参数估计方法
数理统计: 参数估计方法

引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ
1 n
n i 1
Xi
X
(
x)
1
e
x
,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi
X
2
;
s
1 n1
n i 1
( xi
参数估计的方法及应用

参数估计的方法及应用参数估计是统计学中的一个重要方法,用于根据已知数据估计总体的未知参数。
它是统计推断的基础,广泛应用于各个领域,包括医学、金融、市场调研等。
下面将介绍几种常见的参数估计方法及其应用。
1. 点估计点估计是参数估计中最简单的一种方法,通过计算样本数据的统计量来估计总体参数的值。
最常用的点估计方法是样本均值和样本方差,分别用来估计总体均值和总体方差。
例如,在市场调研中,可以通过抽样调查估计某一产品的平均满意度,从而评估市场反应。
2. 区间估计区间估计是参数估计中更常用的一种方法,它不仅给出了参数的一个点估计,还给出了一个区间估计,用于表达估计值的不确定性。
典型的区间估计方法有置信区间和预测区间。
2.1 置信区间置信区间是用于估计总体参数的一个区间范围,表示参数值落在该区间内的概率。
置信区间一般由样本统计量和抽样分布的分位数确定,常见的置信区间有均值的置信区间和比例的置信区间。
比如,一个医生想要估计一种药物对某种疾病的治疗效果,可以从患者中随机抽取一部分人群服用该药物,然后计算患者的治愈率。
利用样本中的治愈率和抽样分布的分位数,可以构建出一个置信区间,用于估计总体的治愈率。
2.2 预测区间预测区间是用于预测个体观测值的一个区间范围,表示个体观测值落在该区间内的概率。
和置信区间不同的是,预测区间不仅考虑参数的估计误差,还考虑了个体观测值的不确定性。
例如,在金融领域,投资者可以利用历史收益率估计某只股票的未来收益率,并通过构建预测区间来评估投资风险。
3. 极大似然估计极大似然估计是一种常用的参数估计方法,它基于样本数据的概率分布,通过寻找使得样本观测值出现的概率最大的参数值来估计总体参数。
例如,在医学研究中,研究人员可以根据已知的疾病发病率和病人的临床症状,利用极大似然估计方法来估计某一疾病的传染率。
4. 贝叶斯估计贝叶斯估计是一种基于贝叶斯统计原理的参数估计方法,它将参数看作是随机变量,并基于先验概率和样本数据来计算后验概率分布。
参数估计方法与实例例题和知识点总结

参数估计方法与实例例题和知识点总结一、参数估计的概念参数估计是指根据从总体中抽取的样本估计总体分布中包含的未知参数。
参数通常是描述总体分布的特征值,比如均值、方差、比例等。
二、参数估计的方法(一)点估计点估计就是用样本统计量来估计总体参数,给出一个具体的数值。
常见的点估计方法有矩估计法和最大似然估计法。
1、矩估计法矩估计法的基本思想是用样本矩来估计总体矩。
比如,用样本均值估计总体均值,用样本方差估计总体方差。
2、最大似然估计法最大似然估计法是求使得样本出现的概率最大的参数值。
它基于这样的想法:如果在一次抽样中得到了某个样本,那么这个样本出现概率最大的参数值就是总体参数的估计值。
(二)区间估计区间估计则是给出一个区间,认为总体参数以一定的概率落在这个区间内。
区间估计通常包含置信水平和置信区间两个概念。
置信水平表示区间包含总体参数的可靠程度,常见的置信水平有90%、95%和 99%。
置信区间则是根据样本数据计算得到的一个区间范围。
三、实例例题假设我们要研究某地区成年人的身高情况。
随机抽取了 100 名成年人,他们的身高数据如下(单位:厘米):165, 170, 172, 168, 175, 180, 160, 178, 176, 169,(一)点估计1、用样本均值估计总体均值:计算这 100 个数据的均值,得到样本均值为 172 厘米。
因此,我们估计该地区成年人的平均身高约为 172 厘米。
2、用样本方差估计总体方差:计算样本方差,得到约为 25 平方厘米。
(二)区间估计假设我们要以 95%的置信水平估计总体均值的置信区间。
首先,根据样本数据计算样本标准差,然后查找标准正态分布表或使用相应的统计软件,得到置信系数。
最终计算出置信区间为(168,176)厘米。
这意味着我们有 95%的把握认为该地区成年人的平均身高在 168 厘米到 176 厘米之间。
四、知识点总结(一)点估计的评价标准1、无偏性:估计量的期望值等于被估计的参数。
参数估计方法及其应用

参数估计方法及其应用参数估计是统计学中的一个重要概念,它指的是通过对样本数据的分析和统计推断,来对总体的一些未知参数进行估计。
常见的参数估计方法包括最大似然估计、贝叶斯估计和矩估计等。
最大似然估计是一种常用的参数估计方法。
它的核心思想是在给定数据的条件下,选择能使观测样本出现概率最大的参数值作为估计值。
具体过程是建立似然函数,通过最大化似然函数来得到参数的估计值。
最大似然估计方法简单直观,适用于大样本情况下的参数估计,广泛应用于一般统计推断、回归分析、生存分析等领域。
贝叶斯估计是另一种常用的参数估计方法,它是基于贝叶斯定理而提出的。
贝叶斯估计通过结合主观先验信息和样本数据,得到后验概率分布,从而对未知参数进行估计。
与最大似然估计相比,贝叶斯估计方法更加灵活,能够处理小样本、少数据情况下的参数估计。
贝叶斯估计在贝叶斯统计推断、医学诊断、决策分析等领域有广泛应用。
矩估计是一种基于矩的参数估计方法。
矩估计的基本思想是通过样本矩与理论矩的对应关系,建立矩方程组并求解参数。
具体过程是根据样本矩的计算公式,将理论矩与样本矩相等,得到参数的估计值。
矩估计方法简单易行,适用于大样本和小样本情况,广泛应用于生物学、社会科学等领域。
不同的参数估计方法适用于不同的情况和问题。
最大似然估计适用于大样本情况下,可以得到渐近无偏且有效的估计量;贝叶斯估计适用于小样本情况和需要主观先验信息的估计问题;矩估计适用于样本矩存在可计算公式的情况下的参数估计。
此外,还有其他一些参数估计方法,如偏最小二乘估计、缩小估计等。
除了以上常见的参数估计方法,实际应用中也可以根据具体情况发展新的估计方法。
例如,针对数据存在缺失的情况,可以采用最大似然估计的EM算法;对于非参数估计问题,可以使用核密度估计、经验贝叶斯方法等。
不同的参数估计方法有不同的优势和适用范围,选择合适的方法对于得到准确的参数估计结果是非常重要的。
总之,参数估计是统计学中的重要概念,通过对样本数据的分析和统计推断,来对总体的一些未知参数进行估计。
总体参数估计的方法与比较

总体参数估计的方法与比较统计学中的总体参数估计是为了根据样本数据来推断总体的一些特征或指标,以帮助我们了解和分析问题。
常见的参数包括总体均值、总体方差、总体比例等。
总体参数估计的方法有很多,每种方法有其优势和适用范围。
本文将介绍几种常见的总体参数估计方法,并进行比较。
一、点估计方法点估计是通过样本数据来估计总体参数的一种方法。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计:最大似然估计是通过寻找使观测到的样本数据出现的概率达到最大的参数值来估计总体参数。
它利用样本数据的信息,选择出使样本数据出现的可能性最大的总体参数估计值。
最大似然估计方法的优点在于拟合性好,当样本容量大且满足一定条件时,估计结果通常具有较好的性质。
2. 矩估计:矩估计是通过对样本矩的观察来估计总体参数。
矩估计方法基于样本的矩与总体的矩之间的关系进行参数估计。
它不需要对总体分布做出具体的假设,适用范围较广。
矩估计方法的优点在于简单易懂,计算方便。
二、区间估计方法点估计只给出了一个具体的数值,而区间估计则给出一个范围,用来估计总体参数的可能取值区间。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计:置信区间估计是在给定置信水平的情况下,通过样本数据得到总体参数的估计区间。
例如,我们可以通过样本数据得到一个总体均值的置信区间,表明有置信水平的概率下,总体均值落在估计的区间内。
置信区间估计方法的优点在于提供了对总体参数的估计不确定性的量化。
2. 预测区间估计:预测区间估计是在给定置信水平的情况下,通过样本数据得到未来观测的总体参数的估计区间。
与置信区间估计不同的是,预测区间估计对未来观测提供了一个对总体参数的估计范围。
预测区间估计方法的优点在于可以用于预测和决策。
三、方法比较与选择在实际应用中,我们需要根据具体问题选择适合的总体参数估计方法。
下面列举一些比较常见的情况,并给出对应的适用方法。
1. 总体分布已知的情况下,样本容量大:此时最大似然估计方法是一个很好的选择。
参数估计的三种方法

参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。
常用的参数估计方法包括点估计、区间估计和最大似然估计。
点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。
其中最简单的点估计方法是样本均值估计。
假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。
根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。
因此,我们可以用样本的平均值作为总体均值的点估计。
另一个常用的点估计方法是极大似然估计。
极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。
具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。
极大似然估计即求解使得似然函数取得最大值的θ值。
举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。
那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。
我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。
与点估计相比,区间估计提供了一个更加全面的参数估计结果。
区间估计指的是通过样本数据推断总体参数的一个区间范围。
常用的区间估计方法包括置信区间和预测区间。
置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。
置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。
置信区间的计算方法根据不同的总体分布和参数类型而异。
举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。
预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。
经典参数估计方法(3种方法)

经典参数估计方法:普通最小二乘(OLS)、最大似然(ML)和矩估计(MM)普通最小二乘估计(Ordinary least squares,OLS)1801年,意大利天文学家朱赛普.皮亚齐发现了第一颗小行星谷神星。
经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。
随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。
奥地利天文学家海因里希.奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。
最大似然估计(Maximum likelihood,ML)最大似然法,也称最大或然法、极大似然法,最早由高斯提出,后由英国遗传及统计学家费歇于1912年重新提出,并证明了该方法的一些性质,名称“最大似然估计”也是费歇给出的。
该方法是不同于最小二乘法的另一种参数估计方法,是从最大似然原理出发发展起来的其他估计方法的基础。
虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要的地位,因为最大似然原理比最小二乘原理更本质地揭示了通过样本估计总体的内在机理。
计量经济学的发展,更多地是以最大似然原理为基础的,对于一些特殊的计量经济学模型,最大似然法才是成功的估计方法。
对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据;而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该是使得从模型中抽取该n组样本观测值的概率最大。
从总体中经过n次随机抽取得到的样本容量为n的样本观测值,在任一次随机抽取中,样本观测值都以一定的概率出现。
统计学中的参数估计方法

统计学中的参数估计方法统计学是一门研究收集、分析和解释数据的学科。
在统计学中,参数估计是其中一个重要的概念,它允许我们通过样本数据来推断总体的特征。
本文将介绍统计学中常用的参数估计方法,包括点估计和区间估计。
一、点估计点估计是一种通过样本数据来估计总体参数的方法。
在点估计中,我们选择一个统计量作为总体参数的估计值。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计是一种基于样本数据的估计方法,它通过选择使得观察到的数据出现的概率最大的参数值来估计总体参数。
最大似然估计的核心思想是找到一个参数估计值,使得观察到的数据在该参数下出现的概率最大化。
最大似然估计方法在统计学中被广泛应用,它具有良好的渐进性质和统计学性质。
矩估计是另一种常用的点估计方法,它基于样本矩的性质来估计总体参数。
矩估计的核心思想是将样本矩与总体矩相等,通过求解方程组来得到参数的估计值。
矩估计方法相对简单,易于计算,但在样本较小或总体分布复杂的情况下,可能会出现估计不准确的问题。
二、区间估计区间估计是一种通过样本数据来估计总体参数的方法,它提供了参数估计的置信区间。
在区间估计中,我们通过计算样本数据的统计量和抽样分布的性质,得到一个包含真实参数的区间。
置信区间是区间估计的核心概念,它是一个包含真实参数的区间。
置信区间的计算依赖于样本数据的统计量和抽样分布的性质。
常见的置信区间计算方法有正态分布的置信区间和bootstrap置信区间。
正态分布的置信区间是一种常用的区间估计方法,它基于样本数据的统计量服从正态分布这一假设。
通过计算样本数据的均值和标准差,结合正态分布的性质,我们可以得到一个包含真实参数的置信区间。
Bootstrap置信区间是一种非参数的区间估计方法,它不依赖于总体分布的假设。
Bootstrap方法通过从原始样本中有放回地抽取样本,生成大量的重采样数据集,并计算每个重采样数据集的统计量。
通过分析这些统计量的分布,我们可以得到一个包含真实参数的置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 参数估计第一节 基本概念1、概念网络图{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。
例7.2:设n x x x ,,,,21 是总体的一个样本,试证(1);2110351321x x x ++=∧μ (2);12541313212x x x ++=∧μ(3).12143313213x x x -+=∧μ都是总体均值u 的无偏估计,并比较有效性。
例7.3:设n x x x ,,,,21 是取自总体),(~2σμN X 的样本,试证∑=--=ni i x x n S 122)(11 是2σ的相合估计量。
第二节 重点考核点矩估计和极大似然估计;估计量的优劣;区间估计第三节 常见题型1、矩估计和极大似然估计例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。
例7.5:设总体X 的密度函数为⎪⎩⎪⎨⎧≥=--.,0,1)(/)(其他μθθμx e x f x其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。
试求θ,μ的极大似然估计量。
2、估计量的优劣例7.6:设n 个随机变量n x x x ,,,21 独立同分布,,)(11,1,)(122121∑∑==--===n i i n i i x x n S x n x x D σ 则(A )S 是σ的无偏估计量;(B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量;(D )x S 与2相互独立。
例7.7:设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=,,0,0),(6)(3其他θθθx x xx fn X X X ,,,21 是取自X 的简单随机样本。
(1) 求θ的矩估计量∧θ;(2) 求∧θ的方差D (∧θ);(3) 讨论∧θ的无偏性和一致性(相合性)。
3、区间估计例7.8:从一批钉子中随机抽取16枚,测得其长度(单位:cm )为2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11假设钉子的长度X 服从正态分布),(2σμN ,在下列两种情况下分别求总体均值μ的置信度为90%的置信区间。
(1) 已知σ=0.01. (2) σ未知.例7.9:为了解灯泡使用时数的均值μ及标准差σ,测量10个灯泡,得x =1500小时,S=20小时。
如果已知灯泡的使用时数服从正态分布,求μ和σ的95%的置信区间。
例7.10:设总体X ~N (3.4, 62),从中抽取容量为n 的样本,若要求其样本均值x 位于区间[1.4, 5.4]内的概率不小于0.95,问样本容量n 至少应取多大?第四节 历年真题数学一:1(97,5分)设总体X 的概率密度为⎩⎨⎧<<+=其他,010)1()(x x x f θθ其中n X X X ,,,.121 是未知参数->θ是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
2(99,6分) 设总体X 的概率密度为⎪⎩⎪⎨⎧<<-=其他)(,00)(63θθθx x xx fn X X X ,,,21 是取自总体X 的简单随机样本。
(1) 求θ的矩估计量θ;(2) 求D (θ)。
3(00,6分) 设某种元件的使用寿命X 的概率密度为⎩⎨⎧≤>=--θθθθx x e x f x ,02);()(2 其中θ>0为未知参数。
又设X x x x n 是,,,21 的一组样本观测值,求参数θ的最大似然估计值。
4(02,7分)设总体X 的概率分别为θθθθθ21)1(2321022--p X其中θ(0<θ<21)是未知参数,利用总体X 的如下样本值 3, 1, 3, 0, 3, 1, 2, 3求θ的矩估计值和最大似然估计值。
5(03,4分)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40cm ,则μ的置信度为0.95 的置信区间是。
(注:标准正态分布函数值95.0)645.1(,975.0)96.1(=Φ=Φ)6(03,8分)设总体X 的概率密度为⎩⎨⎧≤>=--θθθx x e x f x ,02)()(2 其中θ>0是未知参数,从总体X 中抽取简单随机样本n X X X ,,,21 ,记^θ=min (n X X X ,,,21 )。
(1) 求总体X 的分布函数F (x ); (2) 求统计量^θ的分布函数)(^x F θ;如果用^θ作为θ的估计量,讨论它是否具有无偏性。
7(04,9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量;(II ) β的最大似然估计量.8.(06,9分)设总体X 的概率密度为()()⎪⎩⎪⎨⎧<<<≤-<<=其它是未知参数其中0,1021 1100,θθθθx x X Fn X X X ,,,21 为来自总体X 的简单随机样本,记N 为样本值n x x x ,,,21 中小于1的个数,求θ的最大似然估计。
数学三:1(91,5分)设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,00,),(1x x e ax x f x αλαλλ其中0,0>>αλ是未知参数是已知常数。
试根据来自总体X 的简单随机样本n X X X ,,21,求λ的最大似然估计量λ。
2(92,3分)设n 个随机变量n X X X ,,21独立同分布,∑∑==--===n i n i i X Xi n S X n X DX 122121)(11,1,σ,则 (A )σ是S 的无偏估计量。
(B )σ是S 的最大似然估计是。
(C )σ是S 的相合估计量(即一致估计量)。
(D )X S 与相互独立。
[ ]3(93,3分) 设总体X 的方差为1,根据来自X 的容量为100的简单随机样本,测得样本均值为5。
则X 的数学期望的置信度近似等于0.95的置信区间为 。
4(96,3分)设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值95.0.5的置信度为则未知参数μ=X 的置信区间是。
5(00,8分)设0.51, 1.25, 0.80, 2.00是来自总体X 的简单随机样本值。
已知Y =ln X 服从正态分布)1,(μN 。
(1) 求X 的数学期望EX (记EX 为b ); (2) 求μ的置信度为0.95的置信区间;(3) 利用上述结果求b 的置信度为0.95的置信区间。
6(02,3分) 设总体X 的概率密度为⎩⎨⎧<≥=--θθθθx x e x f x 若若,0,);()( 则n X X X ,,21是来自总体X 的简单随机样本,则未知参数θ的矩估计量为。
7(04,13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本, (Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.8.(05,4分)设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知。
现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是 (A )()()⎪⎭⎫ ⎝⎛+-164120,16412005.005.0t t (B )()()⎪⎭⎫ ⎝⎛+-164120,1641201.01.0t t (C )()()⎪⎭⎫ ⎝⎛+-154120,15412005.005.0t t (D )()()⎪⎭⎫ ⎝⎛+-154120,1541201.01.0t t 9.(05,13分)设()2,,,21>n X X X n 为来自总体),0(2σN 的简单随机样本,其样本均值为X 。
记X X Y i i -=,n i ,,2,1 =。
求:(I )i Y 的方差i DY ,n i ,,2,1 =;(II )1Y 与n Y 的协方差),(1n Y Y Cov 。
(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c 。
10.(06,13分)设总体X 的概率密度为()⎪⎩⎪⎨⎧<≤-<<=其它,021,110,,x x x f θθθ,其中θ是未知参数)10(<<θ,n X X X ,,,21 为来自总体的随机样本,记N 为样本值n X X X ,,,21 中小于1的个数,求:(I )θ的矩估计;(II )θ的最大似然估计。