小学四年级奥数思维问题之图形面积
小学四年级奥数思维问题之组合图形(一)

组合图形的面积教学目标:①知识与技能目标:采用辅助线等方法正确求出组合图形面积②过程与方法目标:采用割、补、分解、代换等方法,将复杂问题简单化③情感态度与价值观目标:让学生经历实际生活中就会遇到的问题,激发他们的兴趣教学重点:采用辅助线等方法正确求出组合图形面积教学难点:采用割、补、分解、代换等方法,将复杂问题简单化[知识引领与方法]1.切实掌握有关简单图形的概念、公式,牢固建立空间概念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4.采用割、补、分解、代换等方法,将复杂问题简单化。
组合图形面积(一)[例题精选及训练]【例1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习:1.求四边形ABCD的面积。
(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3.有一个梯形,它的上底是5厘米,下底是7厘米,如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
【例2】右下图所示的正方形中套着一个长方形,正方形的边长是12厘米,长方形四个角的顶点把四个角的顶点把正方形的四边各分成两段,其中长的一段是短的一段的2倍。
求中间长方形的面积。
练习:1.如下图所示,已知大正方形的边长是12厘米,求中间最小正方形的面积。
2.下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。
求三角形AEF的面积。
3.求下图长方形ABCD的面积。
(单位:厘米)【例3】图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)练习:1.计算下面图形的面积。
(单位:厘米)2.求图中阴影部分的面积。
(单位:厘米)【例4】右下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习:1.如图所示,正方形ABCD中,AB=4厘米,EC=10厘米。
求阴影部分的面积。
2.如下图所示,在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形面积是多少?(提示:连接DB)(单位:厘米)3.如图所示,BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
完整版)小学奥数几何专题

完整版)小学奥数几何专题小学几何面积问题一引理:如图1在ABCD中,P是AD上一点,连接PB、PC,则S△PBC=S△ABP+S△pcD= P/AD(适应长方形、正方形)。
1.已知:四边形ABCD为平行四边形,求阴影部分面积占平行四边形ABCD的面积的几分之几?无需删除)2.已知:ABCD的面积为18,E是PC的中点,求阴影部分面积。
无需删除)3.在ABCD中,CD的延长线上的一点E,DC=2DE,连接BE交AC于P点,(如图)知S△PDE=1,S△ABP=4,求平行四边形ABCD的面积。
无需删除)4.四边形ABCD中,BF=EF=ED,(如图)1) 若S四边形ABCD=15,则S阴=(无需删除)2) 若S△AEF+S△BFC=15,则S四边形ABCD=(无需删除)3) 若S△AEF=3S△BFC,则S四边形ABCD=(无需删除)5.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若四边形AECG=15,则S四边形ABCD=(无需删除)6.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若阴影部分面积为15,则S四边形ABCD=(无需删除)7.若ABCD为正方形,F是DC的中点,已知:S△BFC=1。
1) 则S四边形ADFB=(无需删除)2) S△DFE=(无需删除)3) S△AEB=(无需删除)8.直角梯形ABCD中,AE=ED,BC=18,AD=8,CD=6,且BF=2FC,S△GED=S△GFC,求阴影部分面积。
无需删除)小学几何面积问题二1.如图S△AEF=2,AB=3AE,CF=3EF,则S△ABC=(无需删除)2.如图S△BDE=30,AB=2AE,DC=4AC,则S△ABC=(无需删除)3.正方形ABCD中,E、F、G为BC边上四等份点,M、N、P为对角线AC上的四等份点(如图),若S正方形ABCD=32,则S△NGP=(无需删除)4.已知:S△ABC=30,D是BC的中点,AE=2ED,则S△BDE=(无需删除)1.在梯形ABCD中,AD//BC,OC=2AO,阴影部分的面积为4,求梯形ABCD的面积。
小学四年级奥数面积和和差和倍差倍问题

小学四年级奥数面积和和差和倍差倍问题
引言
本文将介绍小学四年级的奥数面积和和差和倍差倍问题。
这些问题涉及到数学中的面积计算、和与差的概念,以及倍数和倍差的计算。
通过研究这些问题,学生可以提高他们的数学思维能力和解决问题的能力。
面积和
面积和是指两个或多个图形的面积相加的结果。
对于形状简单的图形,我们可以直接计算面积并相加。
例如,给定两个矩形的面积分别为$A$和$B$,那么它们的面积和就是$A+B$。
面积差
面积差是指两个图形的面积相减的结果。
与面积和类似,我们也可以直接计算图形的面积并相减得到面积差。
例如,给定一个矩形$A$与另一个矩形$B$的面积,那么它们的面积差就是$A-B$。
倍数和
倍数和是指多个数的倍数相加的结果。
在奥数中,常常需要计算一系列数的倍数和。
例如,给定数列$2, 4, 6, 8$,它们的倍数和就是$2+4+6+8=20$。
倍差倍
倍差倍是一种特殊的数学运算,涉及到两个数的差再加上这个差的倍数。
例如,给定两个数$A$和$B$,它们的倍差倍就是
$A+(A-B)\cdot k$,其中$k$为任意实数。
结论
通过学习面积和和差、倍数和和倍差倍问题,小学四年级的学生可以培养数学思维能力和解决问题的能力。
这些问题既考验了学生的计算能力,又锻炼了他们的逻辑思维。
希望本文对学生们的数学学习有所帮助。
小学奥数4-2-6 不规则图形的面积.专项练习及答案解析-精品

本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 你有什么好的方法计算所给图形的面积呢?(单位:厘米)3994399439943994图1 图2 图3 【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 (方法一)采用分割法,可给原图分成两个长方形,(图1或图2)两个长方形的总面积就是所求的面积.图1的面积是: 4(93)9375⨯++⨯=(平方厘米).图2的面积是: (94)39475+⨯+⨯=(平方厘米). (方法二)采用补图法,如果补上一个边长是9厘米的正方形(图3),就成了一个面积是:(49)(93)156+⨯+=(平方厘米)的大长方形.因此用这个长方形的面积减去所补正方形的面积,就是要求的图形面积(49)(93)9975+⨯+-⨯=(平方厘米). 【答案】75平方厘米【巩固】如图是学校操场一角,请计算它的面积(单位:米)30203040例题精讲4-2-6.不规则图形的面积【解析】 这是一个不规则图形,怎样使它能转化为我们熟悉的基本图形呢?可以在图中添上一条辅助线,把多边形切割成上下两个长方形或左右两个长方形;也可以把多边形补充完整,成为一个长方形;302030403020304030203040图一 图二 图三方法一:如图一,3040203040120014002600⨯+⨯+=+=()(平方米) 方法二:如图二,203040203060020002600⨯+⨯+=+=()(平方米) 方法三:如图三,40302030303035009002600+⨯+-⨯=-=()()(平方米) 【答案】2600平方米【巩固】如右图所示,图中的ABEFGD 是由一个长方形ABCD 及一个正方形CEFG 拼成的,线段的长度如图所示(单位:厘米),求ABEFGD 的周长和面积.F【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 方法一:如果求出长方形的宽及正方形的边长,则图形ABEFGD 的周长和面积可以求出.而正方形的边长1046GC DC DG AB DG =-=-=-=(厘米),长方形的宽1064BE CE =-=-=(厘米),所求图形的周长102624440=⨯+⨯++=(厘米) 面积1046676CEFG ABCD S S =+=⨯+⨯=正方形长方形(平方厘米)方法二:可以将线段GF 、DG 向外平移,得一个新的图形ABEH ,因为D G H F =,GF DH =,所以图形ABEH 的周长就是图形A B E F G D 的周长.而10AB BE ==(厘米),所以图形ABEH 是边长为10厘米的正方形. 所求图形的周长=正方形ABEH 的周长10440=⨯=(厘米) 面积10106476ABEH DGFH S S =-=⨯-⨯=正方形长方形(平方厘米)【总结】方法一是利用基本图形的周长及面积公式求解,因此首先要知道长方形的长、宽及正方形的边长.方法二是利用转化的思想方法,将较复杂图形转化为基本图形,图形转化前后的周长不变,面积增加了,在计算时应减去增加的面积. 【答案】76【巩固】求图中五边形的面积.6453【解析】由图可见五边形为矩形切去一角得来,把切去的角补出来,它的一条直角边长633-=,斜边等于5,所以另一直角边为4,所以矩形的长为448+=,五边形面积16843422⨯-⨯⨯=.【答案】42【例2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20 厘米.问,此楼梯截面的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【关键词】华杯赛、口试【解析】如果把楼梯截面补成右图所示的长方形,那么此长方形高280厘米.宽300厘米,它的面积恰好是所求截面的2倍.所以楼梯截面面积为280300242000⨯÷=()(平方厘米).【答案】42000【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【考点】不规则图形的面积【难度】2星【题型】解答【解析】先求出大三角形的两条直角边都是208160⨯=(厘米),因此大三角形的面积为160160212800⨯÷=(平方厘米);8个小三角形的面积为2020281600⨯÷⨯=(平方厘米);因此这楼梯的截面积为12800160014400+=(平方厘米).【答案】14400【例3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【解析】方法一:可以直接求出每小块菜地的长和宽,从而求出每小块菜地的面积;每一块地的面积是:[1622][822]7321-÷⨯-÷=⨯=()()(平方米)方法二:也可以求出这块地的总面积,再减去道路的面积,然后把剩余的面积四等分求出每小块菜地的面积;每一块地的面积是:[1682168222]412844421⨯-⨯+⨯-⨯÷=-÷=()()(平方米)方法三:还可以运用平移的方法,将道路移到菜地的边沿,先求出四个小长方形组成的长方形面积,再求出其中每一小块菜地的面积.如图所示:[16282]484421-⨯-÷=÷=()()(平方米) 【答案】21【例 4】 有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 通过操作,一张一张的添加,可以发现每多盖一张,遮住的面积增加21⨯平方厘米,所以这10张纸片盖住的面积是:3221924⨯+⨯⨯=(平方厘米).【答案】24【例 5】 下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 所求面积等于图中阴影部分的面积,为2052082140-+⨯÷=()(平方厘米). 【答案】140【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.FBA【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积.因为三角形ABC 与三角形DEF 完全相同,都减去三角形DOC 后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC 面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC 的面积.直角梯形OEFC 的上底为1037-=(厘米),面积为7102217+⨯÷=()(厘米2). 所以,阴影部分的面积是17平方厘米。
四年级奥数专题 格点与面积(学生版)

学科培优数学“格点与面积”学生姓名授课日期教师姓名授课时长知识定位本讲知识点比较简单,首次引入面积这个概念,主要是培养学生对图形面积的感觉与认识。
【授课批注】在开始讲解面积这个概念之前可适当复习有关图形周长的概念,帮助学生区分周长和面积。
知识梳理格点图形的概念在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形。
a)正方形格点正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形b)三角形格点所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.【授课批注】讲解格点图形概念的时候最好能借助诸如钉子板之类的道具,提高教学的形象性,更容易让学生理解,加深印象。
【重点难点解析】1.方形格点与三角形格点面积的特点2.格点图形的分割与拼补【竞赛考点挖掘】1.两种格点图形的基本面积计算2.格点图形面积的等量变形例题精讲【试题来源】【题目】判断下列图形哪些是格点多边形?【试题来源】【题目】如右图,计算各个格点多边形的面积.【试题来源】【题目】如右图(a),计算这个格点多边形的面积.【试题来源】【题目】右图是一个方格网,计算阴影部分的面积.【试题来源】【题目】分别计算右图中两个格点多边形的面积。
【试题来源】【题目】如图“乡村小屋”的面积是多少?【试题来源】【题目】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?习题演练【试题来源】【题目】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【试题来源】【题目】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少? 面积等于2平方厘米的三角形有多少个?【试题来源】【题目】在4×7的方格纸板上面有如阴影所示的“6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?【试题来源】【题目】右图是5×5的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是______平方厘米.【试题来源】【题目】如图,每一个小方格的面积都是l平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【试题来源】【题目】如图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.【试题来源】【题目】如右图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC的面积.【试题来源】【题目】如右图,每相邻三个点所形成的三角形都是面积为1的正三角形,计算四边形ABCD 的面积.【试题来源】【题目】把大正三角形每边八等份,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【试题来源】【题目】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【试题来源】【题目】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC 的面积是_____平方厘米【试题来源】【题目】把同一个三角形的三条边分别5等分、7等分(如图l图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【试题来源】【题目】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?【试题来源】【题目】求下列各个格点多边形的面积【试题来源】【题目】右图是一个8 12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.【试题来源】【题目】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).【试题来源】【题目】右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2平方厘米的三角形?【试题来源】【题目】将图中的图形分割成面积相等的三块.。
四年级奥数巧求周长和面积

一、基本概念(1)周长:封闭图形一周的长度就是这个图形的周长. (2)面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式(1)长方形的周长2=⨯(长+宽),面积=长⨯宽. (2)正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(1)转化是一种重要的数学思想方法在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形. (2)化归思想寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段. (3)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.知识框架巧求周长和面积 发现不同(4)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.(5)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(6)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(7)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲【例 1】三只猴子走得一样快,所走的路线如下图.哪只猴子先吃到桃子,就在它旁边的( )里画勾.A ( )B ( )C ( )【巩固】一个苗圃园(如左下图),周边和中间有一些路供人行走(图中线段表示“路”),几个小朋友在里面观赏时发现:从A处出发,在速度一样的情况下,只要是按“向右”、“向上”方向走,几个人分头走不同的路线,总会同时达到B处.你知道其中的道理吗?【例 2】计算下列图形的周长(单位:厘米).【巩固】试求左下图的周长(单位:厘米).【例 3】求下面两个图形的周长(单位:厘米).【巩固】下图是由七个长5厘米、宽3厘米的相同长方形经过竖放、横放而成的图形.求这个图形的周长.【例 4】下图是一个方形螺线.已知两相邻平行线之间的距离均为1厘米,求螺线的总长度.【巩固】在一个长方形的面积为169平方厘米.在这个长方形内任取一点P,则点P到长方形四边的距离之和最小值为_______厘米.【例 5】边长是15厘米的3个正方形拼成一个长方形,这个长方形的周长是多少?【巩固】用一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?84【例 6】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【巩固】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?【例 7】如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形.这9个小长方形的周长之和是多少?D【巩固】如图,正方形的边长为4,被分割成如下12个小长方形,求这12个小长方形的所有周长之和.【例 8】一个长为12厘米,宽为10厘米的长方形,挖去一个边长为4厘米的正方形补在另一边上(如图).所得图形的周长为厘米.【巩固】如图所示,这是三个边长为10厘米的正方形纸片.从(1)和(2)中各剪去一个面积是4平方厘米的小正方形,从(3)中剪去一个面积是4平方厘米的长方形.比较(1),(2),(3),剩下部分周长最小的是_________(填图形编号),它的周长是_________厘米.(2)4 1(3)【例 9】 将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为多少 厘米?【巩固】 下图是一面砖墙的平面图,每块砖长20厘米,高8厘米,像图中那样一层、二层…一共摆十层,求摆好后这十层砖墙的周长是多少?【例 10】 下图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是多少厘米?HFEDA【巩固】 如图,在长方形ABCD 中,EFGH 是正方形.已知10cm AF =,7cm HC =,求长方形ABCD 的周长.H GFEDCBA【例 11】如图,一个长方形的周长是26厘米,如果它的长和宽各增加3厘米,那么增加的面积是多少平方厘米?【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?32【例 12】两个同样的长方形摆放成如图所示图形,图中单位是厘米,每个长方形的面积是多少平方厘米?Array【巩固】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 13】 用两个同样的等腰直角三角形ABC 拼成一个正方形,如图,等腰直角三角形的斜边AC=6厘米,那么正方形ABCB′的面积是多少平方厘米?【巩固】 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的.一个正方形的面积是多少平方厘米?【例 14】 如图1,△ABC 是等腰直角三角形(AC=BC ,∠ACB 是直角),D 是AC 的中点,E 是BC 的中点,DE长8厘米,阴影部分的面积是多少平方厘米?【巩固】 右图中甲的面积比乙的面积大__________平方厘米.乙甲6厘米8厘米4【例 15】如图,正方形ABCD中,AB、BC、CD、DA的中点分别是E、F、C、H,已知AB =8厘米,正方形EFGH 的面积是多少平方厘米?【巩固】如图,正方形ABCD中,E是AB的中点,F是BC的中点,G是CD的中点,H是DA的中点,I是EF 的中点,J是FG的中点,K是GH的中点,L是HE的中点,正方形ABCD的周长是32厘米,那么正方形IJKL的面积是多少平方厘米?【例 16】图内9个相同的小长方形构成大长方形,大长方形周长为90,则每个小长方形周长为多少?【巩固】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.【例 17】 一块长方形铁皮(如图),将长边剪去6厘米,短边剪去3厘米后,得到的正方形面积比原来少了54平方厘米,那么原长方形的面积是多少平方厘米?【例 18】 图中是由1个小正方形与8个相同的长方形拼成的大正方形.已知小正方形的面积是900平方厘米,大正方形的周长是200厘米.那么,每个长方形的长是多少?【例 19】 图中每个小方格的边长是2厘米,正方形ABCD 的面积是多少平方厘米?【巩固】 右图是一个方格网,计算阴影部分的面积.ABC D E F课堂检测【随练1】一个长方形,长减少1厘米和宽增加1厘米,得到一个正方形,那么正方形面积比长方形的面积( ).①多2平方厘米②多1平方厘米③少2平方厘米④少1平方厘米⑤同样大【随练2】右图的正方形的周长是48厘米,中间有一个长方形,长方形的四个顶点恰好把正方形每边分作两段,其中长的那段长度是短的那段长度的两倍.长方形的面积是平方厘米.【随练3】右图ABCD是个正方形:它的边长是4厘米,E、F分别是边AB、BC的中点,图中阴影部分的面积是平方厘米.【随练4】右图中,三角形ABC是等腰直角三角形(AC=BC,∠ACB是直角),D是AC的中点;E是BC的中点,AD长6厘米.阴影部分的面积是平方厘米.【随练5】如图,里面正方形的周长24厘米,外面长方形的各边分别平行于正方形的四条边,那么根据图中给出的数据(单位均为厘米),长方形的周长是( )厘米.A. 32B. 36C. 40D.44E.48【随练6】下图是一副七巧板拼成的正方形.正方形的边长是20厘米,问七巧板中图形4和图形5的面积之和是平方厘米.【随练7】如右图,有一块正方形的草坪,周边用边长为3分米的方砖铺了一条宽12分米的小路(如图阴影部分),共用方砖1504块.则小路所围草坪的面积是( )平方分米.A. 79524B. 76176C. 72900D. 57600E. 90000【随练8】一个长方形,如果长和宽都增加6厘米,则面积增加156平方厘米.原来的长方形的周长是多少厘米?【随练9】有5个相同的长方形拼成下图的大长方形MNPQ,已知小长方形的长比宽多2厘米,则大长方形MNPQ的面积是( )平方厘米.A. 6B. 5C. 4D. 3E. 2【随练10】在长方形ABCD中,EFGH是正方形.如果AG=12厘米,EC=9厘米,那么长方形ABCD的周长是厘米.【随练11】两张同样大小的正三角形纸片,每张面积是36平方厘米(如下图),一张是一个顶点向下,一张是一个顶点向上,叠在一起得到一个六角星形.这个六角星形的面积是多少平方厘米?【随练12】如下图,把一个大正方形分割成六个小长方形,如果这六个小长方形的周长总和是90厘米,那原大正方形的面积是平方厘米.【随练13】如图所示,把长2厘米,宽1厘米的长方形一层、二层、三层······那么摆下去,摆到第15层,这个图形的周长是厘米,面积是平方厘米.【随练14】右图是陈老师家房屋平面图(单位:米),陈老师要将卧室、客厅的房顶四周装木条装饰线,请你帮助算一算,要买木条装饰线的米数至少是( ).A. 68B. 62C. 58D. 54E. 48【作业1】一张长方形纸片的周长是64厘米,3张这样的长方形纸片恰好拼成一张正方形纸片,如图,拼成的正方形纸片的周长是多少厘米?家庭作业【作业2】如图一个正方形分割成六个长方形,这六个长方形的周长和比原正方形周长增加了24厘米,原正方形周长是多少厘米?面积是多少平方厘米?【作业3】如图,A、B、C、D分别是长方形各边上的三等分点,阴影部分四边形ABCD的面积为24平方厘米,长方形EFGH的面积是多少平方厘米?【作业4】如图所示阴影部分的面积是73平方厘米,那么图中正方形的面积是多少平方厘米?(单位:厘米)【作业5】一个周长是20厘米的正方形,剪下一个周长是6厘米的正方形,剩下的图形的周长是______ (写出所有可能的结果).【作业6】下图是一个边长为3的正八边形,它的阴影部分与没有阴影部分的面积之差是多少?。
小学四年级奥数第15讲 图形问题(含答案分析)

第15讲图形问题一、知识要点解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练【例题1】人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?练习11、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2、一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?练习21、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
练习31、下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?练习41、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。
四年级奥数第12讲-图形面积(教)

学科教师辅导讲义 学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数 学科教师: 授课主题第12讲-图形面积 授课类型 T 同步课堂 P 实战演练 S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。
② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。
③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。
授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1、人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。
例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。
而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形面积问题
教学目标:
①知识与技能目标:借助所学知识计算组合图形的面积
②过程与方法目标:通过对数量关系地分析,让学生在解决问题过程中掌握一些解决问题的基本策略
③情感态度与价值观目标:感受所学知识与现实生活的紧密联系
教学重点:
图形面积公式的运用
教学难点:
组合图形的面积计算
[知识引领与方法]
1.细心观察,把握图形特点,合理的进行切拼,从而使问题得以顺利解答
2.从整体上观察图形的特征,掌握图形本质,结合必要的分析,推理和计算,使隐蔽的数量关系明朗化
[例题精选及训练]
【例1】一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?
练习:
1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?
2.有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?
3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?
【例2】一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?
练习:
1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?
2.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?
3.一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。
求这个长方形花圃原来的面积。
【例3】下图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?
练习:
1.右图是某个养鸡专业户用一段长13米的篱笆围成一个长形的养鸡场,则养鸡场的占地面积有多大?
2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
【例4】街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?
练习:
1.有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2.四个完全相同的长方形和一个小正方形拼成一个大正方形(如右图所示)。
已知大正方形的面积是100平方分米,小正方形的面积是16平方分米,那么每个小长方形的面积是多少平方分米?它的宽又是多少分米?
【例5】一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图所示),这样面积就比原来的正方形减少了181平方分米。
原来正方形的边长是多少?
练习:
[课堂练习]
1.有一块长54米、宽30米的长方形草坪,把这块草坪的长减少18米,宽应增加多少米时这块草坪的面积不变?
2.一个长方形试验田,如果宽不变,长增加5米,它的面积就增加100平方米;如果长不变,宽增加5米,它的面积就增加150平方米。
这块长方形试验田原来有多大?
3.一个长方形,如果长减少10分米,或它的宽减少8分米,他的面积就会减少160平方分米。
求这个长方形原来的面积。
4.赵大妈用一段长15米的篱笆围成一个长方形院子,已知她家的房子长7米,院子的占地面积是多少平方米?
5.用700米长的铁栏围成一边是150米的长方形操场,其中一边利用围墙,这个操场的面积可能是多少平方米?
[ 自我检测 ]
1.有一个正方形水池,在它的周围修一个宽为5米的草地,草地的面积为400平方米,这个正方形水池的边长是多少米?面积有多大?
2.四个完全相同的小长方形拼成下图,大正方形的面积是81平方厘米,小长方形的宽为2厘米,小正方形的面积是多少平方厘米?
3.下图面积中大正方形的面积是36平方分米,那么小正方形也就是阴影部分的面积是多少平方分米?
4.已知大正方形比小正方形边长多3厘米,大正方形的面积比小正方形多39平方厘米。
问大、小正方形的面积各是多少平方厘米?
寄语:数学的本质在于它的自由。
——康托尔。