程。
图2-6鸟巢工程用钢构件制造过程2.2数字化渐进成形数字化渐进成形是20世纪90年代日本学者松原茂夫提出的金属板料成形新方法,将零件复杂的三维形状沿Z轴方向离散化,即分解成一系列二维断面层,并用工具头在这些二维断面层上局部进行等高线塑性加工,达到所要求的形状,实现了板料设计制造一体化的柔性快速制造,其成形原理如图2-7所示。
图2-7渐进成形示意图加工是在三轴联动的数控成形机上进行的,工作时,在计算机控制下成形工具头先走到指定位置,并设定下压量,然后根据控制系统的指令,按照第一层截面轮廓的要求,以走等高线的方式对板材施行渐进塑性加工,并形成所需第一层轮廓后;成形工具头再压下设定高度,按第二层截面轮廓要求运动,并形成第二层轮廓。
如此重复直到整个工件成形完毕。
金属板材数字化渐进成形的整个工作过程并不复杂,以汽车覆盖件车门的成形为例,其过程如下:(1)首先在计算机上用三维CAD软件建立工件的三维数字模型。
(2)进行成形工艺分析、工艺规划,制造工艺辅助装置。
(3)用专用的切片软件对三维模型进行分层(切片)处理,并进行成形路径规划。
(4)生成成形轨迹文件,进行成形速度规划,最终对加工轨迹源文件进行处理并产生NC代码。
(5)将NC代码输入控制用计算机,控制板料成形机成形出所需工件形状。
(6)对成形件进行后续处理,形成最终产品。
日本AMINO公司已研制出样机,并用此方法生产出薄壳样件,如图2-8所示。
图2-8AMNIO公司生产的样机及薄壳样件华中科技大学快速制造中心与湖北省三环集团黄石锻压机床有限公司合作研制了国内第一台数控无模成形机,并开发了相应的系统控制软件,该设备的最大加工范围为800mm×500mm×300mm,通过一系列的工艺实验及汽车覆盖件的产品试制,取得了良好的效果。
图2-9为开发的样机及成形零件。
华中科技大学对汽车覆盖件的数字化渐进成形工艺展开了研究,加工了汽车门及翼子板等部件,图2-10所示为车辆工业中的各种数字化渐进成形零件。
本田汽车公司已经利用数字化渐进成形技术进行了概念车覆盖件的成形,并已投入设计生产。
图2-9开发的样机及成形的样件图2-10车辆工业中数字化渐进成形零件数字化渐进成形的技术特点是无须一一对应的模具,零件的结构和形状也相应不受约束。
因而极大地降低了新产品开发的周期和成本。
所以对于飞机、卫星等多品种小批量的产品以及汽车新型样车试制、家用电器等新产品的开发,都具有潜在的经济价值,而且该方法所能成形的零件复杂程度比传统成形工艺高。
目前数字化渐进成形技术还仅限于实验室研究阶段。
其存在的主要问题是:(1)成形零件的尺寸精度差,其曲率半径受到工具球头半径的限制,不能很小,而且划痕严重,表面质量较差。
(2)由于工具压头在板材上作干摩擦滑动,阻力大,易起皱和拉裂。
(3)由于受到模芯的结构影响,成形零件的尺寸受到限制,不能太小。
2.3喷丸成形喷丸成形是一种借助高速弹丸流撞击金属构件表面,使构件产生变形的金属成形方法,喷丸成形是一种无模成形工艺,是大中型飞机金属机翼整体壁板首选的成形方法,其原理如图2-11所示。
按照驱动弹丸运动的方式,喷丸成形分为叶轮式喷丸成形和气动式喷丸成形,两者没有本质区别;按照喷打方式,喷丸成形分为单面喷丸成形和双面喷丸成形,双面喷丸成形主要用于复杂型面构件的成形;根据喷丸成形时构件是否承受弹性外力,喷丸成形分为自由状态喷丸成形和预应力喷丸成形,预应力喷丸成形可以获得更大的喷丸变形量和更复杂的构件外型。
目前大型机翼整体壁板喷丸成形技术已经被美国金属改进公司和美国波音公司等少数几家公司垄断。
国内飞豹、枭龙、歼10、ARJ21等飞机机翼整体壁板也采用了喷丸成形工艺。
图2-11喷丸成形原理示意图喷丸成形的主要优点是:(1)零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达30多米,若采用其他方法,设备投资将急剧增加。
(2)工艺装备简单,无需成形模具,只需简单的夹具,准备周期短,固定投资少。
(3)在进行成形的同时,可对板料起到强化作用。
(4)可对变厚度的板料进行成形。
(5)既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
波音系列客机和空客系列客机的金属机翼整体壁板喷丸成形是喷丸成形技术成功应用的典型代表。
如图2-12所示,A380飞机超临界外翼下翼面整体壁板长度30余米、厚度30余毫米,是迄今采用喷丸成形技术所获得的长度最长、厚度最大的构件,代表了国际喷丸成形工艺技术的最新成果。
在国内,开展喷丸成形技术研发已近40年,历经机械控制喷丸和数控喷丸等发展阶段,20世纪90年代以来迈入数控喷丸成形时代,之后数控喷丸成形成功运用到第三代飞机等机翼整体壁板,以研制成功ARJ21飞机超临界外翼下翼面整体壁板为标志,国内首次实现真正意义上的喷丸成形。
图2-13为ARJ21飞机机翼下中壁板零件。
图2-12通过喷丸成形的A380机翼下壁板图2-13ARJ21飞机机翼下中壁板零件德国KSA公司是自动化喷丸成形工艺研究领域的先锋,在KSA公司获得空客A380飞机机身壁板喷丸成形总承包项目后,瑞士Baiker公司与KSA公司合作,为A380飞机项目制造了世界最大喷丸室的数字化喷丸成形机。