四年级奥数专题图形周长和面积

合集下载

小学四年级数学面积与周长的计算

小学四年级数学面积与周长的计算

小学四年级数学面积与周长的计算小学四年级数学:面积与周长的计算数学对于小学四年级的学生来说是一门重要且基础的学科。

在数学的学习过程中,面积和周长的计算是一个关键的概念,对于帮助学生理解几何形状和解决实际问题非常重要。

本文将讨论小学四年级学生如何计算面积和周长,以及如何应用这些概念来解决实际问题。

一、面积的计算方法在数学中,面积是指平面图形所占据的空间单位。

小学四年级学生需要学习如何计算各种形状的面积,如正方形、长方形和三角形。

1. 正方形的面积计算正方形是四个边长相等的四边形。

计算正方形的面积非常简单,只需要将正方形的边长相乘即可。

例如,一个正方形的边长为3厘米,则其面积为3厘米乘以3厘米,即9平方厘米。

2. 长方形的面积计算长方形是两个对边相等且四个角都是直角的四边形。

计算长方形的面积也很简单,只需要将长方形的长度乘以宽度即可。

例如,一个长方形的长度为5厘米,宽度为2厘米,则其面积为5厘米乘以2厘米,即10平方厘米。

3. 三角形的面积计算三角形是一个三边都相连的三边形状。

计算三角形面积的方法是将底边长度乘以三角形的高,然后除以2。

例如,一个三角形的底边长为4厘米,高为3厘米,则其面积为4厘米乘以3厘米,再除以2,即6平方厘米。

二、周长的计算方法周长是指一个封闭图形的边长总和。

小学四年级学生需要学习如何计算正方形、长方形和三角形的周长。

1. 正方形的周长计算正方形的周长计算非常简单,只需要将正方形的边长乘以4即可。

例如,一个正方形的边长为5厘米,则其周长为5厘米乘以4,即20厘米。

2. 长方形的周长计算长方形的周长计算方法是将长方形的长度和宽度相加后再乘以2。

例如,一个长方形的长度为6厘米,宽度为3厘米,则其周长为(6+3)乘以2,即18厘米。

3. 三角形的周长计算三角形的周长计算需要将三个边长相加。

例如,一个三角形的三边长分别为3厘米、4厘米和5厘米,则其周长为3厘米加4厘米加5厘米,即12厘米。

最新四年级奥数专题--图形周长和面积

最新四年级奥数专题--图形周长和面积

第一讲图形周长和面积知识导航亲爱的同学们,我们已经学会长方形、正方形的周长与面积的计算,利用公式很容易算出它们的面积与周长。

但在遇到一些较复杂的有关长方形和正方形的周长和面积计算时,一些同学就会感到棘手。

这一讲我们将学习用平移、转化、分解、合并等技巧解决难题,使大家在解题中能顺利地找到突破口,化难为易,化繁为简。

精典例题例1:下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?思路点拨每个正方形的面积为:400÷16=25(平方厘米),所以每个正方形的边长是5厘米。

从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以……模仿练习计算右面图形的周长(单位:厘米)。

例2:有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。

思路点拨从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的5÷4=1.25倍。

每个小长方形的面积为45÷9=5平方厘米,所以1.25×宽×宽=5,所以宽为2厘米,长为2.5厘米。

模仿练习下图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽。

例3:一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米,则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?思路点拨通过画图可以算出:小正方形的面积为:30×30=900平方米。

用增加的面积减去小正方形的面积就得到增加的两个长方形的面积之和,9900-900=9000平方米。

而增加的两个长方形的面积相等,于是其中一个长方形的面积为9000÷2=4500平方米。

模仿练习喜阳阳小学的操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方分米?例4:如下图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是多少?(2006年“希望杯”第二试)思路点拨如果标号为5的正方形的边长是a ,那么1号比2号大a ,2号比3号大a ,所以1号比3号大2a ,又因为2号和3号的边长之和是14,1号和2号的边长之和是18,所以1号比3号大18-14=4。

四年级奥数巧求周长和面积

四年级奥数巧求周长和面积

一、基本概念(1)周长:封闭图形一周的长度就是这个图形的周长. (2)面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式(1)长方形的周长2=⨯(长+宽),面积=长⨯宽. (2)正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(1)转化是一种重要的数学思想方法在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形. (2)化归思想寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段. (3)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.知识框架巧求周长和面积 发现不同(4)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.(5)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(6)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(7)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲【例 1】三只猴子走得一样快,所走的路线如下图.哪只猴子先吃到桃子,就在它旁边的( )里画勾.A ( )B ( )C ( )【巩固】一个苗圃园(如左下图),周边和中间有一些路供人行走(图中线段表示“路”),几个小朋友在里面观赏时发现:从A处出发,在速度一样的情况下,只要是按“向右”、“向上”方向走,几个人分头走不同的路线,总会同时达到B处.你知道其中的道理吗?【例 2】计算下列图形的周长(单位:厘米).【巩固】试求左下图的周长(单位:厘米).【例 3】求下面两个图形的周长(单位:厘米).【巩固】下图是由七个长5厘米、宽3厘米的相同长方形经过竖放、横放而成的图形.求这个图形的周长.【例 4】下图是一个方形螺线.已知两相邻平行线之间的距离均为1厘米,求螺线的总长度.【巩固】在一个长方形的面积为169平方厘米.在这个长方形内任取一点P,则点P到长方形四边的距离之和最小值为_______厘米.【例 5】边长是15厘米的3个正方形拼成一个长方形,这个长方形的周长是多少?【巩固】用一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?84【例 6】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【巩固】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?【例 7】如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形.这9个小长方形的周长之和是多少?D【巩固】如图,正方形的边长为4,被分割成如下12个小长方形,求这12个小长方形的所有周长之和.【例 8】一个长为12厘米,宽为10厘米的长方形,挖去一个边长为4厘米的正方形补在另一边上(如图).所得图形的周长为厘米.【巩固】如图所示,这是三个边长为10厘米的正方形纸片.从(1)和(2)中各剪去一个面积是4平方厘米的小正方形,从(3)中剪去一个面积是4平方厘米的长方形.比较(1),(2),(3),剩下部分周长最小的是_________(填图形编号),它的周长是_________厘米.(2)4 1(3)【例 9】 将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为多少 厘米?【巩固】 下图是一面砖墙的平面图,每块砖长20厘米,高8厘米,像图中那样一层、二层…一共摆十层,求摆好后这十层砖墙的周长是多少?【例 10】 下图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是多少厘米?HFEDA【巩固】 如图,在长方形ABCD 中,EFGH 是正方形.已知10cm AF =,7cm HC =,求长方形ABCD 的周长.H GFEDCBA【例 11】如图,一个长方形的周长是26厘米,如果它的长和宽各增加3厘米,那么增加的面积是多少平方厘米?【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?32【例 12】两个同样的长方形摆放成如图所示图形,图中单位是厘米,每个长方形的面积是多少平方厘米?Array【巩固】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 13】 用两个同样的等腰直角三角形ABC 拼成一个正方形,如图,等腰直角三角形的斜边AC=6厘米,那么正方形ABCB′的面积是多少平方厘米?【巩固】 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的.一个正方形的面积是多少平方厘米?【例 14】 如图1,△ABC 是等腰直角三角形(AC=BC ,∠ACB 是直角),D 是AC 的中点,E 是BC 的中点,DE长8厘米,阴影部分的面积是多少平方厘米?【巩固】 右图中甲的面积比乙的面积大__________平方厘米.乙甲6厘米8厘米4【例 15】如图,正方形ABCD中,AB、BC、CD、DA的中点分别是E、F、C、H,已知AB =8厘米,正方形EFGH 的面积是多少平方厘米?【巩固】如图,正方形ABCD中,E是AB的中点,F是BC的中点,G是CD的中点,H是DA的中点,I是EF 的中点,J是FG的中点,K是GH的中点,L是HE的中点,正方形ABCD的周长是32厘米,那么正方形IJKL的面积是多少平方厘米?【例 16】图内9个相同的小长方形构成大长方形,大长方形周长为90,则每个小长方形周长为多少?【巩固】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.【例 17】 一块长方形铁皮(如图),将长边剪去6厘米,短边剪去3厘米后,得到的正方形面积比原来少了54平方厘米,那么原长方形的面积是多少平方厘米?【例 18】 图中是由1个小正方形与8个相同的长方形拼成的大正方形.已知小正方形的面积是900平方厘米,大正方形的周长是200厘米.那么,每个长方形的长是多少?【例 19】 图中每个小方格的边长是2厘米,正方形ABCD 的面积是多少平方厘米?【巩固】 右图是一个方格网,计算阴影部分的面积.ABC D E F课堂检测【随练1】一个长方形,长减少1厘米和宽增加1厘米,得到一个正方形,那么正方形面积比长方形的面积( ).①多2平方厘米②多1平方厘米③少2平方厘米④少1平方厘米⑤同样大【随练2】右图的正方形的周长是48厘米,中间有一个长方形,长方形的四个顶点恰好把正方形每边分作两段,其中长的那段长度是短的那段长度的两倍.长方形的面积是平方厘米.【随练3】右图ABCD是个正方形:它的边长是4厘米,E、F分别是边AB、BC的中点,图中阴影部分的面积是平方厘米.【随练4】右图中,三角形ABC是等腰直角三角形(AC=BC,∠ACB是直角),D是AC的中点;E是BC的中点,AD长6厘米.阴影部分的面积是平方厘米.【随练5】如图,里面正方形的周长24厘米,外面长方形的各边分别平行于正方形的四条边,那么根据图中给出的数据(单位均为厘米),长方形的周长是( )厘米.A. 32B. 36C. 40D.44E.48【随练6】下图是一副七巧板拼成的正方形.正方形的边长是20厘米,问七巧板中图形4和图形5的面积之和是平方厘米.【随练7】如右图,有一块正方形的草坪,周边用边长为3分米的方砖铺了一条宽12分米的小路(如图阴影部分),共用方砖1504块.则小路所围草坪的面积是( )平方分米.A. 79524B. 76176C. 72900D. 57600E. 90000【随练8】一个长方形,如果长和宽都增加6厘米,则面积增加156平方厘米.原来的长方形的周长是多少厘米?【随练9】有5个相同的长方形拼成下图的大长方形MNPQ,已知小长方形的长比宽多2厘米,则大长方形MNPQ的面积是( )平方厘米.A. 6B. 5C. 4D. 3E. 2【随练10】在长方形ABCD中,EFGH是正方形.如果AG=12厘米,EC=9厘米,那么长方形ABCD的周长是厘米.【随练11】两张同样大小的正三角形纸片,每张面积是36平方厘米(如下图),一张是一个顶点向下,一张是一个顶点向上,叠在一起得到一个六角星形.这个六角星形的面积是多少平方厘米?【随练12】如下图,把一个大正方形分割成六个小长方形,如果这六个小长方形的周长总和是90厘米,那原大正方形的面积是平方厘米.【随练13】如图所示,把长2厘米,宽1厘米的长方形一层、二层、三层······那么摆下去,摆到第15层,这个图形的周长是厘米,面积是平方厘米.【随练14】右图是陈老师家房屋平面图(单位:米),陈老师要将卧室、客厅的房顶四周装木条装饰线,请你帮助算一算,要买木条装饰线的米数至少是( ).A. 68B. 62C. 58D. 54E. 48【作业1】一张长方形纸片的周长是64厘米,3张这样的长方形纸片恰好拼成一张正方形纸片,如图,拼成的正方形纸片的周长是多少厘米?家庭作业【作业2】如图一个正方形分割成六个长方形,这六个长方形的周长和比原正方形周长增加了24厘米,原正方形周长是多少厘米?面积是多少平方厘米?【作业3】如图,A、B、C、D分别是长方形各边上的三等分点,阴影部分四边形ABCD的面积为24平方厘米,长方形EFGH的面积是多少平方厘米?【作业4】如图所示阴影部分的面积是73平方厘米,那么图中正方形的面积是多少平方厘米?(单位:厘米)【作业5】一个周长是20厘米的正方形,剪下一个周长是6厘米的正方形,剩下的图形的周长是______ (写出所有可能的结果).【作业6】下图是一个边长为3的正八边形,它的阴影部分与没有阴影部分的面积之差是多少?。

小学四年级数学重点知识总结面积和周长的计算与应用

小学四年级数学重点知识总结面积和周长的计算与应用

小学四年级数学重点知识总结面积和周长的计算与应用小学四年级数学重点知识总结:面积和周长的计算与应用数学是一门重要的学科,对于小学生来说,学好数学是他们学习的基础。

在小学四年级的数学教学中,面积和周长的计算与应用是一个重要的内容。

下面,我们将对小学四年级数学中的这一知识点进行总结。

一、面积的计算与应用面积是一个平面图形所占据的表面区域,它是一个二维概念。

在小学四年级,学生开始学习简单的图形的面积计算和应用。

1. 正方形的面积计算正方形的四条边相等,并且四个角都是直角,所以正方形的面积计算只需要知道一条边的长度即可。

正方形的面积公式为:面积 = 边长×边长。

举个例子,如果一个正方形的边长为5厘米,那么它的面积就是 5厘米 × 5厘米 = 25平方厘米。

2. 长方形的面积计算长方形有两对边相等,且四个角都是直角。

计算长方形的面积也只需要知道它的两条边的长度。

长方形的面积公式为:面积 = 长 ×宽。

比如,如果一个长方形的长为6厘米,宽为4厘米,那么它的面积就是 6厘米 × 4厘米 = 24平方厘米。

3. 三角形的面积计算三角形是由三条边组成的图形,计算三角形的面积需要知道它的底边和高。

三角形的面积公式为:面积 = 底边 ×高 ÷ 2。

例如,如果一个三角形的底边为8厘米,高为6厘米,那么它的面积就是 8厘米 × 6厘米 ÷ 2 = 24平方厘米。

二、周长的计算与应用周长是一个图形的边界长度,它也是一个二维概念。

在小学四年级,学生开始学习简单的图形的周长计算和应用。

1. 正方形的周长计算正方形的四条边相等,所以正方形的周长计算只需要知道一条边的长度即可。

正方形的周长公式为:周长 = 边长 × 4。

举个例子,如果一个正方形的边长为5厘米,那么它的周长就是 5厘米 × 4 = 20厘米。

2. 长方形的周长计算长方形有两对边相等,计算长方形的周长需要知道它的长和宽。

四年级奥数专题图形周长与面积

四年级奥数专题图形周长与面积
• 答案:面积 = 3.14 × (12.56 / (2 × 3.14))^2 = 12.56平方厘米 • 解析:根据圆的周长公式,周长 = 2πr,可以求出半径r的值,再根据圆的面积公式,面积 = πr^2,可以求出面积的值。
• 题目:一个平行四边形的周长是20厘米,其中一条边长是a厘米,则其他三条边的长度是多少? 答案:其他三条边长度分别是:5 a厘米、5 - a厘米、a厘米 解析:根据平行四边形的周长公式,周长 = 2(a + b),其中a和b为平行四边形相邻的两边,可以求出其他 三条边的长度。
• 题目:一个长方形的周长是20厘米,长是a厘米,则宽是多少厘米? 答案:宽 = (20 - 2a) / 2 = 10 - a厘米 解析:根据长方形的周长 公式,周长 = 2(长 + 宽),可以求出宽的表达式。
• 答案:宽 = (20 - 2a) / 2 = 10 - a厘米 • 解析:根据长方形的周长公式,周长 = 2(长 + 宽),可以求出宽的表达式。
• 答案:其他三条边长度分别是:5 - a厘米、5 - a厘米、a厘米 • 解析:根据平行四边形的周长公式,周长 = 2(a + b),其中a和b为平行四边形相邻的两边,可以求出其他三条边的长度。
感谢观看
汇报人:XX
确性
圆形面积的计算
圆的面积公式: A = πr²,其 中r是圆的半径
推导过程:通 过将圆分割成 若干个小的扇 形,然后重新 排列组合成近 似长方形,利 用长方形面积 公式推导得出
计算方法:根 据给定的半径 值,代入公式
中进行计算
注意事项:计 算时要注意单 位的统一,以 及π取值的小
数位数
其他常见图形面积的计算
提高题目练习

4年级奥数边长,周长,面积的计算问题例题

4年级奥数边长,周长,面积的计算问题例题

涉及长方形、正方形、三角形、平行四边形和梯形的边长、周长与面积的计算问题.求多个图形覆盖总面积时宜分块处理.考察三角形面积时,需要选择恰当的高,并应注意三角形与等底等高平行四边形之间的关系.例题:1.图6-1由16个同样大小的正方形组成.如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?[分析与解]正方形的面积是400÷16=25平方厘米,正方形边长是5厘米,整个图形的周长是170厘米.2.若干同样大小的长方形小纸片摆成了如图6-2所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?[分析与解]从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽,也就是说,二个小纸片的长等于三个小纸片的宽.已知小纸片的宽是12厘米,于是小纸片的长是12×3÷2=18厘米,阴影部分是三个正方形,边长正好是小纸片的长与宽的差18-12=6.于是,阴影部分的面积是6×6×3=108平方厘米.3.一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积.[分析与解]如下图,有阴影部分是边长为6厘米的正方形,A、B部分均是长为原正方形边长,宽为6厘米的长方形.有120=6×6+6×原边长+6×原边长,即12×原边长=84,那么原边长为7,则原正方形面积为7×7=49(平方厘米).4.如图6-3,正方形客厅边长12米,若正中铺一块正方形纯毛地毯:外围铺化纤地毯,共需费用22455元.已知纯毛地毯每平方米250元,化纤地毯每平方米35元,问铺在外围的化纤地毯的宽度是多少分米?[分析与解]如果全铺化纤地毯,少用22455-35×122元,每平方米少用(250-35)元,所用纯毛地毯的面积为(22455-35×122)÷(250-35)=81平方米,从而纯毛地毯的边长为9米.因此,外围化纤地毯宽度是(12-9)÷2=1.5米=15分米.5.如图6-4,ABFE和CDEF都是长方形,AB的长是4厘米,BC的长是3厘米.那么图中阴影部分的面积是多少平方厘米?[分析与解]图中阴影部分的面积等于长方形ABCD的一半,即为4×3÷2=6平方厘米.6.如图6-5,有9个小长方形,其中编号为1,2,3,4,5的5个小长方形的面积分别为2,4,6,8,10平方米.求6号长方形的面积.[分析与解]如下图所示,将所有独立的小长方形标上号码:有①×④=②×⑦,⑦=2×8÷4=4;⑦×⑧=③×④,⑧=6×8÷4=12;④×⑥=⑤×⑧,⑥=10×12÷8=15.即6号长方形的面积等于15平方米.评注:在长方形中任意做一条线平行于长,一条平行与宽,将原长方形分成四个部分:左上角,左下角,右上角,右下角.则有左上角面积×右下角面积=左下角面积×右上角面积.7.如图6-6,直角三角形ABC的三边长分别为.AC=30分米,AB=18分米,BC=24分米,ED垂直于AC,且ED=95厘米.问正方形BFEG的边长是多少厘米?[分析与解]如下图所示,连接AE,BE,CE.以下均以厘米作单位,注意单位的转化.有△AFB底为AB时,高为EF;△BEC的底为BC时,高为EG;△AEC的底为AC时,高为ED;有它们的面积分别为180×EF×=90×EF,240×EG×=120EG,300×95×=14250;那么它们的面积和为14250+210×EG等于△ABC的面积180×240×=21600平方厘米,所以EG=35厘米.评注:有的同学如下求解这个问题:△ABC的面积为180×240×=21600平方厘米,有以AC为底时高为21600÷300×2=144,那么BE=144-95=49,正方形面积等于对角线平方的一半,从而BGEF的面积为49×49÷2,得出EG×EG=49×49÷2,EG不能用整数或分数表示.这是为什么呢?有错吗?8.如图6-7,一个平行四边形的一边长15厘米,这条边上的高为6厘米,一条线段将此平行四边形分成了两部分,它们的面积相差18平方厘米.那么其中梯形的上底是多少厘米?[分析与解]梯形面积+三角形面积=平行四边形面积=15×6=90(平方厘米).又已知两者的面积差是18平方厘米,所以梯形的面积为(90+18)÷2=54(平方厘米).于是梯形的上底是2×54÷6-15=3(厘米).9.一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠如图6-8所示,再把左下角往上折叠如图6-9所示.那么,未盖住的阴影部分的面积是多少平方厘米?[分析与解]图6-8中阴影部分的左边部分小长方形的长为5,宽为7-5=2,那么面积为5×2=10,而图6-9中左下角的对应的正方形的边长为2,所以面积为2×2=4.那么阴影部分的面积为10-4=6(平方厘米).10.有10张长3厘米,宽2厘米的纸片,将它们按照图6-10的样子摆放在桌面上,那么这l0张纸片所盖住的桌面的面积是多少平方厘米?[分析与解]第一张纸片盖住的面积是3×2=6平方厘米,后面每增加一张纸片,就多盖住(3-2)×2=2平方厘米.于是,这10张纸片盖住桌面上的面积是6+2×9=24平方厘米.11.三张正方形的纸片铺在桌面上如图6-11所示,其中任意两条相交线段之间的夹角都是直角,而各条线段的长度在图中标出,单位是厘米.那么它们一共遮盖的面积是多少平方厘米?[分析与解]62+42×2-[22+(4-1)×1×4]=36+32-(4+6)=58(平方厘米).12.如图6-12,直角梯形ABCD中,AB=15厘米,BC=12厘米,AE垂直于AB,阴影部分的面积为15平方厘米.问梯形ABCD的面积是多少平方厘米?[分析与解]延长AE交CD与F点,如下图所示.有△BFD,△AFD同底等高,所以面积相等,而△EFD为公共部分,两者都减去有,△BEF,△AED的面积相等为15平方厘米.而△BFA的面积为×15×12=90(平方厘米),所以△ABE的面积为90-15=75(平方厘米).那么△ABE,△EFD的面积之积等于△BEF,△ADE的面积之积.所以有所以△EFD的面积为15×15÷75=3,所以梯形ABCD的面积为75+15+15+90+3=198(平方厘米).13.如图6-13,ABCD是梯形,ABFD是平行四边形,CDEF是正方形,AGHF 是长方形.又知AD=14厘米,BC=22厘米,那么,阴影部分的面积是多少平方厘米?[分析与解]由题意知AD=BF=14,而FC=BC-BF=22-14=8.正方形EDFC的边FC为8,则EF也为8,那么△AFD的面积为×14×8=56(平方厘米).△AFD,△ABF均为平行四边形ABFD面积的一半,而△GBA与△BHF的面积和等于△ABF的面积,所以阴影部分面积为56平方厘米.14.图6-14是一块正方形的地板砖示意图,其中AA1=AA2=BB1=BB2=CC1=CC2=DD1=DD2,红色小正方形的面积是4,四块绿色小三角形的面积总和是18.求大正方形ABCD的面积.[分析与解]绿地可以拼成两个正方形,每一个面积是18÷2=9,所以绿色三角形的两条直角边的长都是3.△AA1A2,△BB1B2,△CC1C2,△DD1D2可以拼成一个正方形,与红色正方形一样大,面积是4.于是大正方形ABCD的面积是18+4+4+4×3×2=50.15.用l,2,3,4,5,7作为图6-15这样图形的6条边长,那么这个图形的最大面积是多少?[分析与解]显然当底部的边为7,右面的边为5时,这个图形的面积最大,但是经过尝试,发现无法组成六边形.于是将右面的边调整为4,发现有下图满足,此时图形的面积为4×7-2×1=26,为最大值.。

四年级奥数面积与周长

四年级奥数面积与周长
例 4:一块正方形的钢板,先截去宽 5 分米的长方形,又截去宽 8 分米的
长方形(如图),面积比原来的正方形减少 181 平方分米。原正方形的边长是多 少?
hing at a time and All things in their being are good for somethin
思路点拨
把阴影部分剪下来,并把剪下的两个小长方形拼起来(如图),再被上长、宽分别是 8 分米、5 分米的小长方形,这个拼合成的长方形的面积是 181+8×5=221 平方分米,长是原 来正方形的边长,宽是 8+5=13 分米。
杯 1 试)
2.一个长方形,如果它的长减少 3 米,或它的宽减少 2 米,那么它的面积
都减少 36 平方米,求这个长方形原来的面积和周长。
hing at a time and All things in their being are good for somethin
3.一个长方形木板,如果宽减少 6 分米,长减少 10 分米,那么它的面积减少 172 平
模仿练习
一个长方形,如果宽不变,长减少 3 米,那么它的面积减少 24 平方米;如 果长不变,宽增加 4 米,那么它的面积增加 60 平方米。这个长方形原来的面积 是多少平方米?
例 3:用若干个边长都是 2 厘米的平行四边形与三角形(如下图)
拼接成一个大的平行四边形,已知大平行四边形的周长是 244 厘米,那 么平行四边形和三角形各有多少个?
思路点拨
大的平行四边形上、下两边的长为(244-2×2)÷2=120 厘米,观察上边,每 6 厘 米有两个平行四边形的边,所以共有小平行四边形 120÷6×2=40 个……
模仿练习
用若干个边长都是 2 厘米的平行四边形与三角形(如右图)拼接成 一个大的平行四边形,已知大平行四边形的周长是 236 厘米,那么平行 四边形和三角形各有多少个?

小学四年级数学重要知识总结面积与周长的计算方法

小学四年级数学重要知识总结面积与周长的计算方法

小学四年级数学重要知识总结面积与周长的计算方法一、面积的计算方法面积是物体表面所占的空间大小,计算面积需要根据物体的形状来选择相应的计算方法。

1. 矩形的面积计算方法:矩形的面积等于矩形的长度乘以宽度,即面积 = 长 ×宽2. 正方形的面积计算方法:正方形的面积等于边长的平方,即面积 = 边长 ×边长3. 三角形的面积计算方法:三角形的面积等于底边乘以高再除以2,即面积 = (底边 ×高) / 24. 梯形的面积计算方法:梯形的面积等于上底加下底乘以高再除以2,即面积 = (上底 + 下底) ×高 / 25. 圆的面积计算方法:圆的面积等于半径的平方乘以π(圆周率),即面积 = 半径 ×半径× π二、周长的计算方法周长是封闭图形边界的长度,计算周长需要根据物体的形状来选择相应的计算方法。

1. 矩形的周长计算方法:矩形的周长等于两倍的长度加两倍的宽度,即周长 = 2 × (长度 + 宽度)2. 正方形的周长计算方法:正方形的周长等于四倍边长,即周长 = 4 ×边长3. 三角形的周长计算方法:三角形的周长等于三条边的长度之和,即周长 = 边1 + 边2 + 边34. 梯形的周长计算方法:梯形的周长等于上底加下底再加上两个斜边的长度,即周长 = 上底 + 下底 + 斜边1 + 斜边25. 圆的周长计算方法:圆的周长等于直径乘以π(圆周率),即周长 = 直径× π三、其他相关知识1. 平行四边形的面积计算方法:平行四边形的面积等于底边乘以高,即面积 = 底边 ×高2. 立方体的表面积计算方法:立方体的表面积等于长、宽、高各个面的面积之和的两倍,即表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)3. 立方体的体积计算方法:立方体的体积等于底面积乘以高,即体积 = 底面积 ×高以上是小学四年级数学中关于面积与周长的重要知识总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲图形周长和面积
知识导航
亲爱的同学们,我们已经学会长方形、正方形的周长与面积的计算,利用公式很容易算出它们的面积与周长。

但在遇到一些较复杂的有关长方形和正方形的周长和面积计算时,一些同学就会感到棘手。

这一讲我们将学习用平移、转化、分解、合并等技巧解决难题,使大家在解题中能顺利地找到突破口,化难为易,化繁为简。

精典例题
例1:下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?
思路点拨
每个正方形的面积为:400÷16=25(平方厘米),所以每个正方
形的边长是5厘米。

从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以……
模仿练习
计算右面图形的周长(单位:厘米)。

例2:有9个小长方形,它们的长和宽分别
相等,用这9个小长方形拼成的大长方形(如图)的面积是45
平方厘米,求这个大长方形的周长。

思路点拨
从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽
的5÷4=1.25倍。

每个小长方形的面积为45÷9=5平方厘米,所以1.25×
宽×宽=5,所以宽为2厘米,长为2.5厘米。

模仿练习
下图的长方形被分割成5个正方形,已知原长方形的面
积为120平方厘米,求原长方形的长与宽。

例3:一块正方形的苗圃(如右图实线所示),若将
它的边长各增加30米,则面积增加9900平方米,问原来这
块正方形苗圃的面积是多少平方米
思路点拨
通过画图可以算出:小正方形的面积为:30×30=900平方米。

用增
加的面积减去小正方形的面积就得到增加的两个长方形的面积之和,
9900-900=9000平方米。

而增加的两个长方形的面积相等,于是其中一个
长方形的面积为9000÷2=4500平方米。

模仿练习
喜阳阳小学的操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方分米
例4:如下图,用标号为1,2,3,4,5的五种大小不同的正方形拼成
一个大长方形,大长方形的
长和宽分别是18,14,则标号为5的正
方形的面积
是多少(2006年“希望杯”第二试)
思路点拨
5
244431
如果标号为5的正方形的边长是a,那么1号比2号大a,2号比3
号大a,所以1号比3号大2a,又因为2号和3号的边长之和是14,1
号和2号的边长之和是18,所以1号比3号大18-14=4。

模仿练习
小孙同学用编号为1,2,3,4,5的大小不同的正方形拼出一个长方形,如右图所示,则中间阴影部分正方形的周长是多少厘米(希望杯培训
试题)
学以致用
A级
1.求图1和图2两个图形的周长。

(单位:厘米)
2.如下图是两个正方形,边长分别是8厘米和4厘米,那么阴影部分的面
积是多少
3.如图是由5个相同的小长方形拼成的大长方形,大长方形的周长是44厘
米,求大长方形的面积。

4.一个正方形,相邻的两个边长增加4厘米,面积就增加
96平方厘米,求原来正方形的面积
5.一个长方形,宽增加4厘米,则面积增加24平方厘米;若长增加4厘米,则面积增加
20平方厘米。

若长和宽都增加了4厘米,则面积增加多少平方厘米周长增加多少厘米
6.有一大一小两个正方形,它们的周长相差200厘米,面积相差5500平方
厘米,求小正方形的面积是多少平方厘米
B级
7.如下图所示,在一个正方形上先截去宽11分米的长方形,再截去
宽7分米的长方形,所得图形的面积比原正方形
减少301平方分米。

原正方形的边长是多少分米(希望杯培训题)
8.右图中正方形的边长为3厘米,每边被3等分,求图中所有正方
形周长的和。

9.图11中“风车”(阴影部分)的面积等于多少平方厘米(2009年希望杯四年级1试)
C级
10.有一大一小两块正方形试验田,他们的周长相差40米,面积相
差220平方米,那么小正方形试验田的面积是多少平方米
图b。

相关文档
最新文档