参数估计

合集下载

参数估计三要素

参数估计三要素

参数估计三要素参数估计是统计学中非常重要的一部分,它涉及到如何通过样本数据来得到总体参数的估计值。

而参数估计的实质就是利用样本信息来推断总体信息。

在进行参数估计的过程中需要掌握三要素,分别是点估计、区间估计以及最小二乘估计。

一、点估计点估计就是通过样本数据,估计总体参数的具体数值,也就是说利用样本数据来估计总体参数的单个值,这个单个值有可能等于总体参数,但也有可能不等于总体参数。

因为样本数据是有误差的,并且不能代表总体,所以点估计得到的估计量只是在数值上比较接近总体参数,而不是完全等于总体参数。

常见的点估计方法有矩估计和最大似然估计。

矩估计就是通过样本的前几个矩来估计总体参数的值,并且要求估计量是样本矩的函数。

最大似然估计是通过知道样本中观测值的概率分布,来确定估计量的值。

而在实际应用中,矩估计和最大似然估计常常同时使用,这样能够提高估计量的精确度。

点估计通过样本数据,确定总体参数的具体数值,它有其实际意义,但在实际应用中不能确定它的准确性。

二、区间估计点估计得到的估计量通常由于样本误差,不能代表总体参数。

在进行参数估计时,我们还需要确定一个区间,使得这个区间内的任一数值均可能是总体参数的真实值,这个区间就是区间估计。

对于总体参数的区间估计,我们可以利用统计量来求解。

如对于正态分布总体,其参数$\mu$,则样本均值是其最佳估计,而其标准差是未知的,所以我们的目的是得到一个包含总体参数的置信区间来进行估计。

假设总体的分布是正态分布,求出样本均值和样本标准差,以及统计学的知识,可以得到一个置信区间。

这个置信区间就是在某个置信水平下,总体参数落在这个区间内的概率为这个置信水平。

总体参数的置信区间是通过样本统计量计算而来的,而这个样本统计量的置信区间大小和置信水平有关,也和样本数量有关。

在实际应用中,当样本数量越大时,区间估计的精度就会越高。

三、最小二乘估计在线性回归分析中,最小二乘估计是一种广泛使用的估计方法。

第三章 参数估计

第三章   参数估计

第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。

总体分布是总体中所有观测值所形成的分布。

总体参数是对总体特征的某个概括性的度量。

通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。

统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。

统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。

[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。

通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。

答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。

答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。

〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。

每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。

五种估计参数的方法

五种估计参数的方法

五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。

参数估计的目标是通过样本数据来推断总体参数的值。

下面将介绍五种常用的参数估计方法。

一、点估计点估计是最常见的参数估计方法之一。

它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。

点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。

它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。

最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。

矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。

它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。

矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。

二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。

为了更全面地描述参数的估计结果,我们需要使用区间估计。

区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。

常见的区间估计方法有置信区间和预测区间。

置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。

置信区间的计算依赖于样本数据的统计量和分布假设。

一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。

预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。

预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。

与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。

三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。

它将参数看作是一个随机变量,并给出参数的后验分布。

贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。

概率论 第七章 参数估计

概率论  第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数


参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本

第7章参数估计

第7章参数估计
对于是非标志(即服从两点分布的变量)来说,若 将其具体表现分别用1、0数量化 ,成数就是其平 均数 是非标志的方差=P(1-P)
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

第四章 参数估计

第四章 参数估计

x
n
总体标准差,若 未知,可用样本
标准差代替
36
总体均值的置信区间引例
(2 未知)
例:某商场从一批袋装食品中随机抽取10袋,测得 每袋重量(单位:克)分别为789,780,794, 762,802,813,770,785,810,806,要 求以95%的把握程度,估计这批食品的平均每袋 重量的区间范围。假定食品重量服从正态分布。
0.95,Z/2=1.96
x Z 2
n
,
x
Z
2
n
26 1.96 6 ,26 1.96 6
100
100
24.824,27.176
我们可以95%的概率保证平均每天 参加锻炼的时间在24.824~ 27.176 分钟之间。
一般置信水平
一般使用的置信水平是:90%, 95%, 99%
Confidence Level
▪ 总体服从正态分布,且总体方差(2)已知 ▪ 如果不是正态分布,可以由正态分布来近似 (n 30)
2. 使用正态分布统计量Z
Z
x s
m ~ N (0,1)
n
3. 总体均值 在1-置信水平下的置信区间为
s
s
x
Za 2
,x n
Za 2 n
总体均值的置信区间
(2 已知)
抽样极限误差:
s x Za 2 n
❖ 定理1
当总体 X ~ N ( m , s 2 ) 时,抽自该总体
的简单随机样本 x1 , x 2 , , x n 的样本平均数
服从数学期望为 ,方差为 s2的正态分布,
n
即 x ~ N (m, s2 ) 。
n
Z x ~ N (0,1) n

参数估计

参数估计
第三节
参数估计
参数估计就是用样本统计量来推算总体参 数,有点估计和区间估计两种方法。 一、参数估计的理论基础 按正态分布理论对参数进行估计。 正态分布的主要特征有: 1.以总体平均数为中心两侧呈对称分布,即 1.以总体平均数为中心两侧呈对称分布,即 样本平均数大于或小于总体平均数的概率完全相 等,就是说样本平均数的正离差与负离差出现的 可能性完全相等。
2.样本平均数越接近总体平均数,其出现的 2.样本平均数越接近总体平均数,其出现的 可能性越大;反之样本平均数越远离总体平均数, 其出现的可能性越小。这种可能性数学上称为概 率F(t),也就是可靠性。与概率对应的数值称为 ),也就是可靠性。与概率对应的数值称为 概率度,即抽样误差扩大的倍数,用字母t表示。 概率F(t)与概率度t 的对应函数关系如图4-2所 的对应函数关系如图4 示。
30
f x
25 20
( )
15
10
5
0
-4 -3 -2 -1 0 1 2 3 4
x
-3t
x 3 x 2
-2t
x
-1t
0 68.27% 95.45% 99.73% F(t)
X
x + x + 2
1t
2t
x + 3
3t
图4 - 2
正态分布概率图
图4-2显示样本平均数与总体平均数的平均误差不超过1μ的 显示样本平均数与总体平均数的平均误差不超过1 概率为0.6827,不超过2 的概率为0.9545,不超过3 概率为0.6827,不超过2μ的概率为0.9545,不超过3μ的概率为 0.9973。即: 0.9973。即: 当t =1时,F(t) = 0.6827 =1时, 当t =2时,F(t) = 0.9545 =2时, 当t =3时,F(t) = 0.9973 =3时, 概率度t与概率F(t)的对应关系是:概率F(t)越大,则概率 度t值越大,估计的可靠性越高,样本统计量与总体参数之间正 负离差的变动范围也越大。对于t每取一个值,概率保证程度F(t) 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 (见书后附页)供大家查找。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 用样本的估计量的某个取值直接作为总体参 数的估计值
例如:用样本均值直接作为总体均值的估计;用 两个样本均值之差直接作为总体均值之差的估计 由于样本是随机的,抽出一个具体的样本得到的 估计值很可能不同于总体真值
一个点估计量的可靠性是由它的抽样标准误差来 衡量的,这表明一个具体的点估计值无法给出估 计的可靠性的度量
101.44,109.28
该食品平均重量的置信区间为101.44g~109.28g
5 - 28
July 31, 2010
统计学
STATISTICS
总体均值的区间估计
(小样本的估计)
【例】已知某种灯泡的寿命服从正态分布,现从一 批灯泡中随机抽取16只,测得其使用寿命(单位:h) 如下。建立该批灯泡平均使用寿命95%的置信区间
一个总体参数的区间估计
总体参数
符号表示
样本统计量
均值
比例

x p
2


方差
5 - 21
s
2
July 31, 2010
统计学
STATISTICS
总体均值区间的一般表达式
1. 总体均值的置信区间是由样本均值加减估计误差 得到的 2. 估计误差由两部分组成:一是点估计量的标准误 差,它取决于样本统计量的抽样分布。二是估计 时所要的求置信水平为时,统计量分布两侧面积 为的分位数值,它取决于事先所要求的可靠程度 3. 总体均值在置信水平下的置信区间可一般性地表 达为 样本均值±分位数值×样本均值的标准误差
16灯泡使用寿命的数据
1510 1450 1480 1460
5 - 29
1520 1480 1490 1460
1480 1510 1530 1470
1500 1520 1510 1470
July 31, 2010
统计学
STATISTICS
总体均值的区间估计
(小样本的估计)
解:已知X~N(,2),n=16, 1- = 95%,t/2=2.131 根据样本数据计算得:x 1490 ,s 24.77 总体均值在1-置信水平下的置信区间为
为了解学生每周上网花费的时间,中国人民大学公 共管理学院的4名本科生对全校部分本科生做了问 卷调查。调查的对象为中国人民大学在校本科生, 调查内容包括上网时间、途径、支出、目的、关心 的校园网内容,以及学生对收费的态度,包括收费 方式、价格等 问卷调查由调查员直接到宿舍发放并当场回收。对 四个年级中每年级各发60份问卷,其中男、女生各 30份。共收回有效问卷共200份。其中有关上网时 间方面的数据经整理如下表所示
统计学
STATISTICS
总体均值的区间估计
(小样本的估计)
解:已知X~N(,102),n=25, 1- = 95%,z/2=1.96 x 。根据样本数据计算得: 105.36。由于是正态总 体,且方差已知。总体均值 在1-置信水平下的 置信区间为 10 x z 2 105.36 1.96 n 25 105.36 3.92
5-3 July 31, 2010
统计学
STATISTICS
大学生每周上网花多少时间?
人数(人) 32 35 33 29 71 200 频率(%) 16 17.5 16.5 14.5 35.5 100
回答类别 3小时以下 3~6小时 6~9小时 9~12小时 12小时以上 合计
平均上网时间为8.58小时,标准差为0.69小时。全校学生每周 的平均上网时间是多少?每周上网时间在12小时以上的学生比 例是多少?你做出估计的理论依据是什么?
较大的样本量
B A
较小的样本量

5 - 18
ˆ
July 31, 2010
第 5 章 参数估计
5.2 一个总体参数的区间估计
5.2.1 总体均值的区间估计 5.2.2 总体比例的区间估计 5.2.3 总体方差的区间估计
5.2 一个总体参数估计的区间估计 5.2.1 总体均值的区间估计
统计学
STATISTICS
x t
2
s 24.77 1490 2.131 n 16 1490 13.2 1476.8,1503.2
+1.96x
90%的样本 95% 的样本 99% 的样本
5 - 10 July 31, 2010
统计学
STATISTICS
置信水平
(confidence level)
1. 将构造置信区间的步骤重复很多次,置 信区间包含总体参数真值的次数所占的 比例,也称置信度 2. 表示为 (1 -

比如,某班级平均分数在75~85之间,置信水平是95%
置信区间
样本统计量 (点估计)
置信下限
5-9
置信上限
July 31, 2010
统计学
STATISTICS
区间估计的图示
x z 2 x
- 2.58x -1.65 x
x

+1.65x +2.58x
x
-1.96 x
第 5 章 参数估计
5.1 5.2 5.3 5.4 参数估计的基本原理 一个总体参数的区间估计 两个总体参数的区间估计 样本量的确定
统计学
STATISTICS
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
5-2
July 31, 2010
统计学
STATISTICS
大学生每周上网花多少时间?
25袋食品的重量
112.5
102.6 100.0 116.6 136.8
5 - 27
101.0
107.5 123.5 95.4 102.8
103.0
95.0 102.0 97.8 101.5
102.0
108.8 101.6 108.6 98.4
100.5
115.6 102.2 105.0 93.3
July 31, 2010
5-4 July 31, 2010
第 5 章 参数估计
5.1 参数估计的基本原理
5.1.1 点估计与区间估计 5.1.2 评价估计量的标准
5.1 参数估计的一般问题 5.1.1 点估计与区间估计
统计学
STATISTICS
估计量与估计值
(estimator & estimated value)
1. 参数估计(parameter estimation)就是用样本统计 量去估计总体的参数 2. 估计量:用于估计总体参数的统计量的名称
5 - 22 July 31, 2010
统计学
STATISTICS
总体均值的区间估计
(大样本的估计)
总体服从正态分布,且方差(2) 已知 如果不是正态分布,可由正态分布来近似 (n 30)
1. 假定条件

2. 使用正态分布统计量 z x z ~ N (0,1) n 3. 总体均值 在1- 置信水平下的置信区间为

为是总体参数未在区间内的比例
相应的 为0.01,0.05,0.10
3. 常用的置信水平值有 99%, 95%, 90%

5 - 11
July 31, 2010
统计学
STATISTICS
置信区间的表述
(confidence interval)
1. 由样本估计量构造出的总体参数在一定置信水平 下的估计区间 2. 统计学家在某种程度上确信这个区间会包含真正 的总体参数,所以给它取名为置信区间 3. 如果用某种方法构造的所有区间中有95%的区间 包含总体参数的真值,5%的区间不包含总体参数 的真值,那么,用该方法构造的区间称为置信水 平为95%的置信区间。同样,其他置信水平的区 间也可以用类似的方式进行表述


如样本均值,样本比例,样本方差等 例如: 样本均值就是总体均值 的一个估计量
ˆ 3. 参数用 表示,估计量用 表示 4. 估计值:估计参数时计算出来的统计量的具体值

如果样本均值 x =80,则80就是 的估计值
5-7
July 31, 2010
统计学
STATISTICS
点估计
(point estimate)
5 - 13 July 31, 2010
统计学
STATISTICS
置信区间的表述
(confidence interval)
1.
2.
使用一个较大的置信水平会得到一个比较宽的置信区 间,而使用一个较大的样本则会得到一个较准确(较 窄)的区间。直观地说,较宽的区间会有更大的可能 性包含参数 但实际应用中,过宽的区间往往没有实际意义
x z
2
s 7.77 39.5 1.645 n 36 39.5 2.13 37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
5 - 25
July 31, 2010
统计学
STATISTICS
总体均值的区间估计
(小样本的估计)
1. 假定条件
总体服从正态分布,但方差(2) 未知 小样本 (n < 30)
5.1 参数估计的一般问题 5.1.2 评价估计量的标准
统计学
STATISTICS
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被 估计的总体参数
ˆ P( )
无偏 有偏
A
B

5 - 16
ˆ
July 31, 2010
统计学
STATISTICS
有效性
(efficiency)
5 - 12 July 31, 2010
相关文档
最新文档