[教育]应用统计方法第二章参数估计
应用多元统计分析课后习题答案高惠璇

第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用统计学:参数估计习题及答案.(优选)

简答题1、矩估计的推断思路如何?有何优劣?2、极大似然估计的推断思路如何?有何优劣?3、什么是抽样误差?抽样误差的大小受哪些因素影响?4、简述点估计和区间估计的区别和特点。
5、确定重复抽样必要样本单位数应考虑哪些因素?计算题1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。
要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少?3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。
根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。
现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少?4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。
试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973)5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下:试推断:(1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围(2)以同样条件推断其合格率的可能范围(3)比较两车间产品质量6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求:(1)计算样本合格品率及其抽样平均误差(2)以95.45%的概率保证程度对该批产品合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其概率保证程度是多少?7、某单位按重复抽样方式随机抽取40名职工,对其业务考试成绩进行检查,资料如下:6889 88 84 86 87 75 73 72 687582 99 58 81 54 79 76 95 767160 91 65 76 72 76 85 89 926457 83 81 78 77 72 61 70 87(1)根据上述资料按成绩分成以下几组:60分以下、60-70分、70-80分、80-90分、90-100分。
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
参数估计的一般步骤

参数估计的一般步骤引言:参数估计是统计学中一项重要的任务,它用于根据样本数据来推断总体参数的值。
参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
本文将详细介绍参数估计的一般步骤,并以人类的视角进行描述,使读者更好地理解和应用这些步骤。
一、确定估计方法在参数估计中,首先需要确定合适的估计方法。
估计方法可以分为点估计和区间估计两种。
点估计方法通过单个数值来估计参数的值,例如最大似然估计和矩估计。
区间估计方法则通过一个区间来估计参数的范围,例如置信区间估计。
选择合适的估计方法是参数估计的第一步。
二、选择样本在确定了估计方法后,接下来需要选择合适的样本进行参数估计。
样本应当具有代表性,能够反映总体的特征。
为了保证样本的代表性,可以使用随机抽样方法来选择样本。
通过合理选择样本,可以减小估计误差,提高参数估计的准确性。
三、计算估计值在选择好样本后,需要计算参数的估计值。
对于点估计方法,可以使用最大似然估计或矩估计等方法来计算参数的估计值。
对于区间估计方法,可以使用置信区间估计来计算参数的范围。
计算估计值时,需要根据样本数据和估计方法进行相应的计算,确保估计结果的准确性。
四、进行推断在计算得到估计值后,需要进行推断,即根据估计值对总体参数进行推断。
对于点估计方法,可以直接使用估计值作为总体参数的估计值。
对于区间估计方法,可以使用置信区间来表示总体参数的范围。
通过推断可以了解总体参数的可能取值范围,帮助做出正确的决策和预测。
总结:参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
在进行参数估计时,需要选择合适的估计方法和样本,计算出估计值,并进行相应的推断。
参数估计在统计学中扮演着重要的角色,它帮助我们根据样本数据来推断总体参数的值,从而更好地了解和应用统计学。
通过本文的介绍,希望读者能够更好地理解和应用参数估计的一般步骤。
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用数理统计习题答案_西安交大(论文资料)

应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (24)第四章方差分析与正交试验设计 (29)第五章回归分析 (32)第六章统计决策与贝叶斯推断 (35)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)X N μσ∼ ∴ 2(,)n X N σμ∼∴)(0,1)X N μσ−∼分布∴(1)0.95P X P μ−<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ (0.0015)X Exp ∼∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe −−>==−<=−=∫∴ 6个元件都没失效的概率为: 1.267.2()P e e −−==(2) ∵ (0.0015)X Exp ∼∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe−−<===−∫∴ 6个元件没失效的概率为: 4.56(1)P e −=−1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=−−Π∑==πσμσ1.5证:∵21122)(na a x n x a x ni ni ii+−=−∑∑==∑∑∑===−+−=+−+−=ni i ni i ni i a x n x x naa x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x )(11)(1111n n n n n x x n x x x n n −++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S −+++−−+−−+=−+−−+=−+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n −++−+−+−−++=++++])(11S [1 ])(1[nS 11212n 212n n n n n x x n n n x x n n n −+++=−+++=++ 1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====−=−+−=−+−−+−=−+−∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====−=−+=−+=−∑∑∑∑∑1.10 解: (1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np mp x D n x n D X D ni in i i )1()(1)1()(121−===∑∑==))(1()(122∑=−=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i −−=+−−+−=+−+=−=−=∑∑∑=== 同理,(2). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122−=+−+=−=∑∑==(3). 2)(1)1()(11b a x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121−===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b nn x E x D n x E x D n x nE x E n S E ni i i n i i −⋅−=+−+=−=∑∑==(4). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx nD X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i −=+−+=−=∑∑==(5). μ===∑∑==ni ini i x E nx nE X E 11)(1)1()(nx D nx nD X D ni i ni i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅−=+−+=−=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓX ∵xe x xf λαααλ−−Γ=∴1)()( 令kXY =ke ky k k e ky yf kyky ⋅Γ=⋅Γ=∴−−−−λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β∵),()1()( 11b a B x xx f b a −−−=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=−=∴∫∞+∞−−−),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D −=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+−++++= 1.19 解:∵ (,)X F n m ∼分布2212(1)022()((1))((1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m mm ++−−+≤=+≤=<−Γ=+ΓΓ∫2222122221122()()()1((1()()11(1)(1)(,)n n m n m n m n m n m f y P Y y y y yy y yy B ++−−−−′=≤Γ=+ΓΓ−−−−=∴ 22(1)(,)n mn n Y X X m mβ=+∼分布1.20 解:∵ ()X t n ∼分布122212()()((2(1n n P Y y P X y P X xdxn ++−≤=≤=≤≤=+112211221212122()()()(1)()1()(1(()()n n n n n f y P Y y y y n y y nn n +++−−+−−′=≤Γ=+Γ=+ΓΓ∴ 2(1,)2nY X F =∼分布1.21 解: (1) ∵ (8,4)X N ∼分布∴ 4(8,)25X N ∼ 分布,即5(8)(0,1)2X N −∼ ∴ 样本均值落在7.88.2∼分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P −−−≤≤=≤≤=(2) 样本均值落在7.58∼分钟之间的概率为:5(7.58)5(8)5(88)(7.58)(2225(8)(0 1.25)20.3944X P X P X P −−−≤≤=≤≤−=≤≤= 若取100个样品,样本均值落在7.58∼分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)(2222*(0.84130.5)0.6826X P X P −−−≤≤=≤≤=−= 单个样品大于11分钟的概率为:110.77340.2266P =−= 25个样品的均值大于9分钟的概率为210.97980.0202P =−= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =−= 所以第一种情况更有可能发生1.23 解:(1) ∵ 2(0,)X N σ∼分布 ∴ 2(0,X N nσ∼分布∴ 22)(1)nXχσ∼∵ 222221()(ni i nXa X an X an σσ===∑∴ 21a n σ=同理 21b m σ=(2) ∵2(0,)X N σ∼分布 ∴222(1)X χσ∼分布由2χ分布是可加性得:2221()ni i X n χσ=∑∼()ninX c X t m ==∑∼ ∴c =(3) 由(2)可知2221()ni i X n χσ=∑∼2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∼∴ md n=1.25 证明:∵ 211(,)X N μσ∼分布 ∴ 2211((1)i X μχσ−∼∴ 1221111(()n i i X n μχσ=−∑∼同理 2222212(()n i i Y n μχσ=−∑∼ 1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====−−=−−∑∑∑∑∼ 第二章 参数估计2.1 (1) ∵ ()X Exp λ∼分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)X U a b ∼分布∴ ()2a bE X +=2()()12b a D X −=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =−++==∑ (22211n i i X X S n =−=∑)解得a 和b 的矩估计为:ˆˆaX bX =−=(3) 110()1E X x x dx θθθθ−=∗=+∫令 1ˆˆ1A X θθ==+∴ˆ1XXθ=− (4) 110()(1)!kk x kE X x x e dx k βββ−−=∗=−∫令ˆkX β= ∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p ∼ ∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆXpm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p −==−故p 的似然函数为: 1()(1)ni i x nnL p p p =−∑=−对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+−−∑令 1ln ()1()01nii L p n x n p p p =∂=−−=∂−∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x p2)(NX E =矩估计: 令 7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L ∵要使)(N L 最大,则710=N710=∴∧N 2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+−Φ=∴=−Φ−∧∧∧−σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=−=R ∵0215.005.04299.05=×==∴∧d Rσ(2)将所有数据分为三组如下所示:1x 2x 3x 4x5x 6x i R1 2.14 2.10 2.15 2.13 2.12 2.13 0.05 2 2.10 2.15 2.12 2.14 2.10 2.13 0.05 32.11 2.14 2.10 2.11 2.15 2.10 0.050197.005.03946.005.0)05.005.005.0(316=×==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f ∵ θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=−∧θθ(2) θ=−21(X E ∵ 21−=∴∧X θ是θ的无偏估计(3)22))(()())(()(θθθθ−+=−+=∧∧X E X D E D MSE41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i ∵∵2132121X X +=∴∧μ最有效2.9证: )(~λp X ∵ λλ==∴)( )(X D XEX ∵是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计)()1()())1((2*2*S E X E S X E αααα−+=−+∴λλααλ=−+=)1(∴2*)1(SX αα−+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ∗∗+−=+−=+−−=+−−−=+−=− 所以 2(1)X S αα∗+−是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ−=∼(,)对于给定的1α−,查标准正态分布表可得2u α,使得2()1P U u αα<=−即:22()1P X p X ααα−<<=−区间的长度2d L α=<,所以 22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ−=∼(,), 222(1)nS V n χσ=−∼由因为U 和V 是相互独立的,所以(1)X T t n =−∼对于给定的1α−,查标t 分布表可得t α,使得 2()1P U t αα<=−,即:22()1P X X ααμα<<+=− 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α−,查标t 分布表可得t α,使得 ()1P U t αα>=−, 即:()1P X αμα<+=− 故μ的具有单侧置信上限的单侧置信区间为(,)X α−∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)−∞第二种航空公司的单侧上限置信区间为(,36.3103)−∞所以选择第二家航空公司。
教育与心理统计学 第二章 常用统计参数考研笔记-精品

第二章常用统计参数第二章常用统计参数用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特点。
常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。
描述统计的指标通常有五类。
第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。
概述[不背]第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。
第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。
第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。
第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I第一节集中量数(一)集中量数的定义(种类、作用)[湖南12名]描述数据集中趋势的统计量数称为集中量数。
集中量数能反映大量数据向某一点集中的情况。
常用的集中量数包括算术平均数、加权平均数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。
(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。
(1)平均数的含义算术平均数可简称为平均数或均数,符号可记为M。
算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。
只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。
如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。
(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]算术平均数优点①反应灵敏。
观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计方法
统计方法
统计方法
统计方法 •2.3.3 Bayes估计
统计方法
统计方法
统计方法
•注:假如不用先验信息,只用样本和总体信息,那么事件A 发生的概率的最大似然估计为:
•例如:在产品抽检中,只区分合格品与不合格品,对质 量好的一批产品,抽检的产品常为合格品. • 但“抽检3个全为合格品” • “抽检的10个全为合格品”(更信得过)
本章中介绍了参数估计的基本方法。
参数的估计有点估计、贝叶斯估计和区间估计。矩估计法和 极大似然估计法是求参数的点估计量的两种最基本的方法, 务必牢固掌握。衡量估计量好坏的标准有无偏性,最小方差 无偏估计,有效性和相合性(一致性)等,要学会验证一个 估计量是符合哪种标准的估计量,这对了解估计量的特性是 非常重要的。
•(3)先验信息:抽样或试验之前有关统计问题的一些信息.一般说来,
•先验信息来自经验或历史资料.先验信息在日常生活和工作中是很 重要的
统计方法
•Bayes统计学:基于三种信息所进行的统计推断的统计学
•Bayes统计重视总体信息和样本信息的同时,还注意先验 信息的收集,挖掘和加工,使它数量化,形成先验分布,参加到 统计推断中来.以提高统计推断的质量,忽略先验信息的利 用,有时是一种浪费,有时还会导出不合理的结论. •Bayes学派的基本观点:任一未知参数都可以看成随机变量, 可用一个概率分布去描述,这个分布称为先验分布.在获得样 本之后,总体分布,样本,和先验分布通过Bayes公式结合起来 得到关于未知参数的新的分布…..后验分布
当样本符合或接近统计模型的假设时, 该估计应有好的或较好的估计效果;当 样本偏离偏离模型的假设时,即受到干 扰时,该估计量应具有一定的抗干扰能 力而不至于使估计效果变得太坏。
如样本中位数等是估计
•在统计学中有两大学派:频率学派(经典学派)和Bayes学派
统计方法 §2.4 区间估计(Interval Estimation)
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
第二章小结(Summary of Chapter two)
•关于未知参数的统计推断都应基于未知参数的后验分布进 行 •两派争论的焦点:如何利用各种先验信息合理地确定先验分 布.有些场合易解决,有些场合是相当困难的.
统计方法 •2.3.2 Bayes公式密度函数的形式
•这里用随机变量的概率函数再次叙述Bayes公式,从中介绍 Bayes学派的一些具体想法
统计方法
[教育]应用统计方法第二章 参数估计
统计方法
§2.1 点估计(Point Estimation) §2.2 估计量的评价准则 §2.3 区间估计(Interval Estimation)
统计方法
§2.1 点估计(Point Estimation)
统计方法
统计方法
统计方法
统计方法
统计方法
•这两件事留在人们心中的印象是不同的
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
•先验分 布
•后验分布既反映了以往提供的信息,又反映了样本 提供的信息,共轭分布要求先验和后验分布属于同一 类型,就是要求以往的知识与现在样本提供的信息有 某种共同性.如果以后验分布作为进一步实验的先验 分布,再统计试验获得的新的样本,新的后验分布仍 然还是同一个类型的.由此可得共轭分布的优点.
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
§2.2 估计量的评价准则 (Evaluation Rule of Estimator)
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法 •最小均方误差准则
统计方法 •相合性(一致性)
•除了要求无偏,方差较小,或均方误差较小外,还要求当样 本容量增大时,它将越来越接近被估计的真值,这是因为当 样本容量增大时,得到的总体信息也就越多. •有效估计必是相合的估计
统计方法
稳健性准则
•2.3.1统计推断的基础 •经典学派:统计推断是根据样本信息对总体分布或总体的特 征数进行推断,用到两种信息:总体信息和样本信息.
•Bayes学派:除上述两种信息外还用到了第三种信息:先验信 息
•(1)总体信息:总体分布或总体所属分布族的信息
•(2)样本信息:抽取样本观测值提供的信息.例如:有了样本观测值,可 以根据它知道总体的一些特征数如总体均值,方差等在一个什么范 围.这是最”新鲜”的信息,且越多越好.没有样本就没有统计学而言.