超级电容器的原理及应用

合集下载

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用
超级电容器是一种电子元件,它具有高电容、高电压和快速充放电等特点。

超级电容
器是由两个极板和介质隔离层组成的,它们通过两个电极接口连接电路。

为了增加电容值,极板和介质隔离层通常是构成层状结构。

超级电容器的原理是利用电场作用力吸附电荷,
电极板之间的电荷可以通过电解液的运动迅速传递。

超级电容器具有很多的应用领域,例如:
1.储能系统
超级电容器的能量密度比锂电池低,但它可以快速充放电,寿命长,不需要维护。

因此,超级电容器被广泛应用于储能系统中,例如智能电网,风力涡轮机和电动汽车。

2.动力系统
3.消费电子和家用电器
由于其体积小、重量轻和快速充放电的特点,超级电容器在消费电子和家用电器领域
中得到了广泛应用。

例如,手提式视频摄像机、智能电话和耳机等产品中都可以看到超级
电容器的身影。

4.工业自动化
超级电容器可以快速充放电,并且经久耐用,可以在工业自动化控制系统中得到广泛
应用,例如可编程控制器(PLC)、自动化机床和机器人等。

总之,超级电容器的应用范围十分广泛,可以应用于无线通讯、铁路运输、信号处理
和军事应用等领域。

以年复合增长率20%以上的增长速度,超级电容器的市场规模将迅速
扩大,成为未来节能、环保和新能源领域的重要组成部分。

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用超级电容器,是一种能储存大量电能并且能够快速放电的电子元件。

它在电子领域中应用广泛,能够提供大电流,具有快速充放电特性,而且寿命长、体积小等优点。

本文将详细介绍超级电容器的原理及应用。

超级电容器的原理:超级电容器的工作原理其实很简单,在超级电容器中有两个电极,它们之间由电解质隔开。

当电容器充电时,正极电极会吸收电子,而负极电极则会失去电子,这样就形成了电压差。

当需要放电时,正负极电极之间的电子会快速流动,使得电容器迅速放出储存的电能。

1.电动车辆:超级电容器可以用于电动汽车及混合动力汽车的能量回收系统中。

在车辆减速或制动时,电动机会成为发电机,将动能转化为电能,并存储在超级电容器中。

当车辆需要加速时,超级电容器可以迅速释放储存的能量,提供给电动机,从而减轻电池的负担,延长电池的使用寿命。

2.工业设备:超级电容器也被广泛应用于工业设备中,特别是需要进行瞬时大电流输出的设备。

正常电池无法提供足够的电流以满足这些设备的需求,而超级电容器可以在短时间内提供高达几十安培的电流输出,能够满足工业设备的需要。

3.可穿戴设备:随着智能可穿戴设备的普及,对于电池的体积和重量要求越来越高。

超级电容器因为体积小,重量轻而被广泛应用于智能手表、智能眼镜等可穿戴设备中,能够为这些设备提供可靠的能量支持。

4.风能储能:超级电容器也可以用于风力发电系统的能量存储。

风能是一种不稳定的能源,风力发电系统在风大的时候会产生超出负荷的电能,而风小的时候又无法满足负荷需求。

超级电容器可以在风力充足时存储多余的能量,风力不足时释放储存的能量,平衡系统的供需关系。

超级电容器的原理与应用

超级电容器的原理与应用

超级电容器的原理与应用超级电容器,又称为超级电容、超级电容放电器,是一种新型电化学器件,它具有比传统电容器更高的电容量和能量密度,以及更高的功率密度。

这种电化学器件在现代电子设备、交通工具、能源储存系统等领域有着重要的应用。

本文将从超级电容器的原理、结构、特点以及应用领域等方面进行介绍。

一、超级电容器的原理超级电容器的工作原理基于电荷的吸附和离子在电解质中的迁移。

其正极和负极均采用多孔的活性碳材料,两者之间的电解质是导电液体。

当加上电压时,正负极之间形成两层电荷分布,即电荷层,进而形成电场。

电荷的吸附和电子的迁移使得电容器储存电能。

二、超级电容器的结构超级电容器的主要结构包括两块活性碳电极、电解质和两块集流体。

活性碳电极是超级电容器的核心部件,通过高度多孔的结构使得电极表面积大大增加,从而增加电容器的电容量。

电解质则起着导电和电荷传递的作用,而集流体则是用于导电的金属片或碳素片。

三、超级电容器的特点1.高功率密度:超级电容器具有较高的功率密度,能够在短时间内释放大量电能。

2.长循环寿命:相比于锂离子电池等储能装置,超级电容器具有更长的循环寿命。

3.快速充放电:超级电容器具有快速的充放电速度,适用于需要频繁充放电的场景。

4.环保节能:超级电容器不含有有害物质,具有较高的能源利用效率。

四、超级电容器的应用1.汽车启动系统:超级电容器作为汽车启动系统的辅助储能装置,能够有效提高发动机启动速度,降低能源消耗。

2.再生制动系统:超级电容器在电动汽车的再生制动系统中起到储能和释放能量的作用,提高能源回收效率。

3.电网能量储存:超级电容器可用作电网能量的储存装置,用于平衡电力需求与供给之间的波动。

4.工业自动化设备:超级电容器在工业自动化领域中广泛应用,用于缓冲电源波动和提供紧急供电。

5.医疗设备:超级电容器可用于医疗设备的储能,确保设备持续稳定运行。

结语超级电容器以其高功率密度、长循环寿命、快速充放电等特点在各个领域发挥着重要作用,为现代社会的能源存储和利用提供了新的技术解决方案。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器,也被称为超级电容或超级电容电池,是一种高性能的电能存储装置。

它具有高能量密度、高功率密度、长寿命、快速充放电等优点,被广泛应用于电子设备、交通工具、可再生能源等领域。

本文将详细介绍超级电容器的工作原理。

一、超级电容器的基本结构超级电容器由两个电极、电解质和隔离层组成。

电极通常由活性炭、金属氧化物或导电聚合物制成。

电解质是导电的溶液或聚合物薄膜,用于连接两个电极并传导电荷。

隔离层则用于阻止电极之间的直接接触。

二、超级电容器的工作原理超级电容器的工作原理可以分为双电层电容和赫姆霍兹电容两种机制。

1. 双电层电容机制当两个电极浸入电解质中时,由于电解质的极性,正离子会聚集在负电极表面,负离子会聚集在正电极表面。

这种现象导致了电解质与电极之间形成了电荷分层,形成了一个电荷电位差,同时也形成了一个双电层结构。

这个双电层结构就像是一个电容器,可以存储电荷。

当外加电压施加在电极上时,电荷会在电极表面积累。

当电压被移除时,电荷会被释放回电解质中。

这个过程非常快速,因此超级电容器具有快速充放电的特点。

2. 赫姆霍兹电容机制赫姆霍兹电容机制是指当电极之间存在一层绝缘材料时,电极与绝缘材料之间形成了一个电荷电位差。

这个电位差可以存储电荷,从而形成电容效应。

这种机制通常用于电解质电容器。

三、超级电容器的充放电过程超级电容器的充放电过程可以通过以下步骤进行说明:1. 充电过程:- 当超级电容器处于放电状态时,电荷会从电极中释放到电解质中,使电极电势降低。

- 当外部电源施加在电极上时,正电极吸收电子,负电极释放电子,电荷开始在电极表面积累。

- 当电压达到设定值时,超级电容器被认为是充满的。

2. 放电过程:- 当超级电容器处于充电状态时,电荷会从电解质中吸收到电极上,使电极电势增加。

- 当外部电源被移除时,电荷开始从电极表面释放,返回到电解质中。

- 放电过程可以持续,直到电荷完全从电极中释放。

四、超级电容器的应用领域超级电容器由于其独特的特点,被广泛应用于以下领域:1. 电子设备:超级电容器可以用作备用电源,提供短时间的电能供应,以防止设备关机或数据丢失。

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用一、原理:超级电容器(Supercapacitor)又称为超级电容器或超级电容器电池,它是一种特殊的电容器,其存储能量量级为焦耳级别,远高于普通电容器的毫焦耳级别。

超级电容器具有快速充电和放电、长寿命、高循环稳定性等特点,适合于需要高能量密度和高功率密度的应用场合。

观察超级电容器的内部结构,其由两个锰氧化物电极板和一个电介质隔离层组成,锰氧化物电极板表面没有铝箔覆盖,其间以100nm的间距排列,从而即可达到高电容电极表面积的效果。

电介质隔离层由聚丙烯的多层膜组成。

在正极板和负极板之间的介质薄膜壁具有极高的介电常数,因此能够将电场强度扩展到导电性電解質中。

因此,超级电容器具有更高的比容量和能量密度。

二、应用:超级电容器可广泛应用于电子、汽车、医疗等领域。

以下是具体的应用:1. 电子产品:可广泛应用于移动物联网、消费电子等领域。

例如,可用于数码相机、MP3等数码产品,为其提供性能更加卓越的电源。

2. 汽车研发:超级电容器可以在汽车领域应用到停车制动能量回收系统、发动机启动、辅助动力系统等方面。

比如,在刹车时,能够以更为高效的方式回收能量,提高储能系统的效率,在加速时则能够减少电池的功率消耗,从而延长电池使用寿命。

同时,超级电容器还能在车辆制动、起动和交通噪声的减少方面发挥重要作用。

3. 医疗器械:在呼吸机、心脏起搏器等医疗领域中,超级电容器可以减小器械的尺寸同时增加器械的能量输出。

4. 其他领域:超级电容器还可广泛应用于军事领域、能源行业、新能源领域及航空航天等领域。

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用超级电容器(supercapacitor)又称电化学双层电容器,是一种能够储存和释放大量电荷的电子元件。

它的工作原理是利用电化学双层或者伪电容效应来存储电荷。

与传统的电容器相比,超级电容器具有能量密度高、循环寿命长、充放电速度快等优点,因此在许多领域都有着广泛的应用。

超级电容器的原理主要是基于电化学双层效应和伪电容效应。

电化学双层效应是指当电极表面与电解质中的电离物质接触时,会形成一个电荷分布较宽的双层电容。

这个双层电容主要由电极表面的电子层和电解质中的离子层组成,能够存储大量的电荷。

而伪电容效应则是指在电极表面发生化学反应的情况下,会导致电荷的储存和释放,形成伪电容。

超级电容器由电极、电解质和隔膜三部分组成。

电极一般使用活性炭或者氧化铈等材料,具有大表面积和良好的导电性;电解质则是具有高离子导电性的溶液或者凝胶;隔膜则起到隔离电极和阻止电解质混合的作用。

超级电容器在能量储存和释放方面有着独特的优势。

它能够在短时间内实现高效的充放电,这意味着超级电容器可以迅速释放储存的能量,满足一些瞬态负载需求;超级电容器的循环寿命长,可以进行上百万次的充放电循环,这使得它在一些需要频繁充放电的场合具有明显的优势;超级电容器的能量密度虽然不及传统的化学电池,但是随着材料和结构的不断优化,能量密度也在不断提高,目前已经可以满足很多应用的需求。

超级电容器在许多领域都有着广泛的应用。

在汽车领域,超级电容器可以作为辅助能源储存装置,为车辆提供起动、加速和制动时的能量支持,从而提高燃油利用率和降低尾气排放;在电力系统中,超级电容器可以用来进行功率平衡和瞬态能量补偿,提高系统的稳定性和可靠性;在可再生能源领域,超级电容器可以作为储能设备,平衡太阳能和风能等间歇性能源的输出;在电子产品中,超级电容器可以作为备用电源,确保设备在断电情况下能够正常工作;在航天航空领域,超级电容器可以用来储存航空器的制动能量,延长飞行时间;在工业自动化领域,超级电容器可以用来提供紧急停机的能量支持,确保设备和人员的安全。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器,也被称为超级电容,是一种能够存储和释放大量电荷的电子元件。

它具有比传统电容器更高的电容量和能量密度,以及更高的充放电速度。

超级电容器的工作原理是基于电荷分离和电场存储的原理。

1. 电荷分离:超级电容器由两个电极和电解质组成。

电解质是一个导电液体或者固体,它能够在两个电极之间形成一个电荷分离的界面。

当超级电容器处于未充电状态时,电解质中的离子均匀分布,没有电荷分离。

2. 充电过程:当外部电源连接到超级电容器的两个电极上时,正极电极吸引负电荷,负极电极吸引正电荷。

这导致电解质中的离子开始向电极挪移,形成电荷分离。

正电荷会萃在负极电极上,负电荷会萃在正极电极上。

这个过程称为充电。

3. 电场存储:在充电过程中,电解质中的离子在电极表面形成一个电荷层。

这个电荷层产生了一个电场,用于存储电能。

超级电容器的电容量取决于电极表面积和电解质的性质。

由于电解质具有较高的离子迁移速度,超级电容器能够以非常高的速度存储和释放电能。

4. 放电过程:当超级电容器需要释放电能时,外部电路将电留连接到电容器的两个电极上。

电荷开始从电极中流出,电解质中的离子重新回到均匀分布状态。

这个过程称为放电。

由于超级电容器的内阻较低,它能够以很高的速度释放电能。

超级电容器的工作原理使其具有许多应用领域。

以下是一些常见的应用:1. 能量回收系统:超级电容器可以用于回收制动能量或者其他能量浪费过程中产生的能量。

它们能够快速充电和放电,可以有效地存储和释放能量。

2. 电动车辆:超级电容器可以用作电动车辆的辅助能量存储装置。

它们能够提供高功率输出和快速充放电速度,增加电动车辆的加速性能和续航里程。

3. 可再生能源系统:超级电容器可以与太阳能电池板或者风力发机电等可再生能源系统结合使用。

它们能够平衡能量的供应和需求,提供快速响应和稳定的电力输出。

4. 电子设备:超级电容器可以用于电子设备中的瞬态电源管理。

它们能够提供快速的电流脉冲,以满足高性能电子设备的需求。

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用超级电容器是一种利用玻璃纤维、铝箔、碳材料等制成电极, electrolytes和隔离材料,通过高效的电化学反应存储、释放电荷的高效电容器,能够提供比传统电容器更高的电容量和能量密度。

超级电容器的原理基于电双层电容效应和赝电容效应。

电双层电容效应是靠电解质与电极上的电荷分割成的双层界面达成的。

当电极接通电源,电解液中的离子将沉积在电极表面,形成电荷层,其正负电荷分别和电极表面上的反电荷符号号码吸引形成电双层。

电容器的电容值正比于电荷层的表面积和距离,而电荷层的表面积与电极材料的分区有关。

赝电容效应是指某些纳米材料比如纳米孔道材料或者有机并网络菌丝体宽分散活性炭这样的电极材料可以在宏观上提供超级电容器的效应。

这些材料的电极表面具有高度的开孔度和孔径尺寸范围使其在电化学反应中表现出特别的效应。

如为了提高赝电容效应,电极应该有一个高度的比表面积,这可以通过制备出大量的纳米孔道、微孔道和薄膜,促进电荷转移。

超级电容器的应用非常广泛,包括高峰功率应用、储能应用、行星漫游器和混合动力车辆等。

在汽车组装和其他机械中,超级电容器可以提供爆发式输出电流和重新收回电流用于储能。

超级电容器还可以应用于高峰功率应用,例如由电动工具重商用定制产品,以及火箭发动机和其他高功率加速器。

超级电容器还能在许多领域中帮助提高能源效率,包括建筑、物流和清洁能源发电以及货运。

超级电容器也可以用于医疗领域,例如假肢和小型医学设备。

由于超级电容器的优异特性,越来越多的应用正在开发和研究之中。

在未来,超级电容器有可能被用于更多领域,如宇航员射击、海上作战、太阳能电池储存和燃料电池换热暂存。

然而,超级电容器的高价值仍然限制了其在各种应用中的广泛使用。

未来的研究将寻求制造更多适用于各种应用场景的超级电容器,并研究成本更低的制造方法,提高超级电容器的成本效益和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4超级电容器的应用
,超级电容器以其众多的优点,一经问世便受到人们 的广泛关注,己在很多领域得到成功的应用,如充当记
忆器、电脑、计时器等电子产品的后备电源;用做电动
玩具车主电源、内燃机中启动电力、太阳能电池辅助电
源,还可应用于航空航天等领域。目前,超级电容器的
发展正逐渐步入成熟期,超级电容器的市场也越来越
对超级电容器的研究始于90年代后期。尽管国内在超
级电容器领域的研究和开发的起步较晚,但发展势头
不容忽视。
2超级电容器的原理
根据存储电能的机理不同,超级电容器可分为双 电层电容器(Electric double layercapacitor,EDLC)和 赝电容器(Pesudoeapacitor)。 2.1双电层电容器原理
池在高功率输出、快速充电、宽温度范围使用以及寿
命等方面存在一定的局限性。而超级电容器能较好地
满足电动车在启动、加速、爬坡时对功率的需求,若
与动力电池配合使用,则可减少大电流充放电对电池
的伤害,延长电池的使用寿命,同时还能通过再生制
动系统将瞬间能量回收于超级电容器中,提高能量利
用率。
俄罗斯已经将超级电容器电动车投入到公交线路
Key words:electron technology;supereapacitors;review;principles;applications
超级电容器(Supercapacitor)是20世纪七八十年 代发展起来的一种介于电池和传统电容器之间的新型 储能器件,具有法拉级的超大电容量,比同体积的电 解电容器容量大2 000"6 000倍,功率密度比电池高 10~100倍,可以大电流充放电,充放电效率高,充放 电循环次数可达105次以上,并且免维护。超级电容器 的出现填补了传统的静电电容器和化学电源之间的空 白,并以其优越的性能及广阔的应用前景受到了各个 国家的重视[1~41。
large capacitance,long cycle life and high charge—discharge efficiency.For this reason,world wide attention was attracted.The fundamental principles,classification and characteristics of supercapacitors were reviewed,and their main application areas and development trend were introduced.
作为小型用电器电源,电动玩具【121、数字钟、照相机、
录音机、便携式摄影机等均可能采用超级电容器作为 电源。而且超级电容器的循环寿命长,比采用电池作
为电源要合算。超级电容器还可以与电池联用,既可
发挥蓄电池容量大、可长期供电的优点,还可消除因
蓄电池内阻较大,不能超大电流放电的缺点。Cap— XX公司对应用于笔记本电脑的超级电容器进行了开
“准电容砷瞬。日本NEC
公司也从1979年开始一直
生产Supexapacitor,并将该 技术应用于电动汽车的
电池启动系统,开始了超
级电容器的大规模商业
图l超级电容器的多种外观形式 Fill Appearances ofsulmeapacitors
应用。 在20世纪80年代初
我国学者就注意到了双电层电容器的研究【7.8l,但国内
万方数据
第27卷第4期
陈英放等:超级电容器的原理及应用

由于库仑力、分子间力、原子间力的作用,使固液界面 出现稳定的、符号相反的双层电荷,称为界面双层。
双电层电容器使用的电极材料多为多孔碳材料, 有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、 碳纳米管。双电层电容器的容量大小与电极材料的孔 隙率有关。通常,孔隙率越高,电极材料的比表面积 越大,双电层电容也越大。但不是孔隙率越高,电容 器的容量越大。保持电极材料孔径大小在2---50 nm之 间提高孔隙率才能提高材料的有效比表面积,从而提 高双电层电容。 2.2赝电容器原理
3超级电容器的特点‘11】
超级电容器作为一种新型的储能元件,具有如下 万方数据
优点: (1)超高的容量。超级电容器的容量范围为
0.1—6 000F,比同锌积的电解电容.器容量大2 000""6 000 倍。
(2)功率密度高。超级电容器能提供瞬时的大电 流,在短时间内电流可以达到几百到几千安培,其功 率密度是电池的10"'100倍,可达到lOX 103W/kg左右。
大,越来越多的公司聚焦到生产超级电容器上。表l列
出了几个公司已商业化的超级电容器的性能。
表1已商业化的超级电容器及其性能 Tab.1 Summary ofcommercial supercapacitors

公司
产品型号

NEC
FBIE505Z
24
Panasonic EECHWWOD706
2.1


上运营,性能良好。美国Maxwell公司所开发的超级
电容器已在各种类型电动车上得到良好应用。本田公
司在其开发出的第三代和第四代燃料电池电动车FCX —V3和FCX—V4中分别使用了自行开发研制的超级
电容器来取代二次电池,减少了汽车的重量和体积,
使系统效率增加,同时可在刹车时回收能量,测试结
果表明,使用超级电容器时燃料效率和加速性能均得
1超级电容器的历史
如图l所示,超级电容器有多种外观形式。超 级电容器也有其它的名称,如:电化学电容器
(Electrochemical Capacitor,EC)、超大容量电容器 (Ultracapacitor)等。
超级电容器储能机理在1879年由Helmholz发 现,但利用这个原理将大量的电能存储在物质表面, 像电池一样用于实际目的的人是Becker【5】。随后,美 国Sohio公司开始利用基于高比表面的碳材料的双层 电容器。Conway于1975"-'1981年间开发了另—种类型的
金属氧化物超级电容器所用的电极材料主要是一 些过渡金属氧化物,如:Mn02、V205、Ru02、Ir02、 NiO、H3PMol2040、W03、Pb02和C0304等【m】。金属 氧化物作为超级电容器电极材料研究最为成功的是 Ru02,在H2S04电解液中其比容能达到700~760 F/g。 但Ru02稀有的资源及高昂的价格限制了它的应用。研 究人员希望能从Mn02及NiO等贱金属氧化物中找到 电化学性能优越的电极材料以代替Ru02。
命、充放电效率高等特点,引起了世界广泛关注.综述了超级电容器的原理、分类及特点,介绍了超级电容器的主要
应用领域和发展趋势.
关键词:电子技术;超级电容器;综述;原理:应用
中图分类号:TM53
文献标识码:A
文章编号:1001.2028(2008)04-01X16-04
Principles and applications of supercapacitors
CHEN Ying-fang,LI Yuan-yuan,DENG Mei-gen
(School ofElectronics,Jiangxi University ofFinance&Economics,Nanchang 330013,China)
Abstract:As a new kind energy storage device。supercapacitors have characteristics of high power density,extremelytFQ℃5
0.5
√幻~+85
70
O.1
-25~枷
ELlT
12PP一50
12
Maxwell BMOD0018—3900
390
Powetstot PM5RoV305一R
5.0
705 17.8

0.00l 0.065 O.05
-50~+80 J加~+65 √10~+60
4.1消费电子
超级电容器储能高、循环寿命长、质量轻,可用 做存储器、微型计算机、系统主板和钟表等的备用电
赝电容,也叫法拉第准电容,是在电极材料表面 或体相的二维或准二维空间上,电活性物质进行欠电 位沉积,发生高度可逆的化学吸附,脱附或氧化/还原 反应,产生与电极充电电位有关的电容。由于反应在 整个体相中进行,因而这种体系可实现的最大电容值 比较大,如吸附型准电容为2 000×10。6F/cm2。对氧化 还原型电容器而言,可实现的最大容量值则非常大【9】, 而碳材料的比容通常被认为是20X 10--6F/cm2,因而在 相同的体积或重量的情况下,赝电容器的容量是双电 层电容器容量的10-~100倍。目前赝电容电极材料主 要为一些金属氧化物和导电聚合物。
(6)免维护,环境友善。超级电容器用的材料是 安全、无毒的,而铅酸蓄电池、镍镉蓄电池用的材料 具有毒性。
超级电容器的不足之处表现为能量密度偏低,漏 电流较大,单体工作电压低。水系电解液超级电容器 单体的工作电压只有l V左右,要通过多个电容器单体 的串联才能得到较高的工作电压。而多单体电容器串 联对电容器单体的一致性要求很高。非水系电解液超 级电容器单体的工作电压高一点,可以达到3.5 V。但 非水系电解液要求有高纯度、无水等很苛刻的条件。
第27卷第4期 2008年4月
电 子 元 件与 材 料 ELECTRoNIC CohIpONENTS AND MATERIALS
、,01.27 NO.4 Apr.2008
超级电容器的原理及应用
陈英放,李媛媛,邓梅根
(江西财经大学电子学院,江西南昌330013)
摘要:作为一种介于传统电容器及电池之间的新型储能元件,超级电容器具有超大容量、高功率密度。长循环寿
用导电聚合物作为超级电容器的电极材料是近年 来发展起来的。聚合物产品具有良好的电子电导率, 其典型的数值为l~100 S/cm。~般将共轭聚合物的电 导性与掺杂半导体进行比较,采用术语“P掺杂”和“n 掺杂”分别用于描述电化学氧化和还原的结果。导电聚 合物借助于电化学氧化和还原反应在电子共轭聚合物 链上引入正电荷和负电荷中心,正、负电荷中心的充 电程度取决于电极电势【9】。导电聚合物也是通过法拉 第过程大量存储能量。目前仅有有限的导电聚合物可 以在较高的还原电位下稳定地进行电化学n型掺杂,如 聚乙炔、聚毗咯、聚苯胺、聚噻吩等。现阶段的研究 工作主要集中在寻找具有优良的掺杂性能的导电聚合 物,提高聚合物电极的充放电性能、循环寿命和热稳 定性等方面。
相关文档
最新文档